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Graph isomorphism

Given two graphs A and B, decide whether A ∼= B, i.e., there exists a
bijection π : V (A)→ V (B) such that

(u, v) ∈ E(A)⇔ (π(u), π(v)) ∈ E(B)
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π(a) = 1

π(b) = 6

π(c) = 8

π(d) = 3

π(g) = 5

π(h) = 2

π(i) = 4

π(j) = 7

• Not known to be solvable in polynomial time in worst case
• In practice, two graphs are often not exactly isomorphic, but still

want to tell whether their topologies are similar
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Beyond worst-case: Noisy graph isomorphism

Definition

Suppose we observe two random graphs A and B:

H0 : A and B are independent

H1 : A and Bπ = (Bπ(i)π(j)) are edge-correlated

conditional on a uniform permutation π

Goal: Test H0 versus H1

• Under H1, the inherent edge correlation is obscured by the latent
node correspondence π
• The test needs to rely on graph invariants (invariant under graph

isomorphism), such as
I Subgraph counts (e.g. # of edges or triangles)
I Spectrum (e.g. eigenvalues of adjacency matrices or Laplacians)
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Erdős-Rényi setting

Definition (Erdős-Rényi graphs model [Barak-Chou-Lei-Schramm-Sheng’19])

H0 : A and B are independent G(n, ps)

H1 : A and Bπ = (Bπ(i)π(j)) are independently edge-subsampled from

a common parent graph G(n, p) with subsampling probability s

• Under both H0 and H1, A and B are G(n, ps) marginally
• Under H1,

(
Aij , Bπ(i)π(j)

)
are correlated Bern(ps) with correlation

coefficient ρ , s(1−p)
1−ps

• Hypothesis testing aspect of graph matching (recover π under H1)
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Sharp threshold for detection: dense Erdős-Rényi graphs

Theorem (Wu-X.-Yu ’20)

If s2 ≥ 2 log n

(n− 1)p
(

log 1
p − 1 + p

) , then TV (P,Q) = 1− o (1)

• (Dense regime) p = n−o(1):

If s2 ≤ (2− ε) log n

np
(

log 1
p − 1 + p

) , then TV (P,Q) = o(1)

1

lim
n→∞

TV (P ,Q)

0
lim
n→∞

nps2(log(1/p)−1+p)
log n2

weak detection
impossible

strong detection
possible
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Threshold for detection: sparse Erdős-Rényi graphs

Theorem (Wu-X.-Yu ’20)

If s2 ≥ 2 log n

(n− 1)p
(

log 1
p − 1 + p

) , then TV (P,Q) = 1− o (1)

• (Sparse regime) p = n−Ω(1):

If s2 ≤ 1− ω(n−1/3)

np
∧ 0.01, then TV (P,Q) = 1− Ω(1)

If s2 ≤ 1− ω(n−1/3)

np
∧ o(1), then TV (P,Q) = o(1)

p = d
n for a constant d:

strong detection is possible if s2 > 2
d and impossible if s2 < 1

d ∧ 0.01
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What is known algorithmically

• Counting edges: achieve weak detection in linear time, if s = Ω(1)

• Counting “balanced” subgraphs [Barak-Chou-Lei-Schramm-Sheng’19]:
correctly tell H0 vs. H1 w.p. at least 0.9 in poly-time, if

s = Ω (1) and nps ∈
[
nε, n1/153

]
∪
[
n2/3, n1−ε

]
• Counting (weighted) trees – low-degree poly. approx. of P(A,B)

Q(A,B)
[Mao-Wu-X.-Yu ’forthcoming]: achieve strong detection in poly-time, if

s2 > 1/2.956 and n−o(1) ≤ np ≤ no(1)

Order-optimal when np = Θ(1)

Polynomial-time test for s = o(1) is open
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Proof of positive results: QAP statistic

T (A,B) , max
π∈Sn

∑
i<j

AijBπ(i)π(j) (edge correlation)

• This is known as Quadratic Assignment Problem

• Invariant to the node relabeling of both A and B

• Proof: First-moment calculation
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Proof of negative results: second-moment method

EQ

[(P(A,B)

Q(A,B)

)2
]

= O(1) =⇒ TV(P,Q) ≤ 1− Ω(1)

EQ

[(P(A,B)

Q(A,B)

)2
]

= 1 + o(1) =⇒ TV(P,Q) = o(1)
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Second-moment calculation: cycle (orbit) decomposition

• Node permutation σ on [n]
• Edge permutation σE on

(
[n]
2

)
: σE((i, j)) , (σ(i), σ(j))

E.g. n = 6 and σ = (1)(23)(456):

σ:
1

2

3

4

56

σE:
(2, 3)

(1, 2)

(1, 3)

(1, 4)

(1, 5)(1, 6)

(4, 5)

(5, 6)(4, 6)

(2, 4)

(3, 5)

(2, 6)

(3, 4)

(2, 5)

(3, 6)

Cycles in node (edge) permutation are called node (edge) orbits
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Second-moment calculation: cycle decomposition

(P(A,B)

Q(A,B)

)2

=

(
Eπ
[P(A,B|π)

Q(A,B)

])2

= Eπ̃⊥⊥π
∏
i<j

Xij Xij ,
P(Bπ(i)π(j)|Aij)P(Bπ̃(i)π̃(j)|Aij)
Q(Bπ(i)π(j))Q(Bπ̃(i)π̃(j))

= Eπ̃⊥⊥π
∏
O∈O

XO XO ,
∏

(i,j)∈O
Xij

O: disjoint orbits of edge permutation σE with σ , π−1 ◦ π̃

EQ

[(P(A,B)

Q(A,B)

)2
]

= Eπ̃⊥⊥πEQ
∏
O∈O

XO = Eπ̃⊥⊥π
∏
O∈O

EQ [XO]

EQ [XO] = 1 + ρ2|O|, ρ ,
s(1− p)
1− ps (use Egorychev method)
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Failure of second-moment

We show

EQ

[(P(A,B)

Q(A,B)

)2
]

=

{
1 + o(1) if ρ2 ≤ (2−ε) logn

n

+∞ if ρ2 ≥ (2+ε) logn
n

• Suboptimal by an unbounded factor when p = o(1)

Obstruction from short orbits

E(A,B)∼Q

[(P(A,B)

Q(A,B)

)2
]

= Eπ⊥⊥π̃

[∏
O∈O

EQ [XO]

]
π̃=π
≥ 1

n!

(
1 + ρ2

)(n2)
Atypically large magnitude of

∏
O∈O:|O|=kXO for short orbits of length

k = O(log n) ⇒ second-moment blows up
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Conditional second-moment: dense regime

It suffices to consider k = 1:∏
O∈O:|O|=1

XO ≈
(

1

p

)2eA∧Bπ (F )

F : set of fixed points of σ , π−1 ◦ π̃
A ∧Bπ: Intersection graph
eA∧Bπ(F ): # of edges of subgraph of A ∧Bπ induced by F

• Under P: eA∧Bπ(S) concentrates uniformly over all S when |S| is
large

• Conditional on this typical event E under P, when |F | is large,

EQ

 ∏
O∈O:|O|=1

XO1{E}

 . EQ

[(
1

p

)2eA∧Bπ (F )

1{
eA∧Bπ (F )≤(|F |

2 )ps2
}
]
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Conditional second-moment: sparse regime

Need to consider k = Θ(log n). It can be shown

• Long orbits:

EQ

 ∏
|O|>k

XO

 ≤ (1 + ρk
)n2

k
= 1 + o(1)

• Short incomplete orbits:

EQ [XO | O 6⊂ E (A ∧Bπ)] ≤ 1

• Short complete orbits:

XO =

(
1

p

)2|O|
, ∀O ⊂ E (A ∧Bπ)

In the subcritical regime nps2 < 1, A ∧Bπ ∼ G(n, ps2) is a pseduoforest
⇒ Hk , ∪O:|O|≤k,O⊂E(A∧Bπ)O is a pseduoforest

Jiaming Xu (Duke) Noisy Graph Isomorphism 14



Conditional second-moment: orbit pseduoforest

Conditional on E , {(A,B, π) : A ∧Bπ is a pseudoforest} under P:

EQ

[∏
O∈O

XO1{E}

]
≤ (1 + o(1))EQ

[(
1

p

)2e(Hk)

1{Hk is a pseudoforest}

]
= (1 + o(1))

∑
H∈Hk

s2e(H) (generating function)

Hk: pseudoforests assembled from edge orbits of length at most k

Key challenge: enumerate orbit pseduoforests Hk using orbit structure
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Classification of edge orbits

Type Edge orbit Orbit graph

M (13,24)
1

2

3

4

B (15,26,17,28)
1

2

5

6

7

8

C (56,67,78,85)

5

6

7

8

S (57,68)

5

6

7

8

Assume σ = (12)(34)(5678)

Type C edge orbit is a cycle

Type Bm,` (` < m) edge orbit is
cycle-free if ` divides m; otherwise,
it contains a component with at
least two cycles

Key: identify the forbidden
co-occurrence patterns under
pseduoforest constraint
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Backbone graph representation

• Node orbit in H (splits) ⇔ giant node in Γ (shaded)

• Edge orbit in H ⇔ giant edge in Γ with label

1

2

3

4

5

6

7

8

(a) Orbit graph H

2 2 4
1

2

1

1

(12) (34) (5678)

(b) Backbone graph Γ

Enumeration Prototype: For 1 ≤ m ≤ k,

1 Matching stage. Construct Γm induced by nm giant nodes (node
orbits) of size m

2 Splitting stage. Add splits to some components of Γm

3 Bridging stage. Add bridges between Γm and Γ` for ` dividing m

Jiaming Xu (Duke) Noisy Graph Isomorphism 17
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Warm-up: Enumerate orbit forest

When orbit graph H is a forest, its corresp. backbone graph Γ satisfies

• Γm is a forest with no self-loop and parallel edges

• No bridge between Γm and Γ` unless ` divides m

• Each component of Γm contains at most 1 split or is incident to 1
bridge to Γ`, but not both.

2 4 2

(a) A component in Γ4

is incident to 2 bridges

4 4 4

(b) A component in Γ4

contains 2 splits

2 4 4

(c) A component in Γ4

contains 1 split and is
incident to 1 bridge
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Warm-up: Enumerate orbit forest

For 1 ≤ m ≤ k,

1 Matching stage. Construct a rooted forest Γm consisting of nm
giant nodes and am giant edges

2 Splitting stage. Choose bm components from nm − am tree
components of Γm and add a split to the root

3 Bridging stage. Choose cm out of the remaining nm − am − bm tree
components of Γm, add a bridge connecting its root to Γ` for some
` dividing m

∑
H∈Fk

s2e(H) ≤
∏

1≤m≤k

(
1 + s2mmnm︸ ︷︷ ︸

matching

+ sm1{m:even}︸ ︷︷ ︸
splitting

+ s2m
∑
`<m

`n`︸ ︷︷ ︸
bridging

)nm
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Enumerate orbit pseudoforest

When orbit graph H is a forest, its corresp. backbone graph Γ satisfies

• Γm is a psedudoforest with self-loops and parallel edges counted as
cycles

• No bridge between Γm and Γ` unless ` divides m

• Each unicyclic component of Γm is plain (contains no split and is
not incident to bridge in Γ`)

• Each tree component of Γm contains at most 2 splits

• If there are two bridges incident to a common tree component in
Γm, then the ending points of the two bridges must belong to
distinct plain tree components in Γm/2
• If there is a bridge incident to a tree component that contains a split

in Γm, then the ending point of the bridge must belong to a plain
tree component in Γm/2
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Enumerate orbit pseudoforest

For 1 ≤ m ≤ k,

1 Matching stage. Construct a rooted pseudoforest Γm consisting of
nm giant nodes and am giant edges

2 Splitting stage. Choose bm components from nm − am tree
components of Γm and add either 1 or 2 splits

3 Forward bridging stage. Choose cm out of the remaining
nm − am − bm tree components of Γm, add a bridge connecting its
root to Γ` for some ` dividing m

4 Backward bridging stage. Choose dm from the remaining
nm − am − bm − cm tree components of Γm, add a bridge
connecting its root to Γ2m

∑
H∈Hk

s2e(H)≤
k∏

m=1

(
1 + s2m2mnm︸ ︷︷ ︸

matching

+ smnm︸ ︷︷ ︸
splitting

+ s2m
∑
`<m

`n`︸ ︷︷ ︸
FB

+ s4mmn2m︸ ︷︷ ︸
BB

)nm
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Averaging over orbit lengths

Theorem (Wu-X.-Yu ’20)

Suppose k(log k)4 = o(n). If s ≤ 0.1,

Eπ⊥⊥π̃

 k∏
m=1

1 + smnm + 2s2m
∑
`≤m

`n` + s4mmn2m

nm = O(1),

where nm is the number of m-node orbits in σ = π−1 ◦ π̃

• Poisson approximation: nm’s are approximately i.i.d. Pois( 1
m)

• Partition the product into disjoint parts and recursively peel off the
expectation backwards
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Concluding remarks

• Formulate the problem of testing network correlation and
characterize the statistical detection limit

• The impossibility proof applies conditional second-moment method

• The sparse setting leverages the pseudoforest structure of subcritical
Erdős-Rényi graphs

• A large computational gap may exist between the statistical and
computational limits

Open problem

• Sharp detection threshold in the sparse regime

• Prove the existence of or close the computational gaps
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