

#### Weighted Bellman Losses for Improved Signal-to-Noise in Q-Updates

Pieter Abbeel UC Berkeley EECS

Joint work with Kimin Lee, Misha Laskin, Aravind Srinivas

### Cause of Instability and Noise in Q-Learning

Error propagation in Q-learning

$$Q(s_t, a_t) \leftarrow r_t + \gamma \max_a Q(s_{t+1}, a)$$
 error propagates

Error propagation issue in Q-learning

$$Q(s_t,a_t) \leftarrow r_t + \gamma \max_a Q(s_{t+1},a)$$
  $ightarrow$  high error error propagates

Reweighting Bellman backup can handle this issue

$$w(s,a) \left(Q(s,a) - [r(s,a) + \gamma \widehat{Q}(s',a')]\right)^2$$
  
Some confidence score about target value

Error propagation issue in Q-learning

$$Q(s_t, a_t) \leftarrow r_t + \gamma \max_a Q(s_{t+1}, a)$$
 error propagates

Reweighting Bellman backup can handle this issue

$$w(s,a) \left( Q(s,a) - [r(s,a) + \gamma \widehat{Q}(s',a')] \right)^2$$
Some confidence score about target value
How to quantify the uncertainty on target value?

 Main idea: uncertainty estimation using ensembles [Osband et al., 2016, Lakshminarayanan et al., 2017]



[Osband et al., 2016] Osband, I., Blundell, C., Pritzel, A. and Van Roy, B., <u>Deep exploration via bootstrapped DQN</u>. In NeurIPS, 2016. [Lakshminarayanan et al., 2017] Lakshminarayanan, B., Pritzel, A. and Blundell, C., <u>Simple and scalable predictive uncertainty estimation using deep ensembles</u>. In NeurIPS, 2017

Definition of confidence score

$$w(s,a) = \sigma \left( -\bar{Q}_{\texttt{std}}(s,a) * T \right) + 0.5$$
  
Sigmoid Temperature

- Small variance: weight  $\rightarrow 1.0$
- High variance: weight  $\rightarrow 0.5$

Definition of confidence score

$$w(s,a) = \sigma \left( -\bar{Q}_{\texttt{std}}(s,a) * T \right) + 0.5$$
  
Sigmoid Temperature

- Small variance: weight  $\rightarrow 1.0$
- High variance: weight  $\rightarrow 0.5$
- Weighted Bellman backup loss

$$w(s,a)\left(Q(s,a)-[r(s,a)+\gamma\widehat{Q}(s',a')]
ight)^2$$

#### **UCB** Exploration

- Main idea: utilize uncertainty estimation for exploration
- UCB exploration based on Q-ensemble [Chen et al., 2017]

 We further extend to continuous action space and apply to more advanced off-policy RL algorithms

[Chen et al., 2017] Chen, R.Y., Sidor, S., Abbeel, P. and Schulman, J., <u>UCB exploration via Q-ensembles</u>. arXiv preprint arXiv:1706.01502, 2017.

### **Pseudo Algorithm**

#### Algorithm 1 SUNRISE: SAC version

| 1: <b>fo</b>  | r each iteration <b>do</b>                                                                                                                                                     |                        |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| 2:            | for each timestep $t$ do                                                                                                                                                       | ( Interact with        |
| 3:            | // UCB EXPLORATION                                                                                                                                                             |                        |
| 4:            | Collect N action samples: $\mathcal{A}_t = \{a_{t,i} \sim \pi_{\phi_i}(a s_t)   i \in \{1, \dots, N\}\}$                                                                       | environment using LICB |
| 5:            | Choose the action that maximizes UCB: $a_t = \underset{a_{t,i} \in \mathcal{A}_t}{\operatorname{argmax}} Q_{\text{mean}}(s_t, a_{t,i}) + \lambda Q_{\text{std}}(s_t, a_{t,i})$ | inference              |
| 6:            | Collect state $s_{t+1}$ and reward $r_t$ from the environment by taking action $a_t$                                                                                           |                        |
| 7:            | Sample bootstrap masks $M_t = \{m_{t,i} \sim \text{Bernoulli} (\beta) \mid i \in \{1, \dots, N\}\}$                                                                            |                        |
| 8:            | Store transitions $\tau_t = (s_t, a_t, s_{t+1}, r_t)$ and masks in replay buffer $\mathcal{B} \leftarrow \mathcal{B} \cup \{(\tau_t, M_t)\}$                                   |                        |
| 9:            | end for                                                                                                                                                                        |                        |
| 10:           | // Update agents via bootstrap and weighted Bellman backup                                                                                                                     |                        |
| 11:           | for each gradient step do                                                                                                                                                      | (                      |
| 12:           | Sample random minibatch $\{(\tau_j, M_j)\}_{j=1}^B \sim \mathcal{B}$                                                                                                           | l Optimize ensemble l  |
| 13:           | for each agent i do                                                                                                                                                            |                        |
| 14:           | Update the Q-function by minimizing $rac{1}{B}\sum_{j=1}^{B}m_{j,i}\mathcal{L}_{WQ}\left(	au_{j},	heta_{i} ight)$                                                             | agents via weighted    |
| 15:           | Update the policy by minimizing $rac{1}{B}\sum_{j=1}^{B}m_{j,i}\mathcal{L}_{\pi}(s_j,\phi_i)$                                                                                 | Bellman backups        |
| 16:           | end for                                                                                                                                                                        | · · ·                  |
| 17:           | end for                                                                                                                                                                        |                        |
| 18: <b>en</b> | d for                                                                                                                                                                          |                        |

#### **Experimental Results**

- OpenAl Gym (state, continuous action)
- DeepMind Control Suite (pixel, continuous action)
- Atari (pixel, discrete action)

### **Experimental Results on OpenAl Gym**

Performance on OpenAI Gym at 200K timesteps

|               | Cheetah             | Walker              | Hopper             | Ant                                  |
|---------------|---------------------|---------------------|--------------------|--------------------------------------|
| PETS [12]     | $2288.4 \pm 1019.0$ | $282.5\pm501.6$     | $114.9\pm621.0$    | $1165.5\pm226.9$                     |
| POPLIN-A [49] | $1562.8 \pm 1136.7$ | $-105.0 \pm 249.8$  | $202.5\pm962.5$    | $1148.4 \pm 438.3$                   |
| POPLIN-P [49] | $4235.0 \pm 1133.0$ | $597.0\pm478.8$     | $2055.2\pm613.8$   | $\textbf{2330.1} \pm \textbf{320.9}$ |
| METRPO [28]   | $2283.7 \pm 900.4$  | $-1609.3 \pm 657.5$ | $1272.5\pm500.9$   | $282.2\pm18.0$                       |
| TD3 [14]      | $3015.7 \pm 969.8$  | $-516.4 \pm 812.2$  | $1816.6\pm994.8$   | $870.1\pm283.8$                      |
| SAC [15]      | $4035.7 \pm 268.0$  | $-382.5 \pm 849.5$  | $2020.6 \pm 692.9$ | $836.5 \pm 68.4$                     |
| SUNRISE       | $5370.6 \pm 483.1$  | $1926.5 \pm 694.8$  | $2601.9 \pm 306.5$ | $1627.0 \pm 292.7$                   |

Always improve the performance of SAC by large margin

### **Experimental Results on OpenAl Gym**

Performance on OpenAI Gym at 200K timesteps

|                     | Cheetah                                                                               | Walker                                                                            | Hopper                                                                                | Ant                                                               |
|---------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| PETS [12]           | $2288.4 \pm 1019.0$                                                                   | $282.5\pm501.6$                                                                   | $114.9\pm621.0$                                                                       | $1165.5 \pm 226.9$                                                |
| POPLIN-A [49]       | $1562.8 \pm 1136.7$                                                                   | $-105.0 \pm 249.8$                                                                | $202.5\pm962.5$                                                                       | $1148.4 \pm 438.3$                                                |
| POPLIN-P [49]       | $4235.0 \pm 1133.0$                                                                   | $597.0\pm478.8$                                                                   | $2055.2 \pm 613.8$                                                                    | $\textbf{2330.1} \pm \textbf{320.9}$                              |
| METRPO [28]         | $2283.7 \pm 900.4$                                                                    | $-1609.3 \pm 657.5$                                                               | $1272.5 \pm 500.9$                                                                    | $282.2\pm18.0$                                                    |
| TD3 [14]            | $3015.7\pm969.8$                                                                      | $-516.4 \pm 812.2$                                                                | $1816.6\pm994.8$                                                                      | $870.1\pm283.8$                                                   |
| SAC [15]<br>SUNRISE | $\begin{array}{c} 4035.7 \pm 268.0 \\ \textbf{5370.6} \pm \textbf{483.1} \end{array}$ | $\begin{array}{r} -382.5\pm849.5 \\ \textbf{1926.5}\pm\textbf{694.8} \end{array}$ | $\begin{array}{c} 2020.6 \pm 692.9 \\ \textbf{2601.9} \pm \textbf{306.5} \end{array}$ | $\begin{array}{c} 836.5 \pm 68.4 \\ 1627.0 \pm 292.7 \end{array}$ |

- Always improve the performance of SAC by large margin
- Outperform SOTA model-based RL methods like POPLIN and PETS on Cheetah, Walker, Hopper

#### **Experimental Results on OpenAl Gym**

Results on SlimHumanoid [Wang et al., 2019]



SUNRISE can be effective at handling complex environments like Humanoid

Gains from SUNRISE become more significant when learning longer

[Wang et al., 2019] Wang, T., Bao, X., Clavera, I., Hoang, J., Wen, Y., Langlois, E., Zhang, S., Zhang, G., Abbeel, P. and Ba, J., Benchmarking model-based reinforcement learning. arXiv preprint arXiv:1907.02057, 2019

#### **Experimental Results on DM Control**

 Performance on DeepMind Control Suite at 100K and 500K environment steps

| 500K step      | PlaNet [16]        | Dreamer [17]       | SLAC [31]         | CURL [41]                    | DrQ [25]         | RAD [30]      | SUNRISE                           |
|----------------|--------------------|--------------------|-------------------|------------------------------|------------------|---------------|-----------------------------------|
| Finger-spin    | $561\pm$ 284       | $796 \pm 183$      | $673 \pm {}_{92}$ | $926 \pm {}_{45}$            | $938 \pm 103$    | $975 \pm 16$  | <b>983</b> ±1                     |
| Cartpole-swing | $475\pm$ 71        | $762\pm$ 27        | -                 | $845\pm$ 45                  | $868 \pm 10$     | $873\pm3$     | $876 \pm 4$                       |
| Reacher-easy   | $210\pm$ 44        | $793 \pm 164$      | -                 | $929 \pm {}_{44}$            | $942\pm$ 71      | $916 \pm 49$  | <b>982</b> ± 3                    |
| Cheetah-run    | $305\pm$ 131       | $570 \pm {}_{253}$ | $640\pm$ 19       | $518 \pm {	ext{28}}$         | $660\pm$ 96      | $624 \pm 10$  | $678 \pm 	ext{46}$                |
| Walker-walk    | $351\pm$ 58        | $897 \pm$ 49       | $842\pm$ 51       | $902\pm$ 43                  | $921\pm$ 45      | $938\pm9$     | $953 \pm {\scriptscriptstyle 13}$ |
| Cup-catch      | $460\pm$ 380       | $879 \pm {}^{87}$  | $852\pm$ 71       | $959 \pm {	ext{27}}$         | $963 \pm 9$      | 966 ± 9       | <b>969</b> ± 5                    |
| 100K step      |                    |                    |                   |                              |                  |               |                                   |
| Finger-spin    | $136 \pm {}_{216}$ | $341\pm$ 70        | <b>693</b> ± 141  | $767\pm 56$                  | $901 \pm 104$    | $811 \pm 146$ | $905 \pm 57$                      |
| Cartpole-swing | $297\pm$ 39        | $326 \pm$ 27       | -                 | $582\pm$ 146                 | $759 \pm 92$     | $373\pm90$    | $591\pm$ 55                       |
| Reacher-easy   | $20\pm$ 50         | $314 \pm 155$      | -                 | $538 \pm {\scriptstyle 233}$ | $601 \pm {	213}$ | $567\pm$ 54   | $722 \pm 50$                      |
| Cheetah-run    | $138\pm 88$        | $235 \pm$ 137      | $319\pm$ 56       | $299 \pm {}_{48}$            | $344\pm$ 67      | $381\pm$ 79   | $413 \pm 35$                      |
| Walker-walk    | $224\pm$ 48        | $277\pm$ 12        | $361\pm$ 73       | $403 \pm {}_{24}$            | $612 \pm 164$    | $641\pm$ 89   | $667 \pm 147$                     |
| Cup-catch      | $0\pm 0$           | $246 \pm$ 174      | $512\pm$ 110      | $769 \pm {}_{43}$            | <b>913</b> ± 53  | $666 \pm 181$ | $633 \pm {\scriptstyle 241}$      |

SUNRISE consistently improves the performance of RAD

#### **Experimental Results on Atari**

#### Performance on Atari games at 100K interactions

| Game           | Human   | Random  | SimPLe [23] | CURL [41] | Rainbow [47] | SUNRISE |
|----------------|---------|---------|-------------|-----------|--------------|---------|
| Alien          | 7127.7  | 227.8   | 616.9       | 558.2     | 789.0        | 872.0   |
| Amidar         | 1719.5  | 5.8     | 88.0        | 142.1     | 118.5        | 122.6   |
| Assault        | 742.0   | 222.4   | 527.2       | 600.6     | 413.0        | 594.8   |
| Asterix        | 8503.3  | 210.0   | 1128.3      | 734.5     | 533.3        | 755.0   |
| BankHeist      | 753.1   | 14.2    | 34.2        | 131.6     | 97.7         | 266.7   |
| BattleZone     | 37187.5 | 2360.0  | 5184.4      | 14870.0   | 7833.3       | 15700.0 |
| Boxing         | 12.1    | 0.1     | 9.1         | 1.2       | 0.6          | 6.7     |
| Breakout       | 30.5    | 1.7     | 16.4        | 4.9       | 2.3          | 1.8     |
| ChopperCommand | 7387.8  | 811.0   | 1246.9      | 1058.5    | 590.0        | 1040.0  |
| CrazyClimber   | 35829.4 | 10780.5 | 62583.6     | 12146.5   | 25426.7      | 22230.0 |
| DemonAttack    | 1971.0  | 152.1   | 208.1       | 817.6     | 688.2        | 919.8   |
| Freeway        | 29.6    | 0.0     | 20.3        | 26.7      | 28.7         | 30.2    |
| Frostbite      | 4334.7  | 65.2    | 254.7       | 1181.3    | 1478.3       | 2026.7  |
| Gopher         | 2412.5  | 257.6   | 771.0       | 669.3     | 348.7        | 654.7   |
| Hero           | 30826.4 | 1027.0  | 2656.6      | 6279.3    | 3675.7       | 8072.5  |
| Jamesbond      | 302.8   | 29.0    | 125.3       | 471.0     | 300.0        | 390.0   |
| Kangaroo       | 3035.0  | 52.0    | 323.1       | 872.5     | 1060.0       | 2000.0  |
| Krull          | 2665.5  | 1598.0  | 4539.9      | 4229.6    | 2592.1       | 3087.2  |
| KungFuMaster   | 22736.3 | 258.5   | 17257.2     | 14307.8   | 8600.0       | 10306.7 |
| MsPacman       | 6951.6  | 307.3   | 1480.0      | 1465.5    | 1118.7       | 1482.3  |
| Pong           | 14.6    | -20.7   | 12.8        | -16.5     | -19.0        | -19.3   |
| PrivateEye     | 69571.3 | 24.9    | 58.3        | 218.4     | 97.8         | 100.0   |
| Qbert          | 13455.0 | 163.9   | 1288.8      | 1042.4    | 646.7        | 1830.8  |
| RoadRunner     | 7845.0  | 11.5    | 5640.6      | 5661.0    | 9923.3       | 11913.3 |
| Seaquest       | 42054.7 | 68.4    | 683.3       | 384.5     | 396.0        | 570.7   |
| UpNDown        | 11693.2 | 533.4   | 3350.3      | 2955.2    | 3816.0       | 5074.0  |

Consistently outperform Rainbow

#### **Experimental Results on Atari**

#### Performance on Atari games at 100K interactions

| Game           | Human   | Random  | SimPLe [23] | CURL [41] | Rainbow [47] | SUNRISE |
|----------------|---------|---------|-------------|-----------|--------------|---------|
| Alien          | 7127.7  | 227.8   | 616.9       | 558.2     | 789.0        | 872.0   |
| Amidar         | 1719.5  | 5.8     | 88.0        | 142.1     | 118.5        | 122.6   |
| Assault        | 742.0   | 222.4   | 527.2       | 600.6     | 413.0        | 594.8   |
| Asterix        | 8503.3  | 210.0   | 1128.3      | 734.5     | 533.3        | 755.0   |
| BankHeist      | 753.1   | 14.2    | 34.2        | 131.6     | 97.7         | 266.7   |
| BattleZone     | 37187.5 | 2360.0  | 5184.4      | 14870.0   | 7833.3       | 15700.0 |
| Boxing         | 12.1    | 0.1     | 9.1         | 1.2       | 0.6          | 6.7     |
| Breakout       | 30.5    | 1.7     | 16.4        | 4.9       | 2.3          | 1.8     |
| ChopperCommand | 7387.8  | 811.0   | 1246.9      | 1058.5    | 590.0        | 1040.0  |
| CrazyClimber   | 35829.4 | 10780.5 | 62583.6     | 12146.5   | 25426.7      | 22230.0 |
| DemonAttack    | 1971.0  | 152.1   | 208.1       | 817.6     | 688.2        | 919.8   |
| Freeway        | 29.6    | 0.0     | 20.3        | 26.7      | 28.7         | 30.2    |
| Frostbite      | 4334.7  | 65.2    | 254.7       | 1181.3    | 1478.3       | 2026.7  |
| Gopher         | 2412.5  | 257.6   | 771.0       | 669.3     | 348.7        | 654.7   |
| Hero           | 30826.4 | 1027.0  | 2656.6      | 6279.3    | 3675.7       | 8072.5  |
| Jamesbond      | 302.8   | 29.0    | 125.3       | 471.0     | 300.0        | 390.0   |
| Kangaroo       | 3035.0  | 52.0    | 323.1       | 872.5     | 1060.0       | 2000.0  |
| Krull          | 2665.5  | 1598.0  | 4539.9      | 4229.6    | 2592.1       | 3087.2  |
| KungFuMaster   | 22736.3 | 258.5   | 17257.2     | 14307.8   | 8600.0       | 10306.7 |
| MsPacman       | 6951.6  | 307.3   | 1480.0      | 1465.5    | 1118.7       | 1482.3  |
| Pong           | 14.6    | -20.7   | 12.8        | -16.5     | -19.0        | -19.3   |
| PrivateEye     | 69571.3 | 24.9    | 58.3        | 218.4     | 97.8         | 100.0   |
| Qbert          | 13455.0 | 163.9   | 1288.8      | 1042.4    | 646.7        | 1830.8  |
| RoadRunner     | 7845.0  | 11.5    | 5640.6      | 5661.0    | 9923.3       | 11913.3 |
| Seaquest       | 42054.7 | 68.4    | 683.3       | 384.5     | 396.0        | 570.7   |
| UpNDown        | 11693.2 | 533.4   | 3350.3      | 2955.2    | 3816.0       | 5074.0  |

Consistently outperform Rainbow

SOTA on 13 out of 26 environments

### **Ablation Study**

Can weighted Bellman backup reduce error propagation?

- Noisy-reward setting: r'(s,a) = r(s,a) + z, where z ~ N(0, 1)
- Baseline: DisCor [Kumar et al., 2020], Weighted Bellman backup based on estimated cumulative Bellman errors



#### **SUNRISE Take-Aways**

- Ensembles can be used to prevent error propagation in Qlearning
- Future directions
  - Other applications: Offline RL, Imitation learning
  - Extension to on-policy learning
- Pre-print: <u>https://arxiv.org/abs/2007.04938</u>
- Code: <u>https://github.com/pokaxpoka/sunrise</u>

# Thank you

Pieter Abbeel