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Markov Decision Processes (MDPs)

MDP M = (S, A, T,R,~, 10)
e S: (possible infinite) set of states
o A: (possible infinite) set of actions
e T (s'|s,a): transition probabilities
e R(s,a): immediate reward
e 7 € (0,1]: discounted factor
@ o € P(S): initial state distribution
Terminology
e Policy: 7(:[s) : S — P(A)
e Trajectoy: 7 = (so, a0, r0, S1, a1, 1, - - -)
o Return: U(7) = (1—7) > 2o ri
@ Value of policy: v(m) = E [U(7)]
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Off-policy Policy Evaluation

o Historic experiences:

D = {xX},

Xi = (507a07saaa rvslaal)7
with (sp, a0) ~ o, (s,a,r,s') ~ dP, and &’ ~ 7(-|s') where d” is an
unkown distirbution induced by some policies.

e Goal: Estimate v(D, ) ~ v(7) = E; [U(7)] without knowing T
and R.

o If the behavior policies inducing d” is also unknown, the task is called
bahavior-agnostic OPE.
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Linear Programming for Policy Value

Q:STL(LR (1 = 7) Epor [Q (50, 20)]
Primal st. Q(s,a) > R(s,a)+v-P"Q(s,a),
V(s,a) € S x A,
d:srxnfﬁ&Ed [ (s, 2)]
Dual st. d(s,a)=(1—7v)por(s,a)+~- -Pld(s,a),
V(s,a) € S x A,

where the operator P™ and its adjoint, P, are defined as

PWQ(S a) = ES’NT( |s,a), 4~ (-|s") [Q (Sl a/)] 7
Prd(s,a) a\sZT s|5,3)d (5,3) .
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DICE Backbone

Lagrangian

pr = maxmin B, 4o [¢ (7, 0)]

where 7 (s,a):= d‘ﬁfjg)

is the stationary Dlstribution Corrector Estimation
and

tamv)=7(s,a)-r(s;a) + (L =) v (s0,20) +7(s,a) (yv (s, a) —v (s, a))
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is the stationary Dlstribution Corrector Estimation
and

tamv)=7(s,a)-r(s;a) + (L =) v (s0,20) +7(s,a) (yv (s, a) —v (s, a))

The existing DICE family algorithms, e.g.,
[NCDL19, ZDLS20, UHJ20, ZLW20], are the variants based on this
Lagrangian [YND™20].
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Uncertainty is important

Optimism in the face of uncertainty [LS20]

Optimism in the face of uncertainty leads to risk-seeking algorithms, which
can be used to balance the exploration/exploitation trade-off.

v

Pessimism in the face of uncertainty [SJ15, BGB20]

In offline reinforcement learning, a safe optimization criterion is to
maximize the worst-case performance among a set of statistically plausible
models

v
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CoinDICE

Intuition from Bootstrap

@ Contruct D; by resampling from D
@ Run DICE estimator on D;, obtaining p; ()

o Estimate the variance from the set of estimators {p; (7)}™,

Bo Dai (Google Brain) Dual Off-policy ClI 11 /18



CoinDICE

Intuition from Bootstrap

@ Contruct D; by resampling from D
@ Run DICE estimator on D;, obtaining p; ()

o Estimate the variance from the set of estimators {p; (7)}™,

This procedure is computational expensivel!

Bo Dai (Google Brain) Dual Off-policy ClI 11 /18



CoinDICE

Intuition from Bootstrap

@ Contruct D; by resampling from D
@ Run DICE estimator on D;, obtaining p; ()

o Estimate the variance from the set of estimators {p; (7)}™,

This procedure is computational expensivel!

Any way to reduce the compuation?

Bo Dai (Google Brain) Dual Off-policy ClI 11 /18



CoinDICE

Intuition from Bootstrap

@ Contruct D; by resampling from D
@ Run DICE estimator on D;, obtaining p; ()

o Estimate the variance from the set of estimators {p; (7)}™,

This procedure is computational expensivel!

Any way to reduce the compuation? YES!lol
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CoinDICE (cont'd)

Optimizing the perturbation

[In, un] = [mm ¢ MI?;IIQ Ev [¢(x;T,v)], il Mr;neaKxfEW [€(x;, 1/)]]

K = {w e P (), Dr(wlpn) < é} 1)

v
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CoinDICE (cont'd)

Optimizing the perturbation

/ = i ;
[1n, un] [mm ¢ Mtgllre Ev [¢(x;T,v)], il Mr;neaKxfEW [¢(x; T, 1/)]]

K = {w e P (), Dr(wlpn) < é} 1)

v

Closed-form reweighting

leﬂ(n—ﬁ(;:ﬂﬁ)> and Wu:ﬂ<€(x;7;/3)—n>. ?)

v

Connection to CVaR: With a special f selected, we recover the CVaR
from the lower bound.
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Theoretical Analysis

Asymptotic Coverage

Under mild conditions,

Jim P (px € [, unl) = P (3G <) - 3)

Thus, Cfxm_a = [ln, upn] is an asymptotic (1 — «)-confidence interval of
(1)
the value of the policy 7.

v

Finite-sample Analysis

With high probability, we have
1 1
g In — ) YYn - o 4
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Implementation of OFU and PFU

CoinDICE for OFU/PFU

o Estimate (3}, 7, w;) via CoinDICE for optimism. //(5}, 7/, w/") for
pessimism.

e Estimate the stochastic approximation to V. up, (7¢) . //Vazlp, ()
for pessimism.

@ Natural policy gradient update:

Te41 = argming — (m, Vyup, (7)) + %KL (m||me).

/741 = argmin, — (m, Vo lp, (7)) + %KL (m||7¢) for pessimism.
o Collect samples £ = {xU) = (s, 5, a, r,s/)(j)}j’":1 by executing 11,

Dt+1 = Dt U 5
//Skip the data collection step in offline setting.
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e Estimate the stochastic approximation to V. up, (7¢) . //Vazlp, ()
for pessimism.

@ Natural policy gradient update:

Te41 = argming — (m, Vyup, (7)) + %KL (m||me).

//7e41 = argmin, — (mw, V,Ip, (7)) + %KL (m||m¢) for pessimism.
o Collect samples £ = {xU) = (s, 5, a, r,s/)(j)}j’":1 by executing 11,

Dt+1 = Dt U 5
//Skip the data collection step in offline setting.

Connection to Experience Replay: with different reweighting scheme,
the expeience replay is for exploration or safe RL.
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Experient Result

FrozenLake Taxi
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Conclusion

@ We proposed a series of estimators for behavior-agnostic confidence
interval estimation.

@ These estimators can be used for implementing OFU/PFU.

@ Regret bound of the OFU with CoinDICE (will release soon!)
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Conclusion

@ We proposed a series of estimators for behavior-agnostic confidence
interval estimation.

@ These estimators can be used for implementing OFU/PFU.

@ Regret bound of the OFU with CoinDICE (will release soon!)
@ Better algorithm for solving DICE.

Bo Dai (Google Brain) Dual Off-policy ClI 17 / 18



Thanks!
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