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But is it easy or hard to compute OPT (W)?
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The Spectral Certificate

The simplest way to bound OPT (W): ignore all special
structure in x, to get
OPT(W) = max x"Wx
xe{+1}N

< max x'Wx
lxll=vN

= Amax("v) -N
~ 2N (for W ~ GOE(N))

Afonso’s talk (sort of)—indirect evidence suggests among
poly(N)-time certificates this is optimal!
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Search-Certification Gap in SK Hamiltonian

SOS(2) [MS ’'16]
A Indirect evidence [BKW '19]
e Ao (W) = 2 = SOS(4) [KB’19 / MRX '19]
SOS(6) [K '20]
SOS(w(1)) [GJJPR ’20]

== OPT(W) ~ 1.526
A(W) & AMP [Montanari '18]
=== round eigenvector =~ 1.273 [ALR ’'87]

= greedy iteration = 1.064 [ALR ’87]

random guess ~ 0
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Recall, OPT(W) = max{x"Wx : x7 — 1 = 0}.

E: R{x]<24 — R is a degree 2d pseudoexpectation if
e Linear

e E[11=1 (“normalization”)
. E[(X},2 - Dpx)]=0 (“ideal annihilation”)
e E[p(x)2]1=0 (“positivity”)

Optimizing over these gives a very powerful certificate:

OPT(W) <SOS»q(W):=  max  E[x"Wx]
E degree 2d
pseudoexpectation
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SOS Lower Bound Constructions

Based on heuristic arguments, we think that, for any
constant 2d,
SOSZd(W) = Amax("V) -N

To prove this, we need to build T with

Amax (W) - N = E[x"Wx] ~ (E[xx"], W)
Since Tr(E[xx7]) = N, E[xx "] needs most of its mass near
the top few eigenvectors of W. Roughly:

ElxxT] < uniformly random low-dimensional projection
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How Everyone Builds tE—“Entries First”

Argue using Bayesian ideas (pseudocalibration ~ Jess’ talk),
symmetry, or whatever else to predict for each monomial,

Elx*]:= fs(W)
That leaves just one little detail...

positivity < (E[xSxT]) >0
s,;re(S))

g
pseudomoment matrix

These arguments are hard!



Why Entries-First Makes Things Hard

There is not much intuition for why we have positivity, and
the matrices involved have complicated multiscale spectra:

JANEN

o(1) O(N2) O(N) O(N3/2)

\
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“Positivity First” Using Surrogate Tensors

A different approach: build a random surrogate tensor
G e (RN)®4 for x®4, and take

E(xSxT]:= E[GYG¥.

Desiderata:
o G e Symi(RN) (some symmetry)
GY = E[(G¥)2]1=1 (normalization)
L G- it = )
d (G§’f})+5 N | in top eigenspace of W (x"Wx large)

Otherwise, take G'Y as random as possible ~ condition
canonical gaussian symmetric tensor.
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The result, upon squinting the right way, has the joint
symmetry in S + T we wanted! This has a diagrammatic
interpretation:

E[G G ~ > U(F)pr(W,S + T)

F forest on 2d leaves

Ex.If2d = 4,8 = {i,j}, T = {k, £}, M ~ E[xx "] is the
rescaled projector to top eigenspace of W, then
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Therefore, E[x?x.x,] ~ E[xrxp].
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N N S e A G

N
1 1 1 > M,

a=1

Therefore, E[x}] ~ 1.

Remarkably, u(F) is a Mébius function of a partial ordering
of forests, meaning such things always happen!
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Actual Results

o If instead of E[xx7] ~ random low-rank projection
want high-rank (N — o(N)) projection, then can build E
of degree ~ log N/ loglogN.

e For low-rank projections (lower bounds for SK model),
can improve from degree 4 to degree 6, then blocked
by technical difficulties stemming from approximation
in conditioning calculations.

¢ Driving the proofs are the combinatorics relating the
conditional distribution of G'% (positivity constraints)
with the Mobius function (ideal constraints).
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Sketch of Conditioning Calculations

If P is projection to top eigenspace, P;; = (v;,v;), then
amounts to calculating projection to the subspace

span({v; @ v1,...,vny © Ux}) © Sym? 2 (RN) c Sym4(RV)
In homogeneous polynomials, this is the ideal of (v;, z)°.

The Frobenius inner product becomes the apolar inner
product, and, remarkably, the orthogonal complement is
the multiharmonic polynomials (v;,9)°p(z) = 0.

Using an analogy with harmonic polynomials, we can
heuristically calculate by suggesting a “Green’s function”
for this system.



