Paving property for strongly Rayleigh measures

Milad Barzegar (Sharif University of Technology) Joint work with Kasra Alishahi

Geometry of Polynomials Reunion Workshop

Strong Rayleigh point processes

$$\longrightarrow \mathfrak{X} \subseteq [n] \text{ random subset } \& \mathfrak{X} \sim \mu$$

Alternatively, \mathfrak{X} is a random $\{0,1\}$ -vector

 \mathfrak{X} (or μ) is *strongly Rayleigh* if

$$p_{\mathfrak{X}}(\mathbf{z}) = \sum_{A \subseteq [n]} \mathbb{P}(\mathfrak{X} = A) \mathbf{z}^A$$

is (real) stable

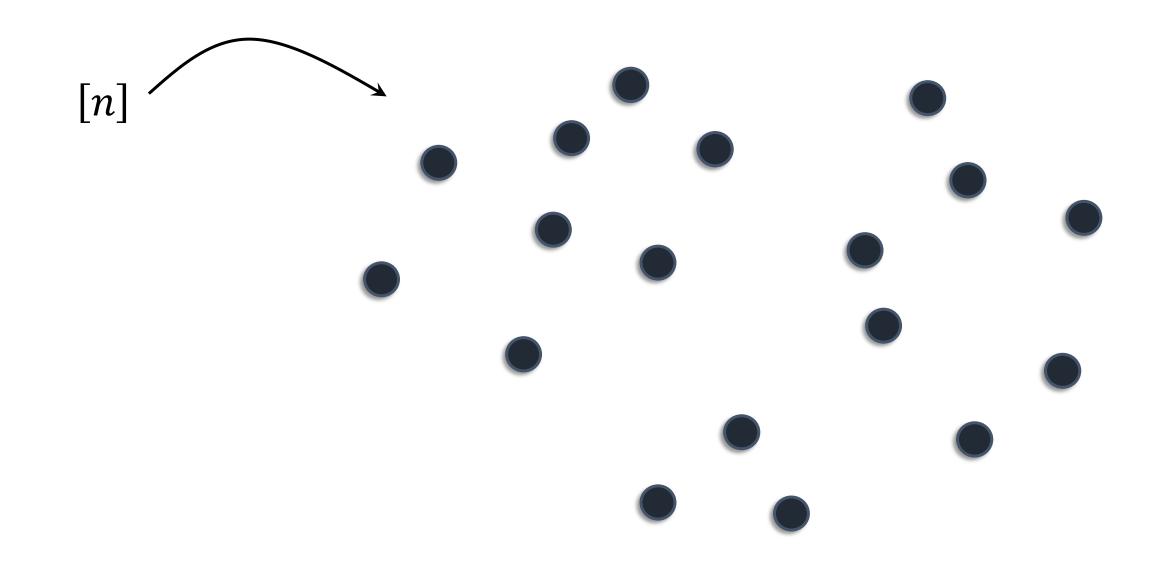
 \rightarrow $\mathbf{z}^A \coloneqq \prod_{i \in A} z_i$

Strong Rayleighness is the most "natural" notion of negative dependence!

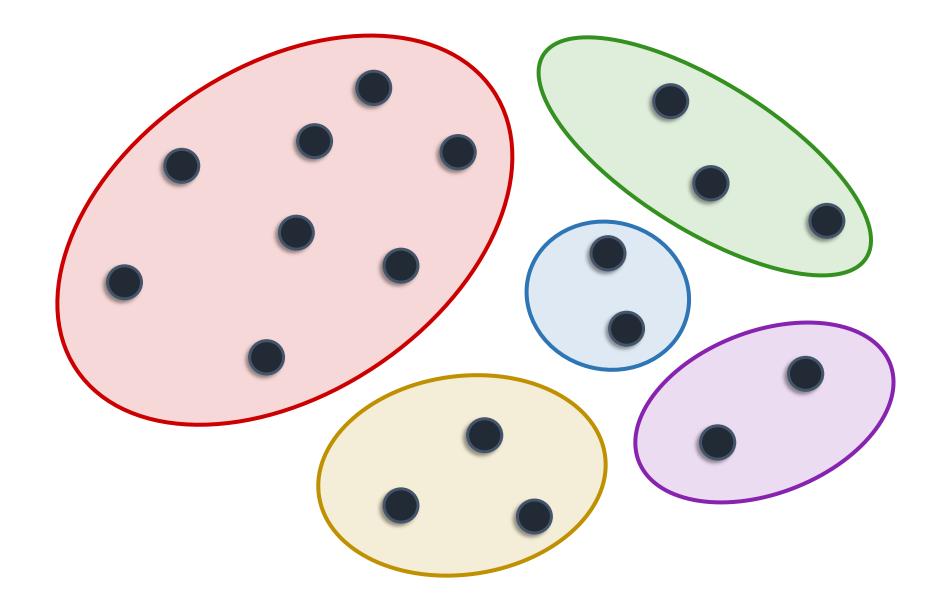
Relatively easy to check

- Includes almost all of the known examples
- Strong consequences
- Many applications

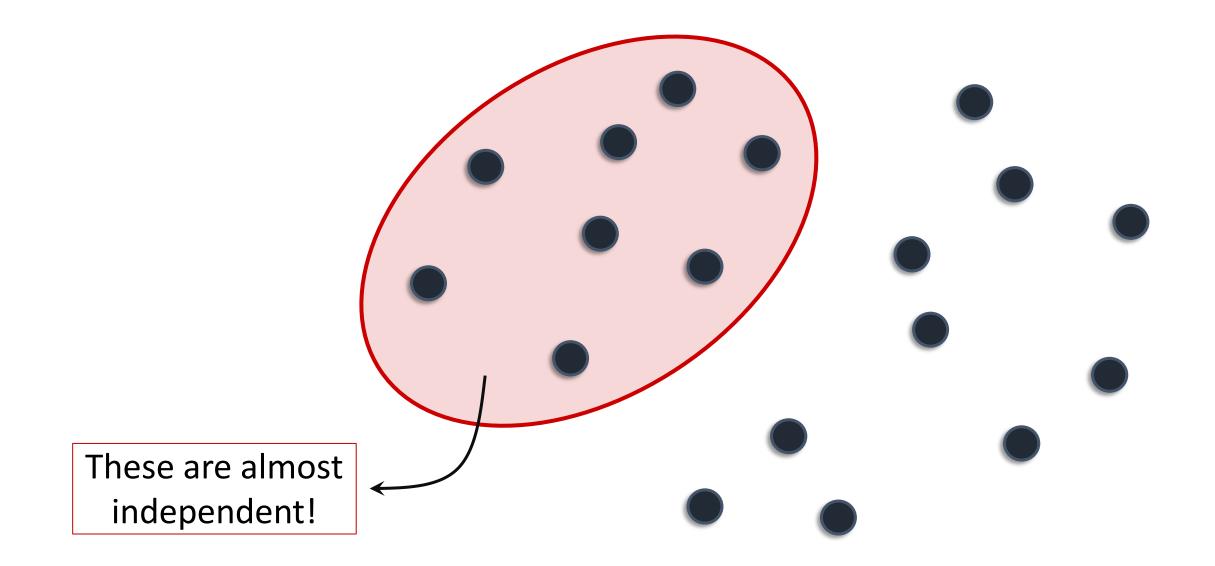
The idea



The idea



The idea



Claim

This resembles the paving conjecture!

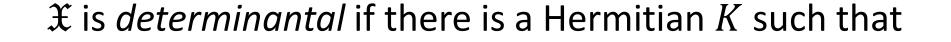
For every $\varepsilon > 0$ there is a $r = r(\varepsilon) \in \mathbb{N}$ such that every **Hermitian matrix** M with **zero diagonal** can be " (r, ε) -paved".

If *M* is $n \times n$ then [n] can be partitioned into *r* sets S_1, \dots, S_r such that $\forall k \in \{1, \dots, r\} : ||M[S_k]|| \le \varepsilon ||M||$

(Discrete) Determinantal point processes

$\mathfrak{X} \subseteq [n]$ random subset

Kernel



 $\mathbb{P}(A \subseteq \mathfrak{X}) = \det K[A]$

for all $A \subseteq [n]$

- $\bigstar K \text{ is kernel} \Leftrightarrow 0 \preccurlyeq K \preccurlyeq I$
- x is independent $\Leftrightarrow K$ is diagonal
- ♦ Is strongly Rayleigh with PGP det(KZ + I K)

$$Z = \text{Diag}(z_1, \dots, z_n)$$

Paving property for DPP

Apply the paving theorem to $K_0 = K - D$ $\begin{cases} \{1, \dots, n\} = S_1 \sqcup \cdots \sqcup S_r \\\\ \forall k \in [r] : \|K[S_k] - D[S_k]\| \le \varepsilon \end{cases}$ || ?

 $\mathfrak{X} \cap S_k$ is almost independent

Problems

- How to deduce a probabilistic statement?
- How to deal with the strongly Rayleigh case?

- How to deduce a probabilistic statement?
- How to deal with the strongly Rayleigh case?

Extend the paving theorem to real stable polynomials!

Interlacing polynomials + multivariate barrier method

Weaver's vector balancing conjecture

Paving conjecture

Marcus, Spielman, Srivastava '15

 $r \ge 1$ integer. Then for every **Hermitian matrix** A with **zero diagonal** there exists a partition $S_1 \sqcup \cdots \sqcup S_{r^2} = [n]$ such that $\forall k \in [r^2] : ||A[S_k]|| \le \left(\frac{2\sqrt{2}}{\sqrt{r}} + \frac{2}{r}\right) ||A||$

Leake, Ravichandran '16

 $r \ge 4$ integer. Then for every **Hermitian matrix** A with **zero diagonal** there exists partition $S_1 \sqcup \cdots \sqcup S_{r^2} = [n]$ such that $\forall k \in [r^2] : ||A[S_k]|| \le \left(\frac{r-2}{r(r-1)} + 2\sqrt{\frac{r-2}{r(r-1)}}\right)||A||$

Notations

$$\partial^A p \coloneqq (\prod_{i \in A} \partial_i) p$$

$$\bar{p}(x) = p(x, \dots, x)$$

$$M(q) \coloneqq \max_i |\lambda_i|$$

Alishahi, B. '20

 $r \ge 4$ integer. Then for every **multi-affine real stable polynomial** $p(\mathbf{z})$ = $\sum_{A \subseteq [n]} a_A \mathbf{z}^A$ with $\mathbf{a}_{\emptyset} = \mathbf{1}$ and $\mathbf{a}_{\{i\}^c} = \mathbf{0}$ for all $i = \mathbf{1}, ..., n$ there exists a partition $S_1 \sqcup \cdots \sqcup S_{r^2} = [n]$ such that $\forall k \in [r^2] : \mathbb{M}\left(\overline{\partial^{S_k^c} p}\right) \le \left(\frac{r-2}{r(r-1)} + 2\sqrt{\frac{r-2}{r(r-1)}}\right) \mathbb{M}(\bar{p})$

Alishahi, B. '20

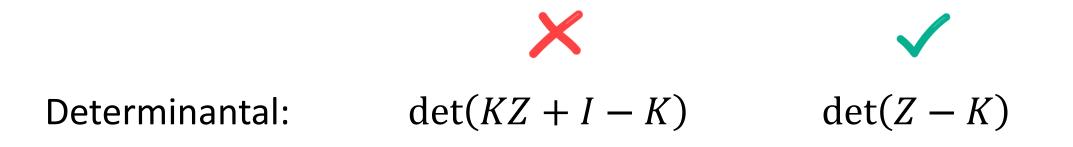
 $r \ge 4$ integer. Then for every **multi-affine real stable polynomial** $p(\mathbf{z}) = \sum_{A \subseteq [n]} a_A \mathbf{z}^A$ with $\mathbf{a}_{\emptyset} = \mathbf{1}$ and $\mathbf{a}_{\{i\}^c} = \mathbf{0}$ for all $i = \mathbf{1}, \dots, n$ there exists a partition $S_1 \sqcup \cdots \sqcup S_{r^2} = [n]$ such that $\forall k \in [r^2] : \mathbb{M}\left(\overline{\partial^{S_k^c} p}\right) \le \left(\frac{r-2}{r(r-1)} + 2\sqrt{\frac{r-2}{r(r-1)}}\right) \mathbb{M}(\bar{p})$

$$p(\mathbf{z}) = \det(Z - A) \implies$$
 Leake-Ravichandran result

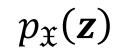
Back to strongly Rayleigh measures

PGP is no good!

Comparison with determinantal measures



Strong Rayleigh:



Kernel polynomial

- * $g_{\mathfrak{X}}$ is (multi-affine) real stable
- ♦ $g_{\mathfrak{X}}$ is kernel \Leftrightarrow the roots of $\overline{g_{\mathfrak{X}}}$ in [0,1]
- ♦ & they play an important role (e.g. $|\mathfrak{X}| \sim I_{\lambda_1} + \cdots + I_{\lambda_n}$)
- * $\mathfrak{X} \cap A$ is strongly Rayleigh with kernel $\partial^{A^{c}}g_{\mathfrak{X}}$

Proof (Part 1)

Proof (Part 1)

$$f_{\mathfrak{X}}(\mathbf{z}) \coloneqq g_{\mathfrak{X}}(z_1 + p_1, \dots, z_n + p_n) = \sum_{A \subseteq [n]} a_A \mathbf{z}^A$$

Proof (Part 1)

Apply the paving theorem to $f_{\mathfrak{X}}$ $\begin{cases} \{1, \dots, n\} = S_1 \sqcup \cdots \sqcup S_r \\ \forall k \in [r] : \mathsf{M}(\overline{f_{\mathfrak{X} \cap S_k}}) \leq \varepsilon \end{cases}$

 $\mathfrak{X} \cap S_k$ is almost independent

Problems

- How to deduce a probabilistic statement? —
- How to deal with the strongly Rayleigh case?

Connection between the entropy of \mathfrak{X} and the roots of the kernel polynomial!

Entropy

$$H(X) = -\sum_{x} \mathbb{P}(X = x) \log \mathbb{P}(X = x)$$

Alishahi, B. '20

$\mathfrak X$ strongly Rayleigh with kernel g and $\lambda_1, \ldots, \lambda_n$ the roots of g. Then

 $H(\mathfrak{X}) \geq \sum_{i} h(\lambda_{i})$

$$H(\mathfrak{X}) \ge H(I_{\lambda_1}, \dots, I_{\lambda_n}) \ge H(|\mathfrak{X}|)$$

Alishahi, B. '20

For every $\delta > 0$ there exists an integer r such that for every SR process \mathfrak{X} it is possible to partition its underlying space into r subsets S_1, \ldots, S_r such that

$$\forall k \in [r] : \left| H(\mathfrak{X} \cap S_k) - H(\widehat{\mathfrak{X}} \cap S_k) \right| \le |S_k|\delta$$

$$\forall k \in [r] : \left| \overline{H}(\mathfrak{X} \cap S_k) - \overline{H}(\widehat{\mathfrak{X}} \cap S_k) \right| \leq \delta$$

- Applications?
- ★ Is the distribution of \mathfrak{X} majorized by the distribution of $I_{\lambda_1}, \ldots, I_{\lambda_n}$? (True for determinantal measure)
- ✤ Is there a "fine" probabilistic interpretation for I_{λ1}, ..., I_{λn}? (We want a mixture like X ~ E_I[X_I], where X_I are SR with fixed size and hopefully have a "nice form".)

Thank you!