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Learning




Stochastic Shortest Paths

« Basic RL model  Applications:
— Episodic — Games
— Car navigation
- Dual objective — Robotics

— Reach goal state
— Minimize cost

— Any episodic task




SSP: Model

MDP with goal state g
Interaction ends when g Is reached

Dual objectives:
— Reach goal state
— Minimize total cost In the process (sum)

Challenges:
— The two objectives do not always agree.



SSP generalizes other models

Finite horizon Discounted
« Extend states adding the time in the « Add agoal state g
episode « From every state s:
— |S| H states — With probability y move to the goal state g
« Add agoal state g
» Result: loop-free SSP » EXpected return

— Exactly the discounted expected return

— Probability to reach any state s after t steps
isy!



Online learning SSP: Model

K episodes

Have to reach goal state in every episode
Transition function and cost unknown
Minimize the regret

Challenge:
— A single episode can potentially have infinite cost!
— Number of time steps of online and opt can be very different



Online learning SSP: Regret

« Fix an optimal policy *
» Consider online cost In K episodes
* The expected difference is the regret:
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SSP regret: Previous works

» Regret minimization finite horizon MDP:

— UCRL and variants ©(vK)

 Note that the regret is always bounded by K

« Many SSP loop-free works
— Finite horizon

« Regret minimization SSP:

— Tarbouriech et al. (ICML 2020)
« Regret bound O(K?/3)



SSP regret: our works

Stochastic MDP (ICML 2020) Adversarial MDP (Submitted)
« Upper bound » Upper bound

- 0(VK) - 0(K®7®)
 |Lower bound:

- Q(B./IS|IAIK)




Planning in SSPs (Bertsekas and Tsitsiklis, 1991)

* Proper policy: reaches the goal < The optimal policy is
state from any state! — stationary
— deterministic

« Assumption: — Proper
_ There is a proper policy — Can be computed efficiently

: : - E.g., Value Iteration.
— Any improper policy has infinite 9. Ve TEraton
cost
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Making policies proper: ¢,,,;;, > 0

« Assume strictly positive costs:
cost(s,a) = cpin > 0

— Any Improper policy has infinite cost
* From some state
— Optimal policy Is proper
* Bounded Regret implies:
— Guarantee that we reach the goal state!
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From positive costs to general costs

« Add an e perturbation (bias) to the costs
- cost’(s,a) = max{cost(s,a), €}

 Perturbation adds a bias:
— Increases the total cost by e per step
— Optimize later over € to minimize regret
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SSP regret: positive costs

Stochastic MDP

« QOur upper bound

(’)’(\/?+M%

) - 0(VK)

e Tarbouriech et al.

- / K -
O( Cmin> - O(KZ/S)

Adversarial MDP
« Upper bound

0’ (C\/?) N 0’([(0.75)

min
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SSP algorithm

e QOverview:

— Keep confidence set for the transitions

 Similar to UCRL2

« Assume (w.l.0.g. and for simplicity) that costs are known
— Compute an optimal optimistic policy

« When should we re-compute?
— Keep states known/unknown

* When all states are known, we have a good model.
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SSP algorithm

Challenge:

— We cannot allow one policy to run until an episode is completed.
* It might never complete!

— This implies that we need to re-compute policies during an
episode.
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SSP our algorithms

o Simpler
— Uses Hoeffding bounds
— Regret matches Tarbouriech et al.

* Re-compute each time you
reach an unknown state.

« Advanced
— Uses Berenstein bounds
— Gets the improved regret

» Re-compute when the number
of visits to some state-action
doubles.

— Similar to UCRL?2
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Regret Analysis

e Observations:

— Let B, be the cost of the optimal policy
 from the worse state
B.|S|

— |f each state-action visited M = Q( ) then:

« optimal optimistic policy is proper (w.h.p.), its expected cost O (B,)

Cmin

— If policy expected cost is O(B,) then w.h.p it is O (B, log %)
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Regret Analysis

A state-action 1s unknown If visited less than M = () (B*|S |

Cmin
times.
Consider intervals which restart at the end of episode or

when we reach an unknown state-action.

_ 21¢cl2
Number of intervals: 1 = K + O (B* S| 'Al)

Cmin

Cost of an interval: O(B,) w.h.p.

)
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Regret analysis: bounds

« Using Berenstein: for each interval, variance is 0(B?)
 Regret scales with the square-root of total variance
- REGRET = O(B,|S|VAI) = O(B.|S|VAK + BL5|S|? |Alc,5,
» main term optimal up to ,/|S| factor

 General bound:

e REGRET = O(BL®|S|VAK + TX5|S|? |Al)
— T* the time of the optimal policy
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Hoeffding versus Berenstein bound

» Hoeffding bound:
— Variance per step 0(B2)

— Regretis O(B,VT) =0 (B* 2 )

Cmin

 Berenstein bound:
— Variance per episode O(B?)
— Regret is 0(B,VI)
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L_ower bound

* Yao’s principle: « Two states:
— Distribution over MDPs « Costs always 1.

— Lower bound on regret  Transitions:
- Prlgla’] = 1
- Pr[gla] = %=

*
o

Optimal policy cost B,
Any other action cost
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_ower bound

« Similar in spirit MAB
— Some technical challenge

» EXxpected Regret:

1 2K
- eKB, (§ — 26\/%)

« MDP:
— Take |S| such “gadgets”
— Initial distribution is uniform
— Visit per gadget K/|S|
— Sete = 0.01,/|4]|S|/K
* eKB, = O(B./|AlIS|/K)
— Lower bound!
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Adversarial SSP

Model:

— Fixed unknown transition
function

— Costs change every step.
» Observed at the end of an episode

 Algorithm:
— Online Mirror Descent (OMD)
 selects an OCCupancy measure

— Maintains confidence set over
transition probabilities

— Bound the duration to reach goal
« Bounds the loss in an episode
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e Stochastic Shortest Paths

— Stochastic model
— Near optimal bound

— Adversarial model
 More work is needed!

Summary
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