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Classical Reinforcement Learning

Model = Markov Decision Process (MDP) = {S,P,R,A}

States S, actions A are known and given
Transitions P and rewards R are not known.

Classical objective: maxπ E
[∑∞

t=1 γ
trt

]
, γ < 1

“All models are wrong, but some are useful”, G. Box
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Motivation

Why should we be robust?
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Meaning of robustness
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Three Types of Uncertainties

1. Parmeter uncertainty
Uncertainty in MDP parameters (transitions, rewards)
Objective:

max
π

min
P∈ possible MDP parameters

Eπ,P

[
∞∑

t=0
γtr(st)

]
Origins in robust control
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Three Types of Uncertainties

2. Inherent uncertainty
Cumulative reward is stochastic
Expectation does not capture variability
Objective:

max
π

ρ

[
∞∑

t=0
γtr(st)

]
ρ is a risk measure, e.g., ρ(X) = E[X] − βVar[X]
Explicit safety against ‘unluckiness’
Humans tend to be risk aware
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Three Types of Uncertainties

3. Model uncertainty
Model itself not known (observations/features/order)
Objective:

max
π

min
possible models

Emodel

[
∞∑

t=0
γtr(st)

]
Model mismatch handled explicitly
Origins in multi-model control
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Applicability

When is robustness important?
Cost of failure is high

Finance
Smart-grids
Health
Robotics (e.g., safety)

Model is not known (always) and created from a few samples

We desire:
Scalability
Adaptivity
Accountability
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Part 1

Robust MDPs with function
approximation

A. Tamar, SM, and H. Xu, ICML 2014
A. Tamar, Y. Chow, M. Ghavamzadeh, and SM, NIPS 2015
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Introduction - Planning with Parameter Uncertainty

Setting:
Planning problem
Uncertain transitions

Confidence intervals
Heuristic simulator
Time changing dynamics
etc.

Potentially large impact [SM et. al,
Management Science 2010]

Uncertainty amplification
Disasters / safety
Smart grids, finance
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Background: Robust MDPs

Definitions:
Robust Markov decision processes:
State, actions and rewards as in the
standard model
Transitions P(s′ |s, a) ∈ P
Policy π
Worst-case objective

sup
π

inf
P∈P
Eπ,P

[
∞∑

t=0
γtr(st)

]
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Background: Robust MDPs

Dynamic programming solution
Robust value function (fixed policy)

Vπ(s) � inf
P∈P
Eπ,P

[
∞∑

t=0
γtr(st)|s0 = s

]

Robust Bellman equation (fixed policy)

Vπ(s) = r(s) + γ inf
P∈P(s)

EP [Vπ(s′)|s, π(s)]

Small problems: solved Policy iteration [Iyengar, 2005] and
value iteration approach [ Nilim et al. 2005]
Large problems: Dynamic Programming cannot handle large
spaces (“the curse of dimensionality”)
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Robust Policy Evaluation

Approximate value function
Given state-dependent features φ(s)
Linear function approximation

Ṽπ(s) = φ(s)>w

How to select w?

For standard (non-robust) problems:

Vπ(s) � Eπ,P
[
∞∑

t=0
γtr(st)|s0 = s

]
Sample and regress w.
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Robust Policy Evaluation

Approximate value function
Given state-dependent features φ(s)
Linear function approximation

Ṽπ(s) = φ(s)>w

How to select w?

For robust problems

Vπ(s) = inf
P∈P
Eπ,P

[
∞∑

t=0
γtr(st)|s0 = s

]
Cannot regress w: how to sample trajectories from worst-case
model?
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Robust Policy Evaluation

Our approach
Recall the Bellman equation

Vπ(s) = r(s) + γ inf
P∈P(s)

EP [Vπ(s′)|s, π(s)]

Idea: bootstrap!

Algorithm

Given: initial weights w0, sample states x1 . . . xN

At iterate k + 1 generate regression targets

yi = r(xi) + γ inf
P∈P(xi )

∑
x′

P(x ′ |xi, π(xi)) φ(x ′)>wk︸    ︷︷    ︸
Ṽ π

k (x
′)

Solve for wk+1 using least squares
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Results:

Guarantees
The magic: Convergence + Error bounds

Policy improvement
Can iterate between policy evaluation and policy improvement

Can derive deep Q-learning (model free) simulation based
algorithm

Error bounds follow through
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Part 2

Two issues remain:
1 Uncertainty set construction
2 Online adaptivity

C. Tessler, Y. Efroni, and SM, ICML 2019

E. Derman, D. Mankowitz, T. Mann, and SM, UAI 2019.
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Action Robustness

A trembling hand model

πmix
α (π, π

′) =

{
π, w.p. 1 − α.
π′, w.p. α.

The policy π′ is potentially adversarial.
Continuous extension: agent chooses a, adversary can modify to
(1 − α)a + αa′.

AR-DDPG:

1 Train Actor
2 Train Adversary
3 Train Critic for the

joint policy

Theorem: This procedure converges to the Nash equilibrium.
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Some results

Robustness: uncertainty + transfer to unseen domains
A gradient based approach for robust reinforcement learning with
convergence guarantees
Does not require explicit definition of the uncertainty set
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Posterior Uncertainty Sets: Online Construction of
Uncertainty Sets

Dirichlet prior on distribution over next states.
Observation historyH up to time h
Time h - current step and t - current episode

P̂h
sa(ψsa) = {psa ∈ ∆S : ‖psa − p̄sa‖1 ≤ ψsa}

p̄sa = E[psa | H] is the nominal transition.

This uncertainty set is
Rectangular:

P̂h =
⊗

s∈S,a∈A

P̂h
s,a

Updated online according to new observations
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Uncertainty Robust Bellman Equation

Posterior robust Q-value random variables satisfy a robust
Bellman recursion

Q̂h
sa

D
= rh

sa + γ inf
p∈P̂h

sa

∑
s′,a′

πh
s′a′psas′Q̂h+1

s′a′

Posterior worst-case transition:
p̂h

sa ∈ arg minp∈P̂h
sa

∑
s′,a′ π

h
s′a′psas′Q̂h+1

s′a′

Theorem (Solution of URBE)

There exists a unique mapping w that satisfies the URBE:

wh
sa = ν

h
sa + γ2

∑
s′∈S,a′∈A

πh
s′a′Et (̂ph

sas′)w
h+1
s′a′

Approximate Q-values as N(Q, diag(w)).
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Deep Learning Approximation

Q-head uses robust TD error. URBE layer uses approximation.
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DQN/DQN-UBE: Overly sensitive to change of dynamics
Robust DQN: Overly conservative
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Conclusion

Robustness is essential for learning
Handles ‘unluckiness’
Overcomes model misspecification
Works online with deep models (scalability)

Take home message: solve robust MDPs

Scalable, works, and even has theoretical guarantees!

Applications: health, energy, finance, robotics, cyber,
e-commerce
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Thanks

Joint work with:
E. Boccara (Technion), Y. Chow (Google AI), G. Dallal (Nvidia), Y.
Efroni (MSR), M. Ghavamzadeh (FAIR), A. Hallak (Nvidia), M.
Kozdoba (Technion), O. Maillard (CNRS Lille), D. Mankowitz
(Google DeepMind), T. Mann (Google DeepMind), M. Pavone
(Stanford), A. Tamar (Technion), C. Tessler (Technion), J. Tsitsiklis
(MIT), H. Xu (Alibaba).
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