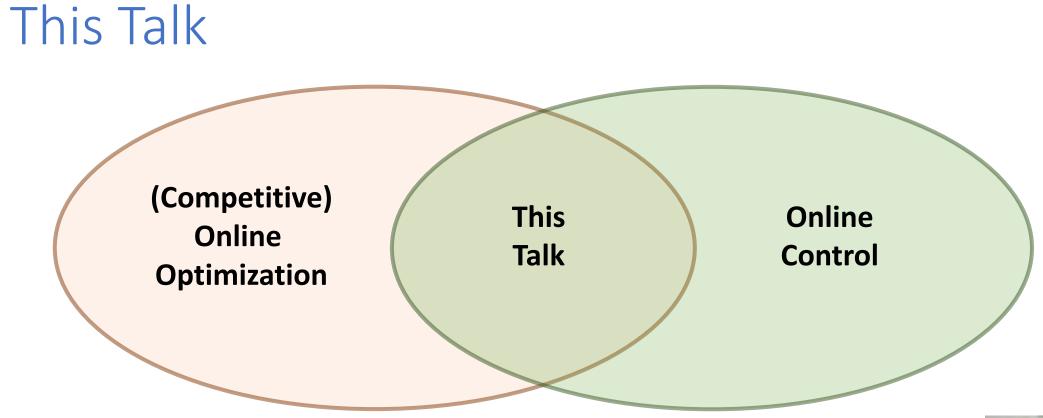


Competitive Algorithms for Online Control

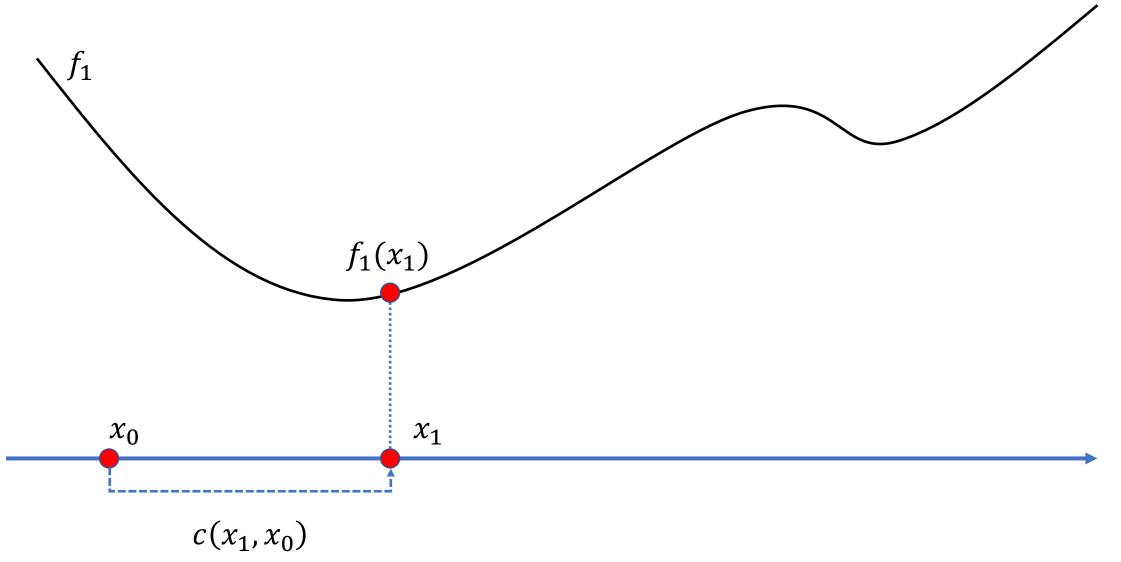
Yisong Yue

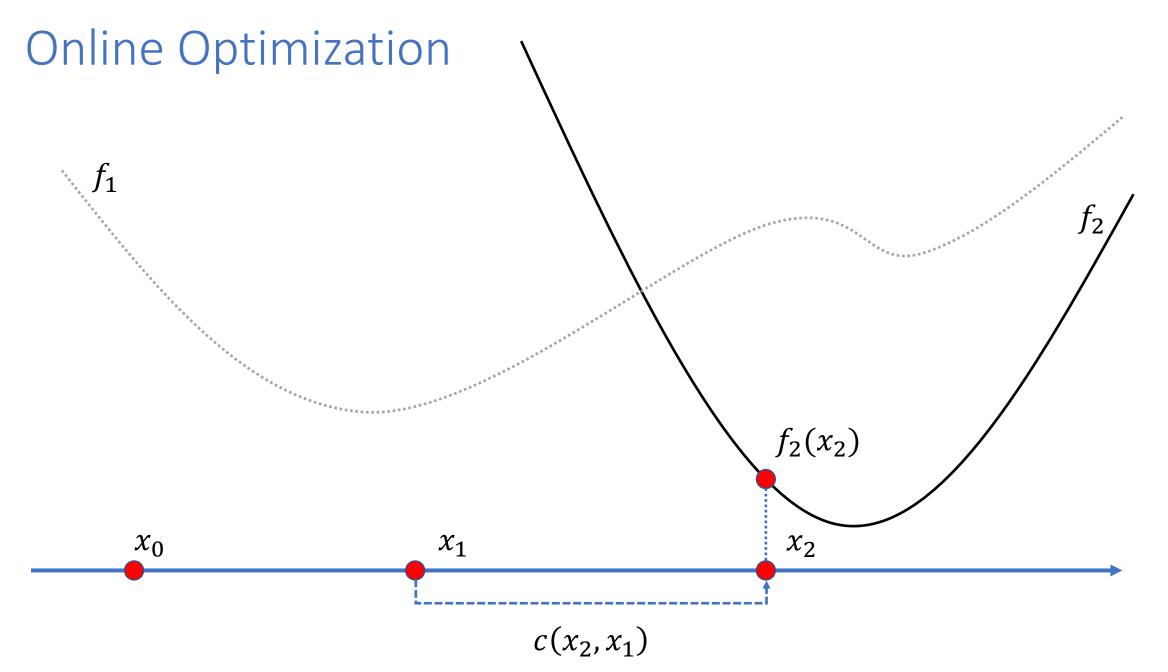


• Bulk of work in collaboration with Adam Wierman's group.

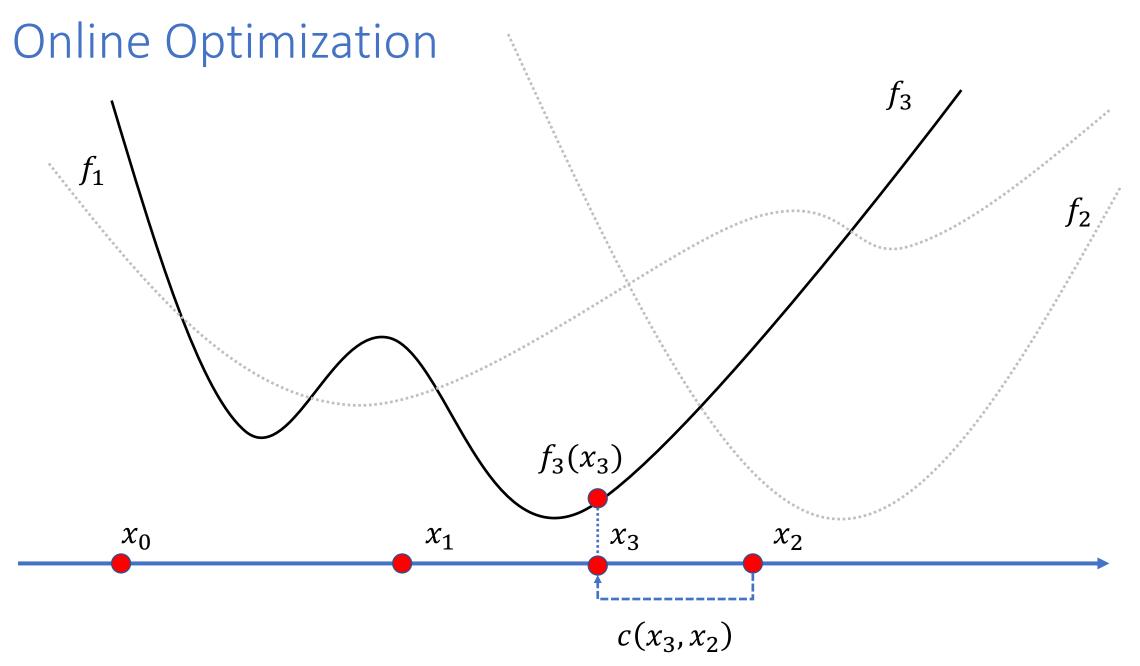
Adam Wierman

Online Optimization

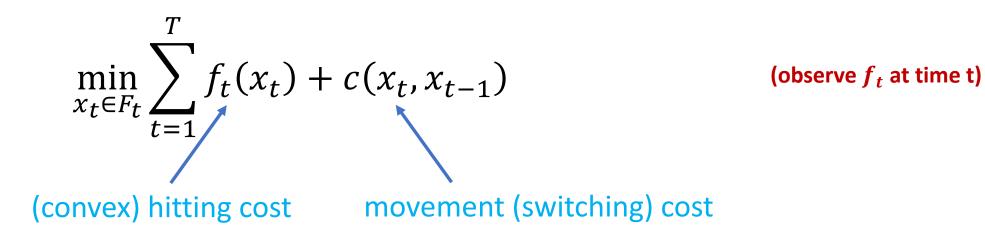




Material from Yiheng Lin



Primer: Smoothed Online Convex Optimization (SOCO) https://arxiv.org/abs/1803.10366



Goal: Design algorithms to minimize the total cost.

Performance metric: competitive ratio: $sup_{\{f_t\}} \frac{cost(ALG)}{cost(OPT)}$

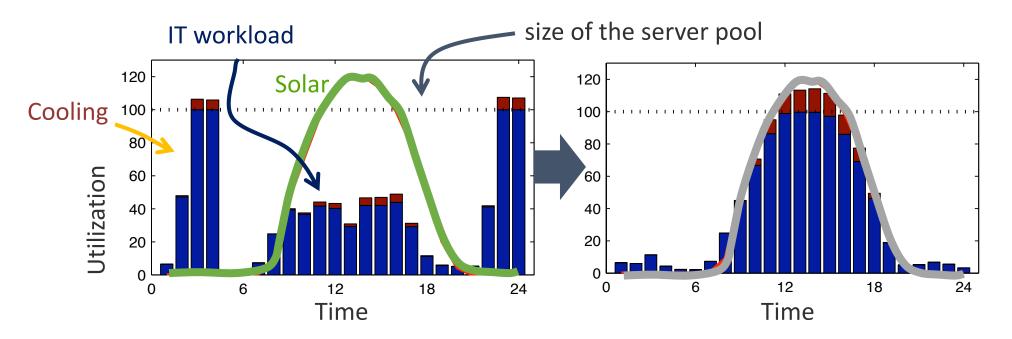
Comments on Competitive Ratio

 $sup_{\{f_t\}} \frac{cost(ALG)}{cost(OPT)}$

- Stronger criteria than regret
- Offline OPT gets to see the future
- Goal is typically to achieve constant competitive ratio
 - (note that CCR typically leads to linear regret)

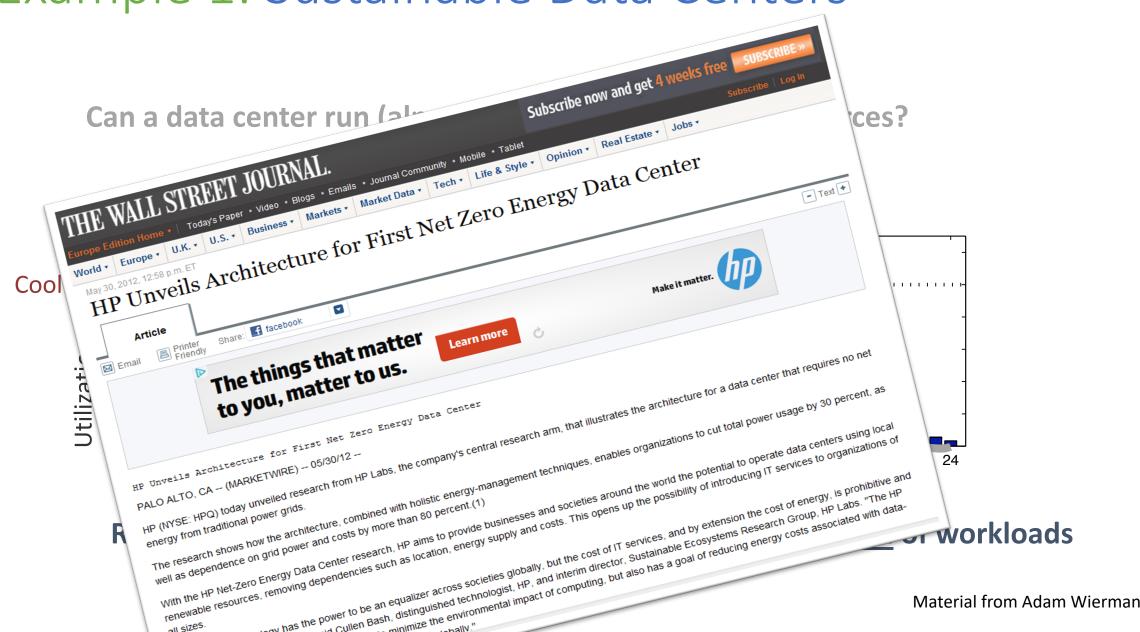
Example 1: Sustainable Data Centers

Can a data center run (almost) entirely on renewable sources?

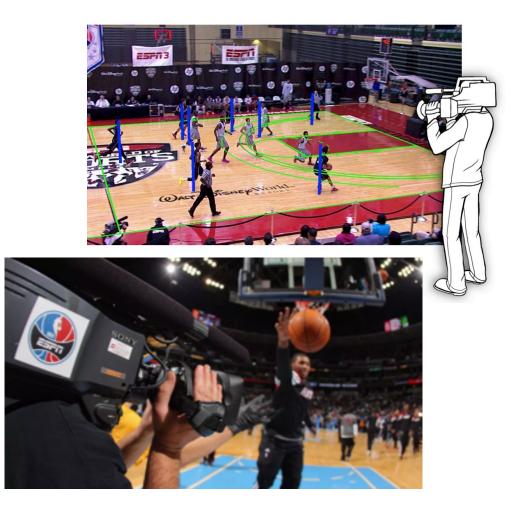


Requires dynamic rightsizing of capacity and smart deferral of workloads

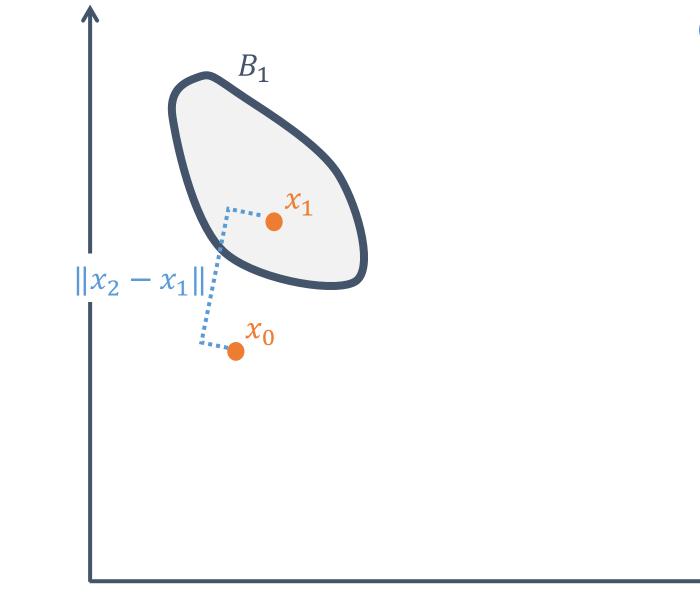
Example 1: Sustainable Data Centers

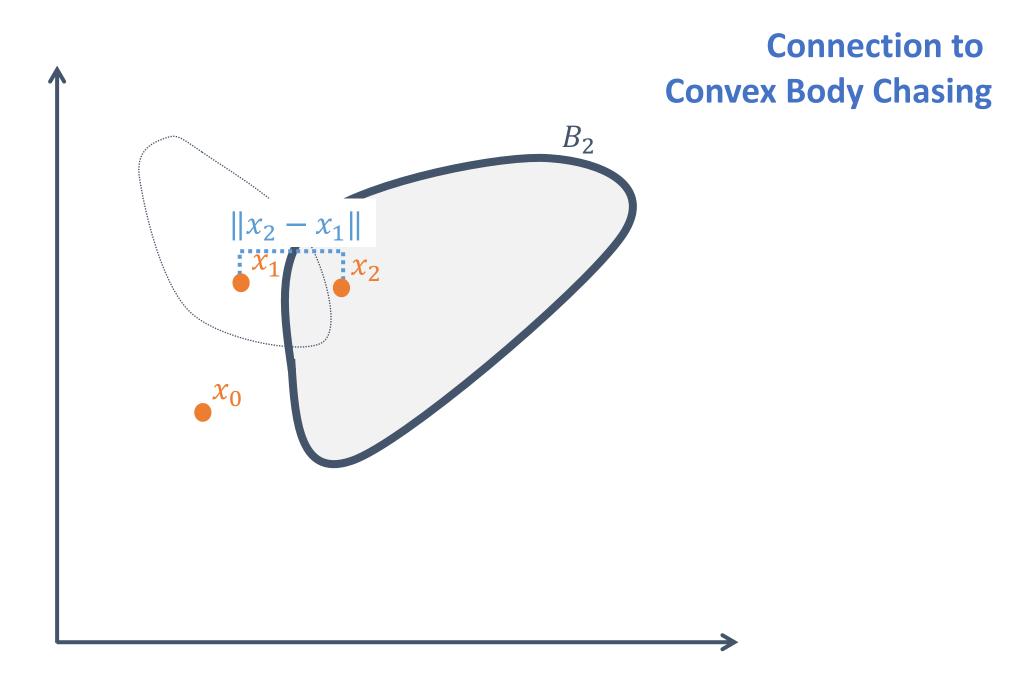


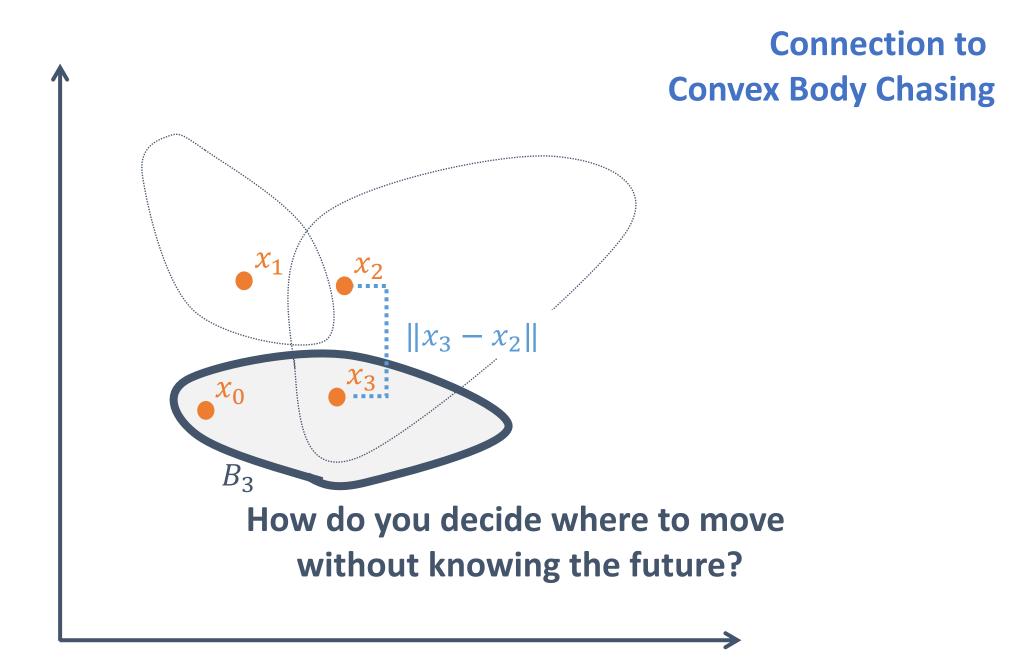
Example 2: Tracking Control under Predictable Disturbances



Connection to Convex Body Chasing

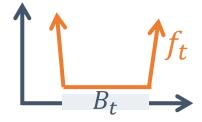




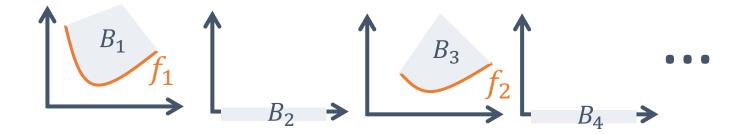


Connection to Convex Body Chasing

Clearly, A SOCO algorithm can solve CBC...



...a CBC algorithm can also solve a SOCO instance!



https://arxiv.org/abs/1811.00999 [Bubeck et al, SODA 2018]

Online Control

• (Discrete Time) Dynamical System: $x_{t+1} = g(x_t, u_t, w_t)$

Linear Time Invariant: $g(x_t, u_t, w_t) = Ax_t + Bu_t + w_t$

• Additive Control Objective: $\sum_t Cost_t(x_t, u_t)$

Quadratic: $Cost_t(x_t, u_t) = x_t^T Q x_t + u_t^T R u_t$

• LQR: LTI System w/ Additive Quadratic Control Cost

Online Control (cont.)

• Restrict to LQR-like settings:

$$\min \sum_{t} x_t^T Q x_t + u_t^T R u_t$$

s.t. $x_{t+1} = A x_t + B u_t + w_t$

- Problem Settings:
 - Do we know A & B a priori or must we learn?
 - What assumptions can we make on A & B?
 - Is x_t fully or partially observed?
 - Is w_t observed before or after committing to u_t ?
 - What assumptions can we make on w_t ?
 - How do we measure performance?

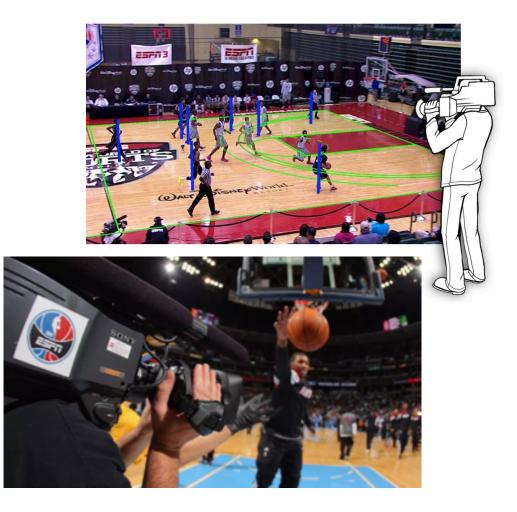
- Known A & B, stabilizable

} Fully observed

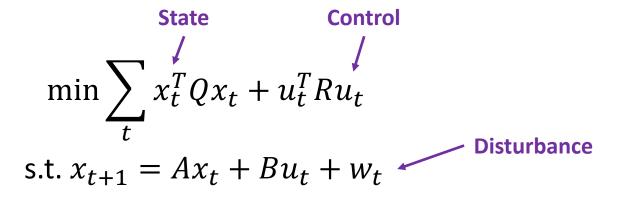
 $w_{t:t+\ell-1}$ predictable & bounded

} Competitive Ratio

Recall: Tracking Control under Predictable Disturbances



Competitive Control (for LQR-like problems)



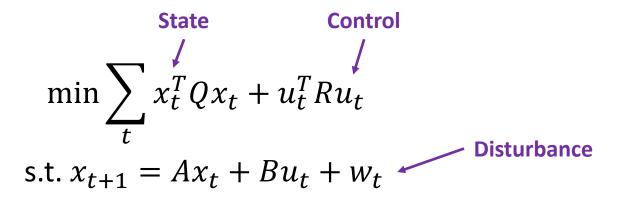
- At each time t:
 - Observe $x_t, \widehat{w}_t, \dots, \widehat{w}_{t+\ell-1}$
 - Choose u_t
 - Repeat

(imperfect) knowledge of w_t , ..., $w_{t+\ell-1}$ "Fixed-Horizon Control" or "Model-Predictive Control" Focus on 1-step prediction: $\ell = 1$

• Minimize Competitive Ratio:

 $sup_{\{x_0,w_1,\dots,w_T\}}\frac{cost(ALG)}{cost(OPT)}$

Comments on Best Linear Controller & Static Regret



• Common to measure regret v.s. best static linear controller:

•
$$u_t = K(x_t^* - x_t)$$

• However, the best static linear controller may have arbitrarily large competitive ratio vs offline optimal.

Reduction to Online Convex Optimization w/ Structured Memory (extends reduction in <u>https://arxiv.org/abs/1810.10132</u> [Goel & Wierman 2019])

- Special case of LQR: Input-Disturbed Squared Regulator (IDSR):
 - (finalizing results on general LQR setting)

$$\min \sum_{t} \frac{q_t}{2} \|x_t\|^2 + \frac{1}{2} \|u_t\|^2$$

s.t. $x_{t+1} = Ax_t + B(u_t + w_t)$

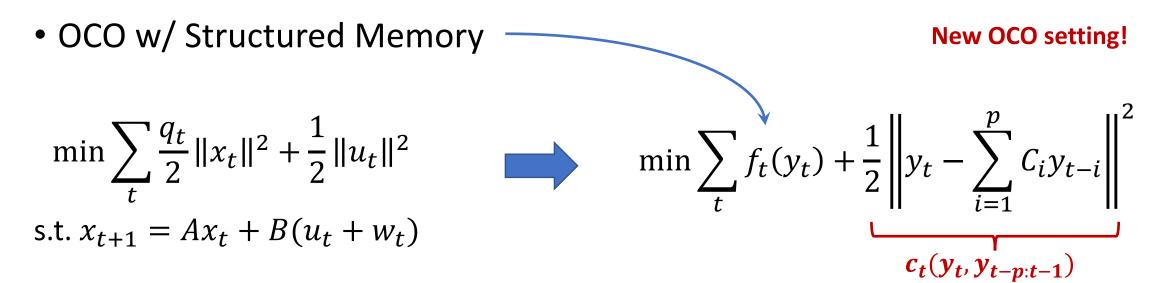
- Many robotic systems are well described by IDSRs
 - E.g., <u>https://arxiv.org/abs/1811.08027</u>

Yiheng Lin

Guanya Shi

Online Optimization with Memory and Competitive Control, Guanya Shi, Yiheng Lin, et al., NeurIPS 2020

Reduction to Online Convex Optimization w/ Structured Memory (extends reduction in <u>https://arxiv.org/abs/1810.10132</u> [Goel & Wierman 2019])



- y_t is a transformed representation of state x_t
 - p depends on dynamics (single, double integrator, etc.)
- Choose next state indirectly via control action u_t
- Knowing w_t defines OCO hitting & switching costs

Yiheng Lin

Guanya Shi

Online Optimization with Memory and Competitive Control, Guanya Shi, Yiheng Lin, et al., NeurIPS 2020

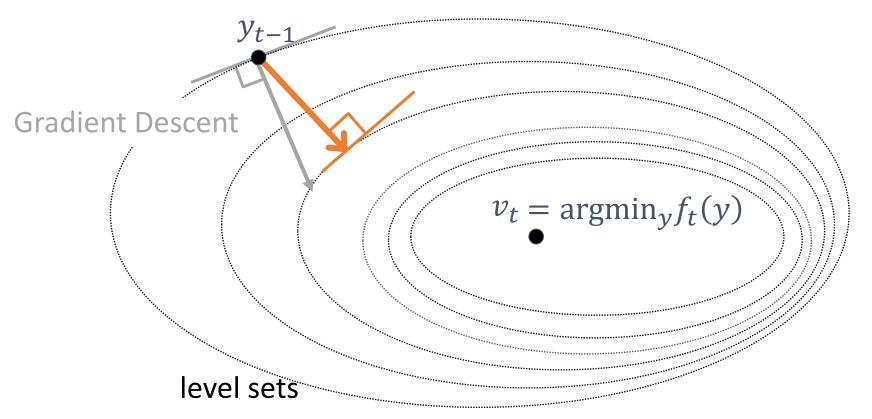
Roadmap to Optimistic ROBD

- Online Balanced Descent (OBD)
- Regularized Online Balanced Descent (ROBD)
- Optimistic ROBD

Online Balanced Descent (OBD)

https://arxiv.org/abs/1803.10366 [Chen, Goel, Wierman, 2018]

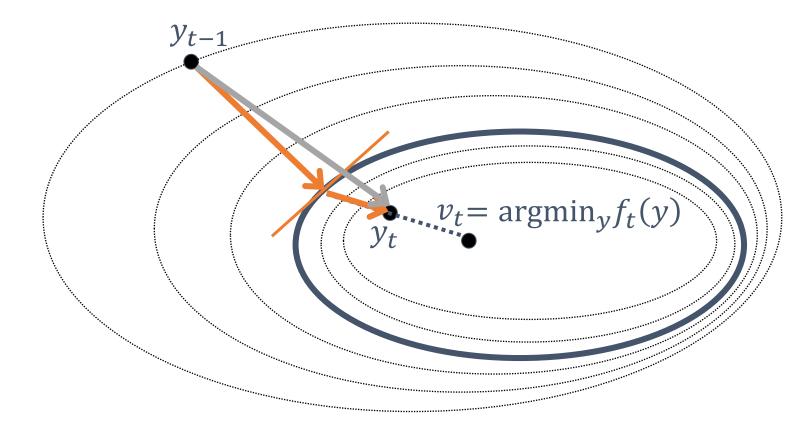
Choose level set to balance hitting and switching costs.



Greedy/Regularized Online Balanced Descent

https://arxiv.org/abs/1905.12776 [Goel, Lin, Sun, Wierman, 2019]

Equivalent to regularization: $\arg \min_{y} f_t(y) + \lambda_1 c(y, y_{t-p:t-1}) + \frac{\lambda_2}{2} ||y - v_t||^2$

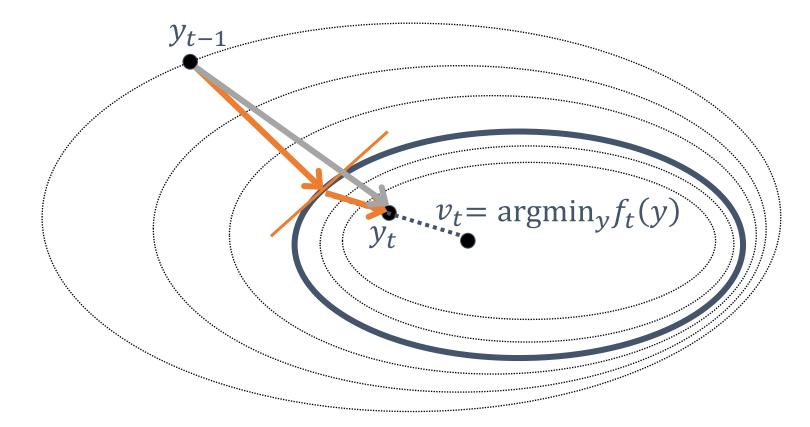


Optimistic ROBD

Yiheng Lin

Guanya Shi

 $w_t \in \Omega_t$ (w_t approximately known) $\rightarrow f_t$ approximately known **Choose** w_t optimistically to minimize total cost



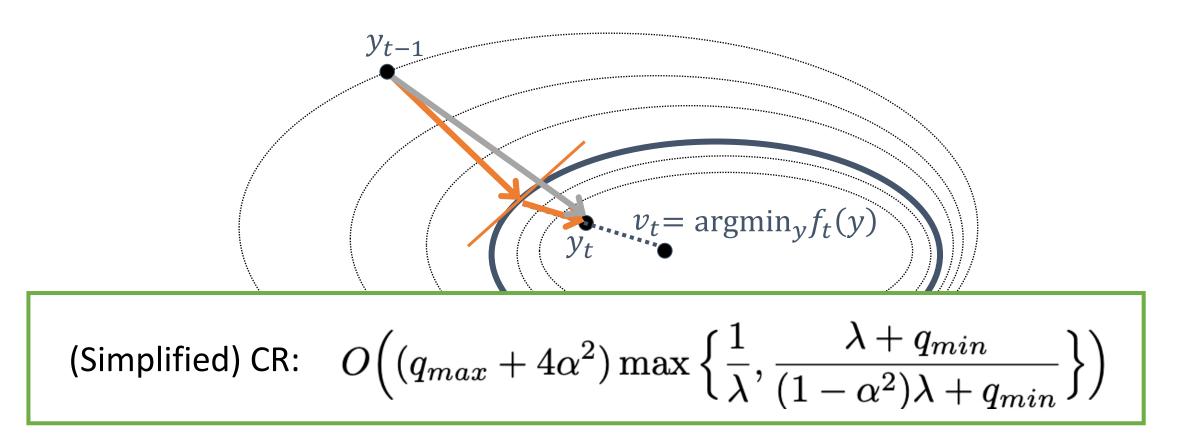
Online Optimization with Memory and Competitive Control, Guanya Shi, Yiheng Lin, et al., NeurIPS 2020

Optimistic ROBD

Yiheng Lin

Guanya Shi

 $w_t \in \Omega_t$ (w_t approximately known) $\rightarrow f_t$ approximately known **Choose** w_t optimistically to minimize total cost

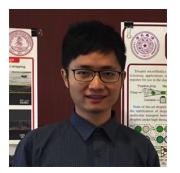


Online Optimization with Memory and Competitive Control, Guanya Shi, Yiheng Lin, et al., NeurIPS 2020

Summary

- Competitive ratio is a strong benchmark (practically relevant)
- New algorithms for competitive control
 - Online Optimization w/ Structured Memory
- Also working on forecasting & delay
 - Competitive Control with Delayed Imperfect Information https://arxiv.org/abs/2010.11637
 - The Power of Predictions in Online Control https://arxiv.org/abs/2006.07569
- Also working on nonlinear dynamical systems
 - Online Learning of Nonlinear Control with Guaranteed Success: An Oracle-Based Robust Control-Powered Approach (preprint coming soon)

Yiheng Lin



Guanya Shi

Chenkai Yu

Weici Pan

Dimitar Ho

Hoang Le

Adam Wierman

Soon-Jo Chung

John Doyle

Online Optimization with Memory and Competitive Control, Guanya Shi, Yiheng Lin, et al., NeurIPS 2020

On the Power of Predictions in Online Control, Chenkai Yu, Guanya Shi, et al., NeurIPS 2020

Competitive Control with Delayed Imperfect Information, Chenkai Yu, Guanya Shi, et al., arXiv

Online Learning of Nonlinear Control with Guaranteed Success: An Oracle-Based Robust Control-Powered **Approach,** Dimitar Ho, Hoang Le, et al., *(preprint available soon)*