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Many RL problems

RL setup: an agent interacts with an environement (MDP)
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Several Performance measures:
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@ the agent should adopt a good behavior

=» maximize the total rewards (regret minimization)
=» use as much as possible an e-optimal policy (PAC-MDP)

@ the agent should learn a good behavior

=¥» learn an optimal policy for a given reward function
=» learn the dynamics so that to be robust to find the optimal

policy for any reward function
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two Pure Exploration problems



Setting: Episodic Markov Decision Process

Episodic MDP: horizon H and MDP (S, A, P, r) for
@ a state space S of size S < ©
@ an action space A of size A < o0

o a transition kernel P = (pp(s'[s, a))(s,as')csxAxs
he[H]
o a reward function r = (rx(s,a))(s,a)esx.A
he[H]

Value of a policy 7 = (7)1, , mh: S = A:

H

Vit(sir) = E7 [Z@(S&W(SZ))

{=h

Sph=S
se+1~Pe(-|se,me(se))

Optimal policy: 7} such that V,:T’*(s; r) > V[ (s;r) for all m,s, h. J
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@ a state space S of size S < o
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@ The BPI and RFE objectives



Online episodic algorithm

Collect data from the MDP by generating trajectories (episodes)
= generative model

In each episode t =1,2,..., the agent
@ selects an exploration policy 7t

@ generates an episode under this policy
t .t t .t t t
(s1,a1,55,35, --,SH,ay)

t t bt t t ot
where s ~ p, aj = mi(s,) and s ~ pa(-[sy, ap)
@ can decide to stop exploration

@ if decides to stop, outputs a prediction

=» three data-dependent components
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Best Policy Identification (BPI)

=» Learn the optimal policy for a known reward function r
[Fiechter, 1994]

BPI algorithm

@ exploration policy 7*: may dependent on past data D;_1 and r
Dy =Dt 1 U {(Sfa aivséa 35, 500 7SIEI7 af—l)}

@ stopping rule 7 : stopping time w.r.t. (D¢)ten
(can depend on r)

A~

@ prediction 7: a policy that may depend on D, and r

(e,9)-PAC algorithm for Best Policy Identification

P (Vl*(sl;r) — Vf(s1;r) < 5) >1-6

Wanted: (e,d)-PAC algorithm with a small sample complexity 7




Reward-Free Exploration (RFE)

=¥ Learn the optimal policy for any reward function r
[Jin et al., 2020]

RFE algorithm

@ exploration policy 7': may dependent on past data D; 1
Dy = D1 U{(sf, 1,5, a5,...,sfy,af) }

@ stopping rule 7 : stopping time w.r.t. (D¢)ten

e prediction P = (py(-|s, a))hs.: a transition kernel that may
depend on D

#*: optimal policy in the MDP (P, r)

,0)-PAC algorithm for Reward-Free Exploration

P (for all reward function r, V{(s1; r) — Vlﬁ’*(sl; r) < 5> >1-96

Wanted: (e,0)-PAC algorithm with a small sample complexity 7

7/21



© Reward-Free UCRL



A model-based algorithm

Based on the available data Dy, builds estimates of the transition
probabilities pp(s, a)
=» estimates of the Q-values Q (s, a; r)

Number of visits:

t t
nh(s,a) = Z Ly(skaty=(s,a)}  Mh(s;a:8") = Z Ly(sh ot sk, )=(s,:2,5)}
k=1 k=1

Empirical transitions: P! = (pL(s'|s,a))hs.a.

n;(s,a,s’) ot
if ni(s,a) >0
pifsls.a) = § e 1)
< else

Empirical values:
° \A/ht’”(s; r) values in the empirical MDP (S, A, P*, r)

° @,’:’”(s; r) Q-values in the empirical MDP (S, A, Pt r)



Reward-Free UCRL

Central observation

A sufficient condition to be (g, )-PAC is to have accurate
estimates of the value function for all = and r:

P (VTr,Vr, V™ (s1;r) — Vi (s1;7)| < 5/2) >1-4.

RF-UCRL:

@ builds upper bounds on the errors
& (s air) = |QF (s, 3 1) — Qf(s. air)]
... that are independent of 7 and r!

o greedily reduces the upper bounds



Reward-Free UCRL

&7 (s,ar) = Q)7 (s, r) — Qi (s, &) J

We define inductively £/, ;(s,a) =0 and

(=) (=) [ 2220 52 s s ) mpx B b)]

for some treshold function 5(n,d).

Ef(s,a)=min

=» like in UCRL [Jaksch et al. 10], this construction relies on
confidence regions on the transitions probabilities

Upper Bound Property

On the event

E= {Vt € N,Vh € [H],Y(s,a), KL(pn(:|s, a), pn(-[s,a)) < n';((ss:))é)} ’

for all  and r, for all h,s,a, &7 (s,a;r) < E(s, a).




&7 (s,ar) = | QL (s, 3 r) — Qf (s, & )| |
A simple consequence of Bellman equations:

Q7 (s,ar) = rm(s,a)+ Y Bh(s'ls, a) @y (s, m(s); r)

5/

and Qf(s,air) = rm(s,a)+ Y pa(s'ls, a)Qp (s m(s):r) -

S/

Error decomposition:
“t” (s,a;r) < Z }ph(s'|s, a) — ph(s’|s,a)| Qia(s',m(s)r)
+ Zﬁh (5[s,2) | Q4 (5", w(s')i 1) = Qi 7(5): 1)
s/

< (H—=h)|1h(:1s,a) = pa(-Is. a)llL + Y ph(s'ls, a) &7y (s m(s")i ) -
s/ vV
< 28(nl(s,2),8) (Pinsker+&) gma.xbff,ﬂ(s’,b)
nt (s,2) (induction)




The algorithm

(H=h); (H=h)\| —F——= /8( (s,2) 6 +Z s'ls,a math+1(s b)]

Reward-Free UCRL

o exploration policy: wt*! is the greedy policy wrt E(s, a):

El(s,a)=min

Vs € S,Vhe [h], mLT(s)=argmax Ef(s,a).
acA

o stopping rule: 7 = inf {t € N: Ef(s1, 7 !(s1)) < £/2}

@ prediction: transition kernel P

=» very close to an old algorithm by [Fiechter, 1994]
.. originally proposed for Best Policy ldentification!



Theoretical guarantees

With 3(n, ) ~ log(%) + Slog(n), RF-UCRL is (e, §)-PAC for
Reward-Free Exploration and satisfies, w.p. 1 — 6,

~ ((H*SA 1
022 (1))
€ )
=» improves over the state-of-the art bound of [Jin et al. 20]
~ [ S2AH® 1 SYAH! 1
RF-RL-Explore _ 3
T poe_(9< 2 Iog(g)—i— 2 log (6))

=» RF-UCRL is a natural adaptive approach to RFE
.. with a simple sample complexity analysis




© BPI Algorithms



Beyond RF-UCRL

First observation: RF-UCRL is also (e, §)-PAC for Best Policy
Identification with the updated

e prediction rule: 7, the optimal policy if the MDP (S, A, P, r)

~ [ H*SA 1
RF-UCRL __
T =0 ( 2 [Iog (5) + S]) w.h.p.

Lower bound for BPI

For every (e,d)-PAC BPI algorithm, there exists an MDP (with
stage-dependent transitions) such that

3
E[r] > a i log (%) ,

=2
where c; is an absolute constant.

=» some room for improvement...



Building on Regret Minimizing algorithm

The UCB-VI algorithm of [Azar et al. 17] satisfies

E

- (vitsin - (a0 | = ¢ (viFSHT)

t=1

(minimax optimal cumulative regret)

From UCB-VI to a BPI algorithm

e exploration policy: that of the UCB-VI algorithm
@ stopping rule: T = Cg?{'ﬁ

(T =T is fixed in advance)

@ prediction rule: 7 is one of the policies used by UCB-VI,
chosen uniformly at random: # =72" n~U({1,...,T})
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(T =T is fixed in advance)
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An alternative: BPI-UCRL

A more adaptive conversion from a regret minimizer:

=¥ associate a data-dependent stopping rule to a UCRL algorithm

BPI-UCRL

o exploration policy: 7t71(s) = arg max,c 4 a,t,(s, a;r)
o stopping rule: 7 =inf {t € N: V;(sl; r)— Vi(si;ir) <e€}

o prediction rule: 7(s) = argmax,c 4 Q}(s,a;r)

where we have built upper and lower confidence bounds

Qi(s,air) < Q(s,air) < Qu(s.air)

Vi(sir) < Vilsir) < Visin).
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Sample complexity of BPI-UCRL

With 3(n, ) ~ log(%) + Slog(n), BPI-UCRL is (e, §)-PAC for
Best Policy Identification and satisfies, w.p. > 1 — 6,

4
,BPLUCRL _ 3 (HE;SA {bg (%) + SD

=¥ similar sample complexity bound as RF-UCRL
(obtained with a similar proof)

=» yet the practical story is different...



RF-UCRL versus BPI-UCRL

Double Chain MDP with L =31, H = 20:

OoOCo@E=O0Z00@

——- 0(/e) i --- o(1/2)

005 015 025 035 045 055 065 075 085 095 005 015 025 035 045 055 065 075 085 095

E[r|r < 108] for RF-UCRL E[r|r < 10°] for BPI-UCRL

=» BPI-UCRL has a much smaller sample complexity!



@ The sample complexity of...

Upper Bound Lower Bound
BPI H:fA [log (%) + 5] HdSA log (3)
BPI-UCRL / RF-UCRL | [Darwiche Domlngues et al. 2020]
RFE | 34 [log (3) + 5] 22 [log () + 9]
RF-UCRL + [Jin et al. 2020]

Follow-up work: shaving the remaining H factor for BPl and RFE
for more sophisticated algorithms using Bernstein bonuses

=» BPI-UCBVI for Best Policy Identification
=» RF-Express for Reward Free Exploration

Ménard et al. 2020, Fast active learning for pure exploration in
reinforcement learning, arXiv:2007.13442



@ The sample complexity of...

Upper Bound Lower Bound
BPI | 3 log (1) + S H25A 1og (1)
BP| UCRL / RF-UCRL | [Darwiche Domingues et al. 2020]
RFE | 3 log (1) + 5] H5A log (1) + S]
RF-UCRL + [Jin et al. 2020]

Future work: beyond worst-case guarantees

=» problem-dependent sample complexity for the simpler
planning problem (= find the best first action)
[Jonsson et al., 2020]

=» problem-dependent regret guarantees
[Simchowitz and Jamieson, 2019]

. how about BPI?
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