Learning Exploration Strategies via Meta
Reinforcement Learning
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Why are humans good at RL? Our RL agents start tabula rasa.

People have previous experience. Can we allow RL agents to leverage prior

They have developed representations experience?
that facilitate exploration & learning.

Source: https://i.imgur.com/hJIVIZ5 jpg



https://i.imgur.com/hJIVfZ5.jpg

Should we be using the same exploration
algorithm for:

Learning to navigate an environment

Learning to make recommendations to users
Learning a policy for computer system caching
Learning to physically operate a new tool or machine

This is how we currently approach exploration.



Can we learn exploration strategies based on
experience from other tasks in that domain?



A brief primer on meta-reinforcement learning

Collect small amount of Learn policy that
experience in new MDP solves that MIDP

Goal:
Collect D¢y ~ 5P Dy — gtask

diagram adapted from Duan et al. ‘17



A brief primer on meta-reinforcement learning

Meta-Train Time:

Learn how to efficiently
explore & solve many MDPs:
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Meta-train zEXP, ztask

Meta-Test Time:

Collect small amount of ~ Learn policy that
experience in new MDP  solves that MDP

meta-training
tasks

Collect Dt ~ n°*P Dy — rtask

Key assumption: Meta-training & meta-testing MDPs come from same distribution.

(so that we can expect generalization)

diagram adapted from Duan et al. ‘17



A brief primer on meta-reinforcement learning

Common approach: Implement the learning procedure with a recurrent network.

a as as ay s this just a recurrent policy?
T T T T Hidden state maintained
— > > e T > across episodes within a task!
T T T T Trained across a family of MDPs
Sl,O S2, 11 S3, 12 St, T't—1

with varying dynamics, rewards.

Wang et al. Learning to Reinforcement Learn. 2017; Duan et al. RL2. 2017



How Do We Learn to Explore?

Solution #1: Optimize for Exploration &
Exploitation End-to-End w.r.t. Reward

(Duan et al, 2016, Wang et al,, 2016, Mishra et al,, 2017, Stadie et
al., 2018, Zintgraf et al., 2019, Kamienny et al., 2020)

simple
+ leads to optimal strategy
N principle

- challenging optimization
when exploration is hara




Fxample of a Hard Exploration Meta-RL Problem

Learned cooking tasks in previous kitchens Goal: Quickly learn tasks in a new kitchen.
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Why is End-to-End Training Hard?

End-to-end approach: optimize exploration and execution episode behaviors end-to-end to
maximize reward of execution

Ingredient not found Cannot learn to cook
/\A (bad exploration) " (bad execution)
—_
‘k/ 1{
Learning to cook Learning to find ingredients Cannot cook Low reward for any
(execution) (exploration) (bad execution) - exploration

Coupling problem: learning exploration and execution depend on each other

—> can lead to poor local optima, poor sample efficiency

Liu, Raghunathan, Liang, Finn. Explore then Execute: Adapting without Rewards via Factorized Meta-RL. 2020



Solution #2: Leverage

1a. Use posterior sampling PEARL (Rakelly, Zhou, Quillen, Finn, Levine. ICML "19)

(also called Thompson sampling)

. Learn distribution over latent task variable p(z), g(z | D+,) and corresponding task policies z(a | s, z)

ii. Sample z from current posterior and sample from policy z(a| s, z)

0\ e
z ~ p(z) z ~ qg(2z|c1:10) z ~ q¢(z|c1:30)

When might posterior sampling be bad? Eg. Goals far away & sign on wall that tells you the correct goal.



Solution #2: Leverage

1a. Use posterior sampling PEARL (Rakelly, Zhou, Quillen, Finn, Levine. ICML "19)

(also called Thompson sampling)

. Learn distribution over latent task variable p(z), g(z | D+,) and corresponding task policies z(a | s, z)

ii. Sample z from current posterior and sample from policy z(a| s, z)

1b. Use intrinsic rewards MAME (Gurumurthy, Kumar, Sycara. CoRL "19)

1c. Task dynamics & reward prediction  MetaCURE (Zhang, Wang, Hu, Chen, Fan, Zhang.'20)
. Train model f(S, | S, a, Drain) i. Collect D51 5O that model is accurate.

When might this be bad?

Lots of distractors,
or complex, high-dim state dynamics




Solution #2: Leverage

1a. Use posterior sampling PEARL (Rakelly, Zhou, Quillen, Finn, Levine. ICML "19)

(also called Thompson sampling)

. Learn distribution over latent task variable p(z), g(z | D+,) and corresponding task policies z(a | s, z)

ii. Sample z from current posterior and sample from policy z(a| s, z)

1b. Use intrinsic rewards MAME (Gurumurthy, Kumar, Sycara. CoRL "19)
1c. Task dynamics & reward prediction  MetaCURE (Zhang, Wang, Hu, Chen, Fan, Zhang.'20)
. Train model f(S, | S, a, Drain) i. Collect D51 5O that model is accurate.
+ easy to optimize - suboptimal by arbitrarily large
+ many based on amount In some environments.
principled strategies




Can we avoid the chicken-and-egg problem without sacrificing optimality?

Yes!

Fvan Z. Liu



Solution #3: Decouple by acquiring representation of task relevant information

1) Learn execution & identify key information | 2) Learn to explore by recovering that &,
[ information -
: I
VDP identifior Bottleneckgd Execghon | Exploration
representation policy | policy  Exploration episode 7
wall color | 2 | /—\
ingredients | () ) @ . greXxec : X w
decorations | ] | Information recovery reward
z ! MI(z; T)
Exploration episode
rEXP P P T rexec

Decoupled Reward-free ExplorAtion and Execution in Meta-Reinforcement Learning (DREAM)

Liu, Raghunathan, Liang, Finn. Explore then Execute: Adapting without Rewards via Factorized Meta-RL. 2020



Solution #3: Decouple by acquiring representation of task relevant information

(Informal) Theoretical Results

(1) DREAM objective is consistent with end-to-end optimization. [under mild assumptions]

-> can in principle recover the optimal exploration strategy

(2) Consider a bandit-like setting with |.A|arms.

Sample Complexity

In MDP 1, arm 1 yields reward. In all MDPs, arm O reveals the rewarding arm. gz =
2250_ — REAM
. ) S 5, == olAs|A)
RLZ requires Q(|A|% log | A|) samples for meta-optimization. = RL?
= (| AP log | A]
DREAM requires O(]A|log |A|) samples for meta-optimization. o )
B e
[assuming Q-learning with uniform outer-loop exploration] " Number of Actions (4]}

Liu, Raghunathan, Liang, Finn. Explore then Execute: Adapting without Rewards via Factorized Meta-RL. 2020



Empirical Results: Sparse Reward 3D Visual Navigation Problem

e lask:go to the (key / block/ ball), color
specified by the sign

e Agent starts on other side of barrier,
must walk around to read the sign

e Pixels observations (80 x 60 RGB)

e Sparse binary reward

Liu, Raghunathan, Liang, Finn. Explore then Execute: Adapting without Rewards via Factorized Meta-RL. 2020



Qualitative Results for DREAM

Envy ID: O
Env ID: © Instxructions: [1]
Aaction: None nction: None
Rewaxrd: 0 . 1- ©
rimestep: 0 rimestep- 0

Execution episode
Task: Go to key

Liu, Raghunathan, Liang, Finn. Explore then Execute: Adapting without Rewards via Factorized Meta-RL. 2020

Exploration episode



Quantitative Results

3D Visual Navigation

e DREAM achieves near-optimal reward

1.0 -+

e [xisting state-of-the-art algorithms perform
poorly due to coupling

(.8

0.6
e Alternate exploration strategies, e.q.,

Thompson Sampling do not learn the optimal
exploration strategy

.4 -

Average Returns

0.0 -

e PEARL-UB: Upper-bound on PEARL, reward
021 [{= DREAM === IMPORT = = PEARL-UB achieved with optimal policy and Thompson-
— R ——aat == Opes Sampling exploration

—).4 T T T T T T T T

0 500 1000 1500 2000 2500 3000 3500
Timesteps (1e3)
RL2 (Duan et al., 2016), IMPORT (Kamienny et al., 2020), VARIBAD (Zintgraf et al., 2019), PEARL (Rakelly, et. al., 2019), Thompson, 1933

Liu, Raghunathan, Liang, Finn. Explore then Execute: Adapting without Rewards via Factorized Meta-RL. 2020



How Do We Learn to Explore?

End-to-End

eads to optimal strategy in
orinciple

- challenging optimization when

exploration is hard

+ easy to opti

mize

+ many basec
strategies

- suboptimal by arbitrarily large
amount in some environments.

on principled

Decoupled Exploration & Execution

+ leads to optimal strategy in
orinciple
+ easy to optimize In practice

- requires task identifier



Other Challenges in Meta-Reinforcement Learning

Handling Broad Task Distributions

Train tasks Test tasks

eeeee 5. turn off fau 6. push back 7. pull lev dial 9. push with stick

11: pllh ndle 16. p| 18. prt ssh ndle

10. get coffee 12. basketball 3. pull with stick

47. close box

22p b

20. slide plate slide plate side 23. press handle 4.pullhandle ~ 25. soccer

48. lock dool

28. close dra o0 190w 35 reach with wall 3. 34. push 35, push with wall 3% pk&”'

8. pick & place 9. pull mug unplugpeg  4l.c 50. pick bin

TYu, D Quillen, Z He, R Julian, KHausman, C Finn, S Levine. Meta-World. CoRL 19

Meta-RL from Offline
Multi-Task Data

Initial work:

Meta-train using
Stage 2 only offline data

D Alg. 1

. Adapt g.

T = () (i,
|

Update Al g. 1
il L9-10
Offline '

Mitchell, Rafailov, Peng, Levine, Finn. Offline Meta-
RL with Advantage Weighting. arXiv 20

Unsupervised Meta-RL

Meta-RL over discovered skills

. A
Unsupervised

Task Acquisition g _ - RN

environment

Unsupervised Meta-RL

Gupta, Eysenbach, Finn, Levine. Unsupervised
Meta-Learning for Reinforcement Learning. ‘18

Jabri, Hsu, Eysenbach, Gupta, Levine, Finn.
Unsupervised Curricula for Visual Meta-
Reinforcement Learning. NeurlPS ‘19
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Want to learn more?

Stanford CS330: Deep Multi-Task and Meta Learning
cs330.stanford.edu
All lecture videos online!

Questions?


http://cs330.stanford.edu




