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But is it easy or hard to compute OPT(W)?
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Computational Tasks for OPT(W)

1. Search: Compute x = x(W) with x>Wx ≈ OPT(W).
• Local search

• Relax & round

• Message passing (Ahmed’s talk—can get near-equality!)

2. Certification: Compute c(W) ∈ R with OPT(W) ≤ c(W)
for all W , and as small as possible.

• LP relaxations (Sherali-Adams)

• SDP relaxations (Goemans-Williamson, sum-of-squares)x
This talk—what happens here?
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The Spectral Certificate

The simplest way to bound OPT(W): ignore all special
structure in x, to get

OPT(W) = max
x∈{±1}N

x>Wx

≤ max
‖x‖=

√
N
x>Wx

= λmax(W) ·N
≈ 2N (for W ∼ GOE(N))

Afonso’s talk (sort of)—indirect evidence suggests among
poly(N)-time certificates this is optimal!
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Search-Certification Gap in SK Hamiltonian
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II. Sum-of-Squares Lower Bounds
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Sum-of-Squares (SOS) Relaxations

Recall, OPT(W) = max{x>Wx : x ∈ {±1}N}.

8



Sum-of-Squares (SOS) Relaxations

Recall, OPT(W) = max{x>Wx : x2
i − 1 = 0}.

8



Sum-of-Squares (SOS) Relaxations

Recall, OPT(W) = max{x>Wx : x2
i − 1 = 0}.
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• Ẽ[(x2
i − 1)p(x)] = 0 (“ideal annihilation”)
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SOS Lower Bound Constructions

Based on heuristic arguments, we think that, for any
constant 2d,

SOS2d(W) ≈ λmax(W) ·N

To prove this, we need to build Ẽ with

λmax(W) ·N ≈ Ẽ[x>Wx] ≈ 〈Ẽ[xx>],W〉

Since Tr(Ẽ[xx>]) = N , Ẽ[xx>] needs most of its mass near
the top few eigenvectors of W . Roughly:

Ẽ[xx>] ∝∼ uniformly random low-dimensional projection
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Ẽ[xx>] ∝∼ uniformly random low-dimensional projection

9



How Everyone Builds Ẽ—“Entries First”

Argue using Bayesian ideas (pseudocalibration ∼ Jess’ talk),
symmetry, or whatever else to predict for each monomial,

Ẽ[xS] := fS(W)

That leaves just one little detail...

positivity a
(
Ẽ[xSxT ]

)
S,T∈([N]≤d)︸ ︷︷ ︸

pseudomoment matrix

� 0

These arguments are hard!
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Argue using Bayesian ideas (pseudocalibration ∼ Jess’ talk),
symmetry, or whatever else to predict for each monomial,
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Why Entries-First Makes Things Hard

There is not much intuition for why we have positivity, and
the matrices involved have complicated multiscale spectra:
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“Positivity First” Using Surrogate Tensors

A different approach: build a random surrogate tensor
G(d) ∈ (RN)⊗d for x⊗d, and take

Ẽ[xSxT ] := E[G(d)S G
(d)
T ].

Desiderata:

• G(d) ∈ Symd(RN) (some symmetry)

• G(0)∅ = E[(G(d)S )2] = 1 (normalization)

• G(d){i,i}+S = G
(d−2)
S (x2

i xS = xS )
• (G(d){i}+S)Ni=1 in top eigenspace of W (x>Wx large)

Otherwise, take G(d) as random as possible � condition
canonical gaussian symmetric tensor.
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What Comes Out

The result, upon squinting the right way, has the joint
symmetry in S + T we wanted! This has a diagrammatic
interpretation:

E[G(d)S G
(d)
T ] ≈

∑
F forest on 2d leaves

µ(F)pF(W , S + T)

Ex. If 2d = 4, S = {i, j}, T = {k, `}, M ≈ Ẽ[xx>] is the
rescaled projector to top eigenspace of W , then

2−+ +

MikMj` Mi`Mjk MijMk`
N∑
a=1

MiaMjaMkaM`a
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Cancellations for Ideal Constraint: i = j
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Cancellations for Ideal Constraint: i = j

2−+ +

MikMi` Mi`Mik Mk`
N∑
a=1

M2
iaMkaM`a

Therefore, Ẽ[x2
i xkx`] ≈ Ẽ[xkx`].
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Cancellations for Ideal Constraint: i = j = k = `
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Cancellations for Ideal Constraint: i = j = k = `
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1 1 1
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Cancellations for Ideal Constraint: i = j = k = `

2−+ +

1 1 1
N∑
a=1

M4
ia

Therefore, Ẽ[x4
i ] ≈ 1.

Remarkably, µ(F) is a Möbius function of a partial ordering
of forests, meaning such things always happen!
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Actual Results

• If instead of Ẽ[xx>] ≈ random low-rank projection
want high-rank (N − o(N)) projection, then can build Ẽ
of degree ∼ logN/ log logN .

• For low-rank projections (lower bounds for SK model),
can improve from degree 4 to degree 6, then blocked
by technical difficulties stemming from approximation
in conditioning calculations.

• Driving the proofs are the combinatorics relating the
conditional distribution of G(d) (positivity constraints)
with the Möbius function (ideal constraints).
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Thank You!
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Sketch of Conditioning Calculations

If P is projection to top eigenspace, Pij = 〈vi,vj〉, then
amounts to calculating projection to the subspace

span({v1 � v1, . . . ,vN � vN})� Symd−2(RN) ⊂ Symd(RN)

In homogeneous polynomials, this is the ideal of 〈vi,z〉2.

The Frobenius inner product becomes the apolar inner
product, and, remarkably, the orthogonal complement is
the multiharmonic polynomials 〈vi,∂〉2p(z) = 0.

Using an analogy with harmonic polynomials, we can
heuristically calculate by suggesting a “Green’s function”
for this system.
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