On the complexity of learning good policies with and without rewards

<u>Emilie Kaufmann</u>, Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson. Edouard Leurent and Michal Valko

Mathematics of Online Decision Making, Simons Institute October 28th, 2020

Many RL problems

RL setup: an agent interacts with an environement (MDP)

Several Performance measures:

- 1 the agent should adopt a good behavior
 - → maximize the total rewards (regret minimization)
 - \rightarrow use as much as possible an ε -optimal policy (*PAC-MDP*)
- 2 the agent should learn a good behavior
 - → learn an optimal policy for a given reward function
 - → learn the dynamics so that to be robust to find the optimal policy for *any* reward function

Many RL problems

RL setup: an agent interacts with an environement (MDP)

Several Performance measures:

- 1 the agent should adopt a good behavior
 - → maximize the total rewards (regret minimization)
 - \rightarrow use as much as possible an ε -optimal policy (*PAC-MDP*)
- the agent should learn a good behavior
 - → learn an optimal policy for a given reward function
 - → learn the dynamics so that to be robust to find the optimal policy for *any* reward function

two Pure Exploration problems

Episodic MDP: horizon H and MDP (S, A, P, r) for

- ullet a state space ${\cal S}$ of size ${\cal S}<\infty$
- ullet an action space ${\mathcal A}$ of size $A<\infty$
- a transition kernel $P = (p_h(s'|s,a))_{(s,a,s') \in \mathcal{S} \times \mathcal{A} \times \mathcal{S}} \atop h \in [H]$
- ullet a reward function $r=(r_h(s,a))_{\substack{(s,a)\in\mathcal{S} imes\mathcal{A}\\h\in[H]}}$

Value of a policy $\pi = (\pi_h)_{h=1}^H$, $\pi_h : \mathcal{S} \to \mathcal{A}$:

$$V_h^{\pi}(s;r) \triangleq \mathbb{E}^{\pi} \left[\sum_{\ell=h}^{H} r_{\ell}(s_{\ell},\pi_{\ell}(s_{\ell})) \middle| \substack{s_h=s \ s_{\ell+1} \sim p_{\ell}(\cdot | s_{\ell},\pi_{\ell}(s_{\ell}))} \right]$$

Episodic MDP: horizon H and MDP (S, A, P, r) for

- ullet a state space ${\cal S}$ of size ${\cal S}<\infty$
- ullet an action space ${\mathcal A}$ of size $A<\infty$
- a transition kernel $P = (p_h(s'|s,a))_{(s,a,s') \in \mathcal{S} \times \mathcal{A} \times \mathcal{S}} \atop h \in [H]$
- a reward function $r = (r_h(s, a))_{\substack{(s,a) \in \mathcal{S} \times \mathcal{A} \\ h \in [H]}}$

Value of a policy $\pi = (\pi_h)_{h=1}^H$, $\pi_h : \mathcal{S} \to \mathcal{A}$:

$$V_h^{\pi}(s;r) \triangleq \mathbb{E}^{\pi} \left[\sum_{\ell=h}^{H} r_{\ell}(s_{\ell},\pi_{\ell}(s_{\ell})) \middle| \substack{s_h=s \ s_{\ell+1} \sim p_{\ell}(\cdot | s_{\ell},\pi_{\ell}(s_{\ell}))} \right]$$

Episodic MDP: horizon H and MDP (S, A, P, r) for

- ullet a state space ${\cal S}$ of size ${\cal S}<\infty$
- ullet an action space ${\mathcal A}$ of size $A<\infty$
- a transition kernel $P = (p_h(s'|s,a))_{\substack{(s,a,s') \in \mathcal{S} \times \mathcal{A} \times \mathcal{S} \\ h \in [H]}}$
- a reward function $r = (r_h(s, a))_{\substack{(s,a) \in \mathcal{S} \times \mathcal{A} \\ h \in [H]}}$

Q-value of a policy $\pi = (\pi_h)_{h=1}^H$, $\pi_h : \mathcal{S} \to \mathcal{A}$:

$$Q_h^{\pi}(s,a;r) \triangleq \mathbb{E}^{\pi} \left[r_h(s,a) + \sum_{\ell=h+1}^{H} r_{\ell}(s_{\ell},\pi_{\ell}(s_{\ell})) \middle| \begin{array}{l} s_h = s, a_h = a \\ s_{\ell+1} \sim p_{\ell}(\cdot | s_{\ell},\pi_{\ell}(s_{\ell})) \end{array} \right]$$

Episodic MDP: horizon H and MDP (S, A, P, r) for

- ullet a state space ${\cal S}$ of size ${\cal S}<\infty$
- ullet an action space ${\mathcal A}$ of size $A<\infty$
- a transition kernel $P = (p_h(s'|s,a))_{\substack{(s,a,s') \in \mathcal{S} \times \mathcal{A} \times \mathcal{S} \\ h \in [H]}}$
- a reward function $r = (r_h(s, a))_{\substack{(s,a) \in S \times A \\ h \in [H]}}$ (step-dependent)

Q-value of a policy $\pi = (\pi_h)_{h=1}^H$, $\pi_h : \mathcal{S} \to \mathcal{A}$:

$$Q_h^{\pi}(s,a;r) \triangleq \mathbb{E}^{\pi} \left[r_h(s,a) + \sum_{\ell=h+1}^{H} r_{\ell}(s_{\ell},\pi_{\ell}(s_{\ell})) \middle| \begin{array}{l} s_h = s, a_h = a \\ s_{\ell+1} \sim p_{\ell}(\cdot | s_{\ell},\pi_{\ell}(s_{\ell})) \end{array} \right]$$

Outline

1 The BPI and RFE objectives

2 Reward-Free UCRL

BPI Algorithms

Online episodic algorithm

Collect data from the MDP by generating trajectories (episodes) \neq generative model

In each episode t = 1, 2, ..., the agent

- selects an exploration policy π^t
- generates an episode under this policy

$$(s_1^t, a_1^t, s_2^t, a_2^t, \dots, s_H^t, a_H^t)$$

where
$$s_1^t \sim
ho$$
, $a_h^t = \pi_h^t(s_h^t)$ and $s_{h+1}^t \sim p_h(\cdot|s_h^t,a_h^t)$

- can decide to stop exploration
- if decides to stop, outputs a prediction
- → three data-dependent components

Online episodic algorithm

Collect data from the MDP by generating trajectories (episodes) \neq generative model

In each episode $t = 1, 2, \ldots$, the agent

- selects an exploration policy π^t
- generates an episode under this policy

$$(s_1^t, a_1^t, s_2^t, a_2^t, \dots, s_H^t, a_H^t)$$

where
$$\pmb{s_1^t} = \pmb{s_1}$$
, $\pmb{a_h^t} = \pi_h^t(\pmb{s_h^t})$ and $\pmb{s_{h+1}^t} \sim p_h(\cdot|\pmb{s_h^t},\pmb{a_h^t})$

- can decide to stop exploration
- if decides to stop, outputs a prediction
- → three data-dependent components

Best Policy Identification (BPI)

ightharpoonup Learn the optimal policy for a known reward function r [Fiechter, 1994]

BPI algorithm

ullet exploration policy π^t : may dependent on past data \mathcal{D}_{t-1} and r

$$\mathcal{D}_{t} = \mathcal{D}_{t-1} \cup \left\{ (s_{1}^{t}, a_{1}^{t}, s_{2}^{t}, a_{2}^{t}, \dots, s_{H}^{t}, a_{H}^{t}) \right\}$$

- stopping rule τ : stopping time w.r.t. $(\mathcal{D}_t)_{t\in\mathbb{N}}$ (can depend on r)
- prediction $\hat{\pi}$: a **policy** that may depend on \mathcal{D}_{τ} and r

(ε, δ) -PAC algorithm for Best Policy Identification

$$\mathbb{P}\left(V_1^{\star}(\pmb{s}_1;r) - V_1^{\hat{\pi}}(\pmb{s}_1;r) \leq \varepsilon\right) \geq 1 - \delta$$

Wanted: (ε, δ) -PAC algorithm with a small sample complexity τ

Reward-Free Exploration (RFE)

ightharpoonup Learn the optimal policy for any reward function r [Jin et al., 2020]

RFE algorithm

ullet exploration policy π^t : may dependent on past data \mathcal{D}_{t-1}

$$\mathcal{D}_t = \mathcal{D}_{t-1} \cup \left\{ \left(\textit{\textbf{s}}_1^t, \textit{\textbf{a}}_1^t, \textit{\textbf{s}}_2^t, \textit{\textbf{a}}_2^t, \dots, \textit{\textbf{s}}_H^t, \textit{\textbf{a}}_H^t \right) \right\}$$

- stopping rule au: stopping time w.r.t. $(\mathcal{D}_t)_{t\in\mathbb{N}}$
- prediction $\hat{P}=(\hat{p}_h(\cdot|s,a))_{h,s,a}$: a transition kernel that may depend on \mathcal{D}_{τ}

 $\hat{\pi}_r^*$: optimal policy in the MDP (\hat{P}, r)

$(arepsilon,\delta)$ -PAC algorithm for Reward-Free Exploration

$$\mathbb{P}\left(\text{for all reward function } r, V_1^{\star}(\boldsymbol{s}_1; r) - V_1^{\hat{\pi}_r^{\star}}(\boldsymbol{s}_1; r) \leq \varepsilon\right) \geq 1 - \delta$$

Wanted: (ε, δ) -PAC algorithm with a small sample complexity τ

Outline

1 The BPI and RFE objectives

Reward-Free UCRL

3 BPI Algorithms

A model-based algorithm

Based on the available data \mathcal{D}_t , builds estimates of the transition probabilities $p_h(s, a)$

 \rightarrow estimates of the Q-values $Q_h^{\pi}(s, a; r)$

Number of visits:

$$n_h^t(s,a) = \sum_{k=1}^t \mathbb{1}_{\{(s_h^k, a_h^k) = (s,a)\}} \quad n_h^t(s,a,s') = \sum_{k=1}^t \mathbb{1}_{\{(s_h^k, a_h^k, s_{h+1}^k) = (s,a,s')\}}$$

Empirical transitions: $\hat{P}^t = (\hat{p}_h^t(s'|s,a))_{h,s,a,s'}$

$$\hat{\rho}_h^t(s'|s,a) = \begin{cases} \frac{n_h^t(s,a,s')}{n_h^t(s,a)} & \text{if } n_h^t(s,a) > 0\\ \frac{1}{S} & \text{else} \end{cases}$$

Empirical values:

- $\hat{V}_{b}^{t,\pi}(s;r)$ values in the empirical MDP $(\mathcal{S},\mathcal{A},\hat{P}^{t},r)$
- $\hat{Q}_{h}^{t,\pi}(s;r)$ Q-values in the empirical MDP $(\mathcal{S},\mathcal{A},\hat{P}^{t},r)$

Reward-Free UCRL

Central observation

A sufficient condition to be (ε, δ) -PAC is to have accurate estimates of the value function for all π and r:

$$\mathbb{P}\left(\forall \pi, \forall r, \ |\hat{V}_1^{\tau,\pi}(s_1;r) - V_1^{\pi}(s_1;r)| \leq \varepsilon/2\right) \geq 1 - \delta.$$

RF-UCRL:

• builds upper bounds on the errors

$$\hat{e}_h^{t,\pi}(s,a;r) := |\hat{Q}_h^{t,\pi}(s,a;r) - Q_h^{\pi}(s,a;r)|$$

- ... that are independent of π and r!
- greedily reduces the upper bounds

Reward-Free UCRL

$$\hat{e}_h^{t,\pi}(s,a;r) := |\hat{Q}_h^{t,\pi}(s,a;r) - Q_h^{\pi}(s,a;r)|$$

We define inductively $\bar{E}_{H+1}^t(s,a)=0$ and

$$\bar{E}_{h}^{t}(s,a) = \min \left[(H-h); \ (H-h) \sqrt{\frac{2\beta(n_{h}^{t}(s,a),\delta)}{n_{h}^{t}(s,a)}} + \sum_{s'} \hat{\rho}_{h}^{t}(s'|s,a) \max_{b} \bar{E}_{h+1}^{t}(s',b) \right]$$

for some treshold function $\beta(n, \delta)$.

→ like in UCRL [Jaksch et al. 10], this construction relies on confidence regions on the transitions probabilities

Upper Bound Property

On the event

$$\mathcal{E} = \left\{ \forall t \in \mathbb{N}, \forall h \in [H], \forall (s, a), \mathrm{KL}\big(\hat{p}_h^t(\cdot|s, a), p_h(\cdot|s, a)\big) \leq \frac{\beta(n_h^t(s, a), \delta)}{n_h^t(s, a)} \right\} \;,$$

for all π and r, for all h, s, a, $\hat{e}_h^{t,\pi}(s, a; r) \leq \bar{E}_h^t(s, a)$.

Proof

$$\hat{e}_h^{t,\pi}(s,a;r) := |\hat{Q}_h^{t,\pi}(s,a;r) - Q_h^{\pi}(s,a;r)|$$

A simple consequence of Bellman equations:

$$\hat{Q}_h^{t,\pi}(s,a;r) = r_h(s,a) + \sum_{s'} \hat{p}_h^t(s'|s,a) \hat{Q}_{h+1}^{t,\pi}(s',\pi(s');r)$$

and $Q_h^{\pi}(s,a;r) = r_h(s,a) + \sum_{s'} p_h(s'|s,a) Q_{h+1}^{\pi}(s',\pi(s');r)$.

Error decomposition:

$$\begin{split} \hat{e}_{h}^{t,\pi}(s,a;r) &\leq \sum_{s'} \left| \hat{p}_{h}^{t}(s'|s,a) - p_{h}(s'|s,a) \right| Q_{h+1}^{\pi}(s',\pi(s');r) \\ &+ \sum_{s'} \hat{p}_{h}^{t}(s'|s,a) \left| \hat{Q}_{h+1}^{t,\pi}(s',\pi(s');r) - Q_{h+1}^{\pi}(s',\pi(s');r) \right| \\ &\leq (H-h) \underbrace{\|\hat{p}_{h}^{t}(\cdot|s,a) - p_{h}(\cdot|s,a)\|_{1}}_{\leq \sqrt{\frac{2\beta(r_{h}^{t}(s,a),\delta)}{n_{h}^{t}(s,a)}}} (\text{Pinsker}+\mathcal{E}) \underbrace{\hat{p}_{h}^{t}(s'|s,a) \underbrace{\hat{e}_{h+1}^{t,\pi}(s',\pi(s');r)}_{\leq \max_{b} \overline{E}_{h+1}^{t}(s',b)} \underbrace{\hat{e}_{h+1}^{t,\pi}(s',b)}_{(\text{induction})}. \end{split}$$

The algorithm

$$\bar{E}_{h}^{t}(s,a) = \min \left[(H-h); (H-h) \sqrt{\frac{2\beta(n_{h}^{t}(s,a),\delta)}{n_{h}^{t}(s,a)}} + \sum_{s'} \hat{p}_{h}^{t}(s'|s,a) \max_{b} \bar{E}_{h+1}^{t}(s',b) \right]$$

Reward-Free UCRL

• **exploration policy**: π^{t+1} is the greedy policy wrt $\bar{E}^t(s,a)$:

$$\forall s \in \mathcal{S}, \forall h \in [h], \quad \pi_h^{t+1}(s) = \operatorname*{arg\,max}_{a \in \mathcal{A}} \quad \bar{E}_h^t(s, a).$$

- stopping rule: $\tau = \inf \left\{ t \in \mathbb{N} : \bar{E}_1^t(s_1, \pi_1^{t+1}(s_1)) \leq \varepsilon/2 \right\}$
- **prediction**: transition kernel \hat{P}^{τ}
- → very close to an old algorithm by [Fiechter, 1994]
 ... originally proposed for Best Policy Identification!

Theoretical guarantees

Theorem [Kaufmann et al. 2020]

With $\beta(n, \delta) \simeq \log(\frac{1}{\delta}) + S \log(n)$, RF-UCRL is (ε, δ) -PAC for Reward-Free Exploration and satisfies, w.p. $1 - \delta$,

$$au^{\mathsf{RF-UCRL}} = \tilde{\mathcal{O}}\left(\frac{H^4 SA}{\varepsilon^2} \left[\log\left(\frac{1}{\delta}\right) + S\right]\right)$$

→ improves over the state-of-the art bound of [Jin et al. 20]

$$\tau^{\mathsf{RF-RL-Explore}} = \tilde{\mathcal{O}}\left(\frac{S^2AH^5}{\varepsilon^2}\log\left(\frac{1}{\delta}\right) + \frac{S^4AH^7}{\varepsilon^2}\log^3\left(\frac{1}{\delta}\right)\right)$$

→ RF-UCRL is a natural *adaptive* approach to RFE ... with a simple sample complexity analysis

Outline

1 The BPI and RFE objectives

2 Reward-Free UCRL

3 BPI Algorithms

Beyond RF-UCRL

First observation: RF-UCRL is also (ε, δ)-PAC for Best Policy Identification with the updated

• prediction rule: $\hat{\pi}$, the optimal policy if the MDP $(S, A, \hat{P}^{\tau}, r)$

$$\tau^{\mathsf{RF-UCRL}} = \tilde{\mathcal{O}}\left(\frac{\mathit{H}^4\mathit{SA}}{\varepsilon^2}\left[\log\left(\frac{1}{\delta}\right) + \mathit{S}\right]\right) \quad \mathsf{w.h.p.}$$

Lower bound for BPI [Domingues et al. 2020]

For every (ε, δ) -PAC BPI algorithm, there exists an MDP (with stage-dependent transitions) such that

$$\mathbb{E}[\tau] \ge c_1 \frac{H^3 SA}{\varepsilon^2} \log \left(\frac{1}{\delta}\right),\,$$

where c_1 is an absolute constant.

→ some room for improvement...

Building on Regret Minimizing algorithm

The UCB-VI algorithm of [Azar et al. 17] satisfies

$$\mathbb{E}\left[\sum_{t=1}^{T}\left(V_{1}^{\star}(s_{1};r)-V_{1}^{\pi^{t}}(s_{1};r)\right)\right]\leq C\left(\sqrt{H^{3}SAT}\right)$$

(minimax optimal cumulative regret)

From UCB-VI to a BPI algorithm [Jin et al. 18]

- exploration policy: that of the UCB-VI algorithm
- **stopping rule:** $T = \frac{C^2 SAH^3}{\varepsilon^2 \delta^2}$ ($\tau = T$ is fixed in advance)
- **prediction rule:** $\hat{\pi}$ is one of the policies used by UCB-VI, chosen uniformly at random: $\hat{\pi} = \hat{\pi}^n \quad n \sim \mathcal{U}(\{1, \dots, T\})$

Building on Regret Minimizing algorithm

The UCB-VI algorithm of [Azar et al. 17] satisfies

$$\mathbb{E}\left[\sum_{t=1}^{T}\left(V_{1}^{\star}(s_{1};r)-V_{1}^{\pi^{t}}(s_{1};r)\right)\right]\leq C\left(\sqrt{H^{3}SAT}\right)$$

(minimax optimal cumulative regret)

From UCB-VI to a BPI algorithm [Jin et al. 18]

- exploration policy: that of the UCB-VI algorithm
- **stopping rule:** $T = \frac{C^2 SAH^3}{\varepsilon^2 \delta^2}$ ($\tau = T$ is fixed in advance)
- **prediction rule:** $\hat{\pi}$ is one of the policies used by UCB-VI, chosen uniformly at random: $\hat{\pi} = \hat{\pi}^n \ n \sim \mathcal{U}(\{1, \dots, T\})$
- ightharpoonup optimal dependency in ε , sub-optimal dependency in δ

An alternative: BPI-UCRL

A more adaptive conversion from a regret minimizer:

→ associate a data-dependent stopping rule to a UCRL algorithm

BPI-UCRL

- exploration policy: $\pi^{t+1}(s) = \arg\max_{a \in \mathcal{A}} \overline{Q}_h^t(s, a; r)$
- stopping rule: $\tau = \inf \left\{ t \in \mathbb{N} : \overline{V}_1^t(s_1; r) \underline{V}_1^t(s_1; r) \leq \epsilon \right\}$
- prediction rule: $\hat{\pi}_h(s) = \arg\max_{a \in \mathcal{A}} \underline{Q}_h^{\tau}(s, a; r)$

where we have built upper and lower confidence bounds

$$\underline{Q}_{h}^{t}(s,a;r) \leq Q_{h}^{\star}(s,a;r) \leq \overline{Q}_{h}^{t}(s,a;r)
\underline{V}_{h}^{t}(s;r) \leq V_{h}^{\star}(s;r) \leq \overline{V}_{h}^{t}(s;r).$$

An alternative: BPI-UCRL

A more adaptive conversion from a regret minimizer:

→ associate a data-dependent stopping rule to a UCRL algorithm

BPI-UCRL

- exploration policy: $\pi^{t+1}(s) = \arg\max_{a \in \mathcal{A}} \overline{Q}_h^t(s, a; r)$
- stopping rule: $\tau = \inf \left\{ t \in \mathbb{N} : \overline{V}_1^t(s_1; r) \underline{V}_1^t(s_1; r) \le \epsilon \right\}$
- prediction rule: $\hat{\pi}_h(s) = \arg\max_{a \in \mathcal{A}} \underline{Q}_h^{\tau}(s, a; r)$

where we have built upper and lower confidence bounds

$$\underline{Q}_{h}^{t}(s,a;r) \leq Q_{h}^{\star}(s,a;r) \leq \overline{Q}_{h}^{t}(s,a;r)
\underline{V}_{h}^{t}(s;r) \leq V_{h}^{\star}(s;r) \leq \overline{V}_{h}^{t}(s;r).$$

Sample complexity of BPI-UCRL

Theorem [Kaufmann et al. 2020]

With $\beta(n, \delta) \simeq \log(\frac{1}{\delta}) + S \log(n)$, BPI-UCRL is (ε, δ) -PAC for Best Policy Identification and satisfies, w.p. $\geq 1 - \delta$,

$$au^{\mathsf{BPI-UCRL}} = \tilde{\mathcal{O}}\left(rac{\mathit{H}^{\mathsf{4}}\mathit{SA}}{arepsilon^{2}}\left[\log\left(rac{1}{\delta}
ight) + \mathit{S}
ight]
ight)$$

- → similar sample complexity bound as RF-UCRL (obtained with a similar proof)
- → yet the practical story is different...

RF-UCRL versus BPI-UCRL

Double Chain MDP with L = 31, H = 20:

$$\mathbb{E}[\tau|\tau<10^8]$$
 for RF-UCRL

 $\mathbb{E}[\tau|\tau<10^6]$ for BPI-UCRL

→ BPI-UCRL has a much smaller sample complexity!

Summary

• The sample complexity of...

	Upper Bound	Lower Bound
BPI	$rac{H^4SA}{arepsilon^2}\left[\log\left(rac{1}{\delta} ight)+S ight]$ BPI-UCRL / RF-UCRL	$\frac{H^3SA}{\varepsilon^2}\log\left(\frac{1}{\delta}\right)$ [Darwiche Domingues et al. 2020]
RFE	$rac{H^4SA}{arepsilon^2}\left[\log\left(rac{1}{\delta} ight)+S ight]$ RF-UCRL	$rac{H^3SA}{arepsilon^2}\left[\log\left(rac{1}{\delta} ight)+S ight] \ + \left[ext{Jin et al. 2020} ight]$

Follow-up work: shaving the remaining H factor for BPI and RFE for more sophisticated algorithms using Bernstein bonuses

- → BPI-UCBVI for Best Policy Identification
- → RF-Express for Reward Free Exploration

Ménard et al. 2020, Fast active learning for pure exploration in reinforcement learning, arXiv:2007.13442

Summary

• The sample complexity of...

	Upper Bound	Lower Bound
BPI	$\frac{H^4SA}{\varepsilon^2} \left[\log \left(\frac{1}{\delta} \right) + S \right]$	$\frac{H^3SA}{\varepsilon^2}\log\left(\frac{1}{\delta}\right)$
	BPI-UCRL / RF-UCRL	[Darwiche Domingues et al. 2020]
RFE	$rac{H^4SA}{arepsilon^2} \left[\log\left(rac{1}{\delta} ight) + S ight]$ RF-UCRL	$\frac{H^3SA}{\varepsilon^2} \left[\log \left(\frac{1}{\delta} \right) + S \right] + [\text{Jin et al. 2020}]$
	KF-UCKL	+ [Jin et al. 2020]

Future work: beyond worst-case guarantees

- → problem-dependent sample complexity for the simpler planning problem (= find the best first action) [Jonsson et al., 2020]
- → problem-dependent regret guarantees [Simchowitz and Jamieson, 2019]

... how about BPI?

References

- Azar et al., Minimax Regret Bounds for Reinforcement Learning, ICML 2017
- Darwiche Domingues et al., *Episodic Reinforcement Learning in Finite MDPs: Minimax Lower Bounds Revisited*, arXiv:2010.03531, 2020
- Jaksch et al., Near-optimal Regret Bounds for Reinforcement Learning, JMLR 2010
- Jin et al., Reward-Free Exploration for Reinforcement Learning, ICML 2020
- Jin et al., Is Q-Learning Provably Efficient?, NeurIPS 2018
- Jonsson et al., *Planning in Markov Decision Processes with Gap-Dependent Sample Complexity*, NeurlPS 2020
- Fiechter, Efficient Reinforcement Learning, COLT 1994
- Kaufmann et al., Adaptive Reward-Free Exploration, arXiv:2006.06294, 2020
- Ménard et al., Fast active learning for pure exploration in reinforcement learning, arXiv:2007.13442, 2020
- Simchowitz and Jamieson, *Non-Asymptotic Gap-Dependent Regret Bounds* for *Tabular MDPs*, NeurIPS 2019