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PANDORA’S BOX PROBLEM [WEITZMAN’79]

Given: boxes with (random) rewards drawn from known distributions; Can open each box at some fixed penalty

Goal: select a single box to maximize the reward obtained minus total probing penalty

Algorithm’s net reward = R; — (t; + t3)



PANDORA’S BOX PROBLEM: MINIMIZATION VERSION

Given: boxes with (random) costs drawn from known distributions; Can open each box at some fixed penalty

Goal: select a single box to minimize the cost incurred plus total probing penalty

Algorithm’s net cost = ¢3 + (t; + t3)

Question: what order to probe boxes and when to stop and select one!?




WEITZMAN'’S SOLUTION

[..., Dumitriu Tetali Winkler’03,
Kleinberg Waggoner Weyl’ 1 6,

Weitzman’s algorithm: Singla’ 18,
. . Bradac Singla Zuzic’ 19,
Compute an amortized cost (a.k.a. Gittins index). By e s 16

Probe boxes in greedy order of increasing amortized cost. Gupta Jiang Scully Singla’l9, ...]

Stop when an observed cost < all remaining indices. Select box with min observed cost.

Theorem:Weitzman’s algorithm is optimal if the cost distributions Dy, ..., D,, are independent.

Our setting: correlated costs

(c1,Cy, o, € )~D where D is a (large support) joint distribution

Algorithm is provided sample access to D




FULLY ADAPTIVE SOLUTIONS

An algorithm is defined by a pair (I, 7). E Probe 1
»
[1: Probing Order over boxes Q/\\} l 4\&= 0
C1 =
I1; is a function of ¢p, ¢,y o5 Oy, - %
L E Probe 2 Probe 5 Stop &
T: Stopping time select |

At step T, we stop and select box argminiem{cni} ) Cy 7/ o \

I(r = 1) is a function of ¢p, s - .- Cpy;- Stop & y Stop &
Objective: minimize E[@+ Gninie[r]{cni)] l \

¢+
C5<4‘

/ < |

Probing penalty Solution cost

Stop &
select 3

Simplifying assumption for this talk: each box has a probing penalty of 1.




BUT CORRELATED COSTS ARE HOPELESS!

* Let f be some hard to invert function. L Probe 1 J
_ ¢, = f() i:=f"1(c)
° C(l) — Cl = 0 4
¢y =0 fori #1,i Probe i
- OPT =2

Stop &
Alg cannot hope to invert f and find a zero-cost box quickly.

C ALTERNATE PLAN: COMPETE AGAINST A SIMPLER BENCHMARK )

Related but different: optimal decision tree problem; Assumes small support distribution




PARTIALLY ADAPTIVE PROBING STRATEGIES

Defined by a pair (I, 7). E Probe 1 ]
robe

[1: Ordering over boxes

< 1
[T is independent of instantiated costs. sz \
7: Stopping time Probe 5 select |

At step 7, we stop and select box argmin;e-1{cp,} - ; WCS <4
N : se
I(z = i) is a function of ¢y , ¢y, ..., Cpy;.-
Stop & select
o . . Probe 2 argmin(cy, Cs)
Objective: minimize E[ 7 + min;¢[ {Cni} ] over PA strategies
c1 <3
. . . . . . . and
Stopping rule can still be quite complicated. Unclear if we can learn it with low Cycs < 7.2
sample complexity, or even represent it succinctly. R



MAIN RESULT

[Chawla, Gergatsouli, Teng, Tzamos, Zhang’20]

There exists a simple class of PA strategies C with the following properties:

Theorem |: For every joint distribution over costs, C contains an -7 Approximate strategy.

Theorem 2: Learning the optimal strategy in C requires poly(n) samples.

Theorem 3: Given a small support distribution over costs, can efficiently approximate the optimal strategy in C

to within a small constant (3 + 2v2).

CAN LEARN AN APPROXIMATELY OPTIMAL Partially Adaptive STRATEGY

EFFICIENTLY FROM DATA




MAIN RESULT [Chawla, Gergatsouli, Teng, Tzamos, Zhang’20]

There exists a simple class of PA strategies C with the following properties:

2
Theorem |: For every joint distribution over costs, C contains an x_ approximate strategy.

Theorem 2: Learning the optimal strategy in C requires poly(n) samples. IC| = n!

A strategy in C is parameterized by the ordering II.
Stop when probing penalty > solution cost: MYOP'C \
o stopping” Totel
T = min{i:{ > min CH].} bt ai
jsi

Theorem | holds even when the algorithm is
required to select a larger feasible subset of boxes
and the probing penalty is a set function.

T < max(i*,a;*). = t+a; < 20" + a;+). | —

Let a; = min Cr; and (¥ = argmin{i + a;}.
j<i




EFFICIENT OPTIMIZATION OVER C

Given: uniform distribution over m “scenarios” with cost vectors c) = (¢, c3, ..., c3) for each scenario s € m.

)

Goal: find a permutation II suchth/at@‘[, hindsight—optimal Stopping) is approximately optimal.

(N J
Y

Scenario-aware PA strategy 7, = argmin{i + ¢ }
S i

Special case: costs are 0 or 00.“Min sum set cover”
Minimize the expected time to find a 0, equivalently,“cover” the scenario.
4-approx. (tight!) via greedy and LP-rounding. [Feige Lovasz Tetali’02]

Many variants studied. [Azar Gamzu Yin’09, Bansal Gupta Krishnaswamy’ |0, Azar Gamzu’l |, ...]




EFFICIENT OPTIMIZATION OVER C

Given: uniform distribution over m “scenarios” with cost vectors c) = (¢, c3, ..., c3) for each scenario s € m.

Conlfirmd corr-F-strch-that(F . oo

Goal: find a permutation II such that (II, hindsight—optimal stopping) is approximately optimal.

An LP for scenario-aware PA strategies

(t + cf)zist

minimize E

i€[n],s€[m],t€[n]

subject to Z zie < 1,
t€[n]
Z ZTit < 17
ten]
[ is selected only if i is probed Zist < Tit,
Z Zistr = 1,
t' <n,i€[n]

Permutation constraints
for probing order

Vs € [m],i,t € [n]

At least one box is selected

Vs € [m],i,t € [n]

X;;: 1 is probed at time t.

Zis¢: In scenario s, [ is selected at time t.



A RECAP OF OUR RESULTS

Approx. Ratio Lower bound
Feasibility constraint (approx. Partially Adap using (approx. Non Adap using
Partially Adap) Fully Adap)
Select 1 box 9.22 1.27
Select k boxes 0(1) 1.27
Select a matroid basis O(log rank) Q(log rank)

In each setting:
* Draw poly(n) samples from distribution. Set up LP on samples and solve.
* Use LP-rounding in phases to find a good probing order.

* Use myopic stopping with the probing order to get final algorithm.




CONCLUDING THOUGHTS

A potential approach to data-driven algorithm design:

|dentify a class of algorithms that
Always contains a near optimal solution

Has low “complexity” so as to be learnable

Some open directions
Improved approximation? (through a different “simple” class of algorithms?)
Are there other benchmarks between Partially Adaptive and Fully Adaptive that are approximable?

Other combinatorial settings, e.g. metric probing penalties (parking problem)? shortest paths in a graph?




THANK YOU!

Questions!




