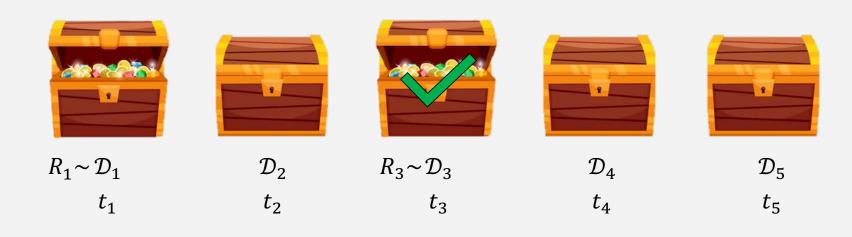
PANDORA'S BOX WITH CORRELATIONS: LEARNING AND APPROXIMATION

Shuchi Chawla
University of Wisconsin-Madison

Based on joint work with Eva Gergatsouli, Yifeng Teng, Christos Tzamos, and Ruimin Zhang

- Given: boxes with (random) rewards drawn from known distributions; Can open each box at some fixed penalty
- Goal: select a single box to maximize the reward obtained minus total probing penalty



Algorithm's net reward = $R_3 - (t_1 + t_3)$

PANDORA'S BOX PROBLEM: MINIMIZATION VERSION

- Given: boxes with (random) costs drawn from known distributions; Can open each box at some fixed penalty
- Goal: select a single box to minimize the cost incurred plus total probing penalty

Algorithm's net $cost = c_3 + (t_1 + t_3)$

Question: what order to probe boxes and when to stop and select one?

WEITZMAN'S SOLUTION

Weitzman's algorithm:

- Compute an amortized cost (a.k.a. Gittins index).
- Probe boxes in greedy order of increasing amortized cost.
- Stop when an observed cost < all remaining indices. Select box with min observed cost.

Theorem: Weitzman's algorithm is optimal if the cost distributions \mathcal{D}_1 , ..., \mathcal{D}_n are independent.

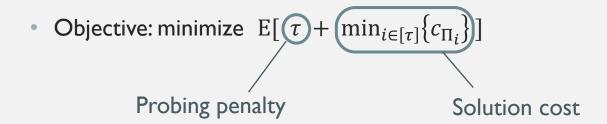
Our setting: correlated costs

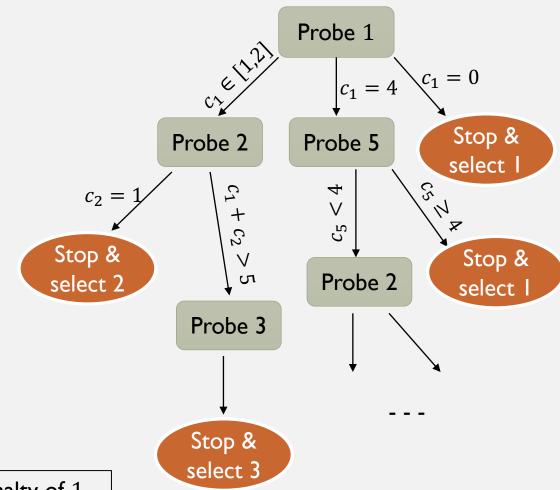
- $(c_1, c_2, ..., c_n) \sim \mathcal{D}$ where \mathcal{D} is a (large support) joint distribution
- Algorithm is provided sample access to \mathcal{D}

[..., Dumitriu Tetali Winkler'03, Kleinberg Waggoner Weyl'16, Singla'18, Bradac Singla Zuzic'19, Beyhaghi Kleinberg'19, Gupta Jiang Scully Singla'19, ...]

FULLY ADAPTIVE SOLUTIONS

- An algorithm is defined by a pair (Π, τ) .
- Π: Probing Order over boxes
 - Π_i is a function of c_{Π_1} , c_{Π_2} , ..., $c_{\Pi_{i-1}}$.
- τ : Stopping time
 - At step τ , we stop and select box $\operatorname{argmin}_{i \in [\tau]} \{c_{\Pi_i}\}$.
 - $\mathbb{I}(\tau = i)$ is a function of $c_{\Pi_1}, c_{\Pi_2}, ..., c_{\Pi_i}$.





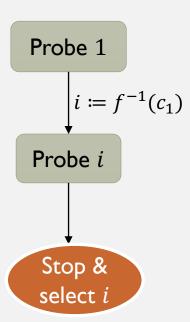
Simplifying assumption for this talk: each box has a probing penalty of 1.

BUT CORRELATED COSTS ARE HOPELESS!

Let f be some hard to invert function.

•
$$C^{(i)} = \begin{cases} c_1 = f(i) \\ c_i = 0 \\ c_{i'} = \infty \quad \text{for } i' \neq 1, i \end{cases}$$

- OPT = 2
- Alg cannot hope to invert f and find a zero-cost box quickly.



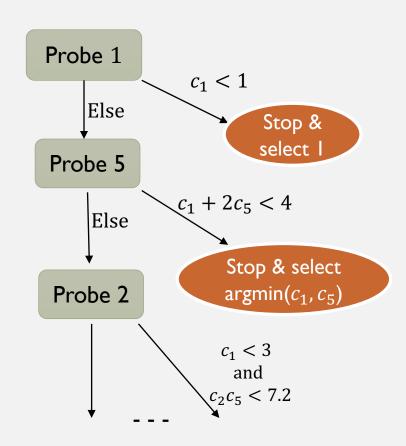
ALTERNATE PLAN: COMPETE AGAINST A SIMPLER BENCHMARK

Related but different: optimal decision tree problem; Assumes small support distribution

PARTIALLY ADAPTIVE PROBING STRATEGIES

Defined by a pair (Π, τ) .

- Π: Ordering over boxes
 - Π is independent of instantiated costs.
- τ: Stopping time
 - At step τ , we stop and select box $\operatorname{argmin}_{i \in [\tau]} \{c_{\Pi_i}\}$.
 - $\mathbb{I}(\tau = i)$ is a function of $c_{\Pi_1}, c_{\Pi_2}, ..., c_{\Pi_i}$.
- Objective: minimize $E[\tau + \min_{i \in [\tau]} \{c_{\Pi_i}\}]$ over PA strategies
- Stopping rule can still be quite complicated. Unclear if we can learn it with low sample complexity, or even represent it succinctly.



There exists a simple class of PA strategies C with the following properties:

Theorem I: For every joint distribution over costs, $\mathcal C$ contains an $\frac{e}{e-1}$ approximate strategy.

Theorem 2: Learning the optimal strategy in C requires poly(n) samples.

Theorem 3: Given a small support distribution over costs, can efficiently approximate the optimal strategy in \mathcal{C} to within a small constant $(3+2\sqrt{2})$.

CAN LEARN AN APPROXIMATELY OPTIMAL Partially Adaptive STRATEGY

EFFICIENTLY FROM DATA

There exists a simple class of PA strategies C with the following properties:

Theorem I: For every joint distribution over costs, \mathcal{C} contains an $\frac{e^2}{e^{-1}}$ approximate strategy.

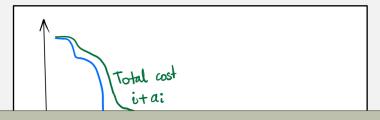
Theorem 2: Learning the optimal strategy in $\mathcal C$ requires $\operatorname{poly}(n)$ samples.

$$|\mathcal{C}| = n!$$

A strategy in \mathcal{C} is parameterized by the ordering Π . Stop when probing penalty > solution cost:

$$\tau = \min\{i \colon i > \min_{j \le i} c_{\Pi_j}\}$$

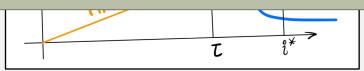
"Myopic stopping"



Let $a_i = \min_{j \le i} c_{\Pi_j}$ and $i^* = \operatorname{argmin}\{i + a_i\}$.

$$\tau \leq \max(i^*, a_{i^*}). \implies \tau + a_{\tau} \leq 2(i^* + a_{i^*}).$$

Theorem I holds even when the algorithm is required to select a larger feasible subset of boxes and the probing penalty is a set function.



EFFICIENT OPTIMIZATION OVER $\mathcal C$

Given: uniform distribution over m "scenarios" with cost vectors $c^{(s)} = (c_1^s, c_2^s, ..., c_n^s)$ for each scenario $s \in m$.

Goal: find a permutation Π such that $(\Pi$, myopic stopping) is approximately optimal.

Goal: find a permutation Π such that $(\Pi, hindsight-optimal stopping)$ is approximately optimal.

Scenario-aware PA strategy

$$\tau_s = \operatorname{argmin}\{i + c_{\Pi_i}^s\}$$

Special case: costs are $0 \text{ or } \infty$. "Min sum set cover"

- Minimize the expected time to find a 0, equivalently, "cover" the scenario.
- 4-approx. (tight!) via greedy and LP-rounding. [Feige Lovasz Tetali'02]
- Many variants studied. [Azar Gamzu Yin'09, Bansal Gupta Krishnaswamy'10, Azar Gamzu'11, ...]

EFFICIENT OPTIMIZATION OVER ${\mathcal C}$

Given: uniform distribution over m "scenarios" with cost vectors $c^{(s)} = (c_1^s, c_2^s, ..., c_n^s)$ for each scenario $s \in m$.

Goal: find a permutation Π such that $(\Pi$, myopic stopping) is approximately optimal.

Goal: find a permutation Π such that $(\Pi, hindsight-optimal stopping) is approximately optimal.$

An LP for scenario-aware PA strategies

$$\sum_{i \in [n], s \in [m], t \in [n]} (t + c_i^s) z_{ist}$$
 subject to
$$\sum_{i \in [n]} x_{it} \le 1,$$
 Permutation constraints for probing order
$$\sum_{t \in [n]} x_{it} \le 1,$$

$$\sum_{t \in [n]} x_{it} \le 1,$$
 Permutation constraints for probing order
$$\sum_{t \in [n]} x_{it} \le x_{it}, \qquad \forall s \in [m], i, t \in [n]$$

$$\sum_{t' \le n, i \in [n]} z_{ist'} = 1, \quad \text{At least one box is selected}$$

$$x_{it}, z_{ist} \in [0, 1] \qquad \forall s \in [m], i, t \in [n]$$

 x_{it} : i is probed at time t.

 z_{ist} : In scenario s, i is selected at time t.

A RECAP OF OUR RESULTS

Feasibility constraint	Approx. Ratio (approx. Partially Adap using Partially Adap)	Lower bound (approx. Non Adap using Fully Adap)
Select 1 box	9.22	1.27
Select k boxes	0(1)	1.27
Select a matroid basis	O(log rank)	$\Omega(\log {\sf rank})$

In each setting:

- Draw poly(n) samples from distribution. Set up LP on samples and solve.
- Use LP-rounding in phases to find a good probing order.
- Use myopic stopping with the probing order to get final algorithm.

CONCLUDING THOUGHTS

A potential approach to data-driven algorithm design:

Identify a class of algorithms that

- Always contains a near optimal solution
- Has low "complexity" so as to be learnable

Some open directions

- Improved approximation? (through a different "simple" class of algorithms?)
- Are there other benchmarks between Partially Adaptive and Fully Adaptive that are approximable?
- Other combinatorial settings, e.g. metric probing penalties (parking problem)? shortest paths in a graph?

THANK YOU!

Questions?