Spectral sets and derivatives of the psd cone

Mario Kummer

TU Berlin

September 8, 2020

 \sim 重

 $S = \{x \in \mathbb{R}^n : A(x) = x_1 A_1 + \ldots + x_n A_n \text{ is positive semidefinite}\},\$

where $A_1,\ldots,A_n\in{\rm Sym}_2(\mathbb{R}^d)$ are real symmetric $d\times d$ matrices.

A BANK BA

 $S = \{x \in \mathbb{R}^n : A(x) = x_1 A_1 + \ldots + x_n A_n \text{ is positive semidefinite}\},\$

where $A_1,\ldots,A_n\in{\rm Sym}_2(\mathbb{R}^d)$ are real symmetric $d\times d$ matrices.

 \blacktriangleright Feasible sets of semidefinite programming.

 $S = \{x \in \mathbb{R}^n : A(x) = x_1 A_1 + \ldots + x_n A_n \text{ is positive semidefinite}\},\$

where $A_1,\ldots,A_n\in{\rm Sym}_2(\mathbb{R}^d)$ are real symmetric $d\times d$ matrices.

- \blacktriangleright Feasible sets of semidefinite programming.
- \blacktriangleright Polyhedral cones: Take $A(x)$ to be diagonal.

 $S = \{x \in \mathbb{R}^n : A(x) = x_1 A_1 + \ldots + x_n A_n \text{ is positive semidefinite}\},\$

where $A_1,\ldots,A_n\in{\rm Sym}_2(\mathbb{R}^d)$ are real symmetric $d\times d$ matrices.

- \blacktriangleright Feasible sets of semidefinite programming.
- \blacktriangleright Polyhedral cones: Take $A(x)$ to be diagonal.

Question

► Which sets $K \subset \mathbb{R}^n$ are spectrahedral?

- $S = \{x \in \mathbb{R}^n : A(x) = x_1 A_1 + \ldots + x_n A_n \text{ is positive semidefinite}\}.$
	- Fix $e \in \text{int}(S)$. W.l.o.g. $A(e) = I_d$.
	- \blacktriangleright The polynomial det $A(x)$ is hyperbolic in the following sense:

A + + = + + = +

- Fix $e \in \text{int}(S)$. W.l.o.g. $A(e) = I_d$.
- \triangleright The polynomial det $A(x)$ is hyperbolic in the following sense:

Definition A homogeneous polynomial $h \in \mathbb{R}[x_1, \ldots, x_n]$ is hyperbolic with respect to $e \in \mathbb{R}^n$ if $h(e) \neq 0$ and if $h(te - v)$ has only real roots for all $v \in \mathbb{R}^n$.

A + + = + + = +

- Fix $e \in \text{int}(S)$. W.l.o.g. $A(e) = I_d$.
- \triangleright The polynomial det $A(x)$ is hyperbolic in the following sense:

Definition A homogeneous polynomial $h \in \mathbb{R}[x_1, \ldots, x_n]$ is hyperbolic with respect to $e \in \mathbb{R}^n$ if $h(e) \neq 0$ and if $h(te - v)$ has only real roots for all $v \in \mathbb{R}^n$. The hyperbolicity cone is

 $C(h, e) = \{v \in \mathbb{R}^n : h(te - v)$ has only nonnegative roots}.

イ押 トラ ミュート・エ

- Fix $e \in \text{int}(S)$. W.l.o.g. $A(e) = I_d$.
- \triangleright The polynomial det $A(x)$ is hyperbolic in the following sense:

Definition A homogeneous polynomial $h \in \mathbb{R}[x_1, \ldots, x_n]$ is hyperbolic with respect to $e \in \mathbb{R}^n$ if $h(e) \neq 0$ and if $h(te - v)$ has only real roots for all $v \in \mathbb{R}^n$. The hyperbolicity cone is

 $C(h, e) = \{v \in \mathbb{R}^n : h(te - v)$ has only nonnegative roots}.

•
$$
\det A(te - v) = \det(tI_d - A(v)).
$$

イ押 トラ ミュート・エ

- Fix $e \in \text{int}(S)$. W.l.o.g. $A(e) = I_d$.
- \triangleright The polynomial det $A(x)$ is hyperbolic in the following sense:

Definition A homogeneous polynomial $h \in \mathbb{R}[x_1, \ldots, x_n]$ is hyperbolic with respect to $e \in \mathbb{R}^n$ if $h(e) \neq 0$ and if $h(te - v)$ has only real roots for all $v \in \mathbb{R}^n$. The hyperbolicity cone is

 $C(h, e) = \{v \in \mathbb{R}^n : h(te - v)$ has only nonnegative roots}.

• det
$$
A(te - v) = det(tI_d - A(v))
$$
.

$$
\blacktriangleright S = C(\det A(x), e).
$$

イ押 トラ ミュート・エ

Conjecture. Let $h \in \mathbb{R}[x_1, \ldots, x_n]$ be hyperbolic with respect to $e \in \mathbb{R}^n$. Then $C(h, e)$ is spectrahedral.

 $\epsilon = 1$

 \rightarrow \equiv \rightarrow

Conjecture. Let $h \in \mathbb{R}[x_1, \ldots, x_n]$ be hyperbolic with respect to $e \in \mathbb{R}^n$. Then $C(h, e)$ is spectrahedral.

True if:

- \blacktriangleright deg $h \leq 2$.
- \blacktriangleright $n \leq 3$. (Helton–Vinnikov)
- \triangleright n = 4 and deg h = 3. (Buckley–Košir)

The following polynomials are hyperbolic with respect to e:

 \triangleright det $A(x)$ for $A(x)$ real symmetric matrix with linear entries and $A(e)$ positive definite.

Includes spanning tree polynomials of graphs and bases generating polynomials of regular matroids.

The following polynomials are hyperbolic with respect to e:

 \triangleright det $A(x)$ for $A(x)$ real symmetric matrix with linear entries and $A(e)$ positive definite.

Includes spanning tree polynomials of graphs and bases generating polynomials of regular matroids.

Their hyperbolicity cones are clearly spectrahedral.

If a polynomial $p \in \mathbb{R}[t]$ has only real zeros, then its derivative p' has only real zeros.

 \equiv \rightarrow \rightarrow \equiv \rightarrow

If a polynomial $p \in \mathbb{R}[t]$ has only real zeros, then its derivative p' has only real zeros.

This implies:

If a polynomial $h \in \mathbb{R}[x_1, \ldots, x_n]$ is hyperbolic with respect to e, then its directional derivative

$$
D_e h = \sum_{i=1}^n e_i \cdot \frac{\partial h}{\partial x_i}
$$

is hyperbolic with respect to e as well.

A + + = + + = +

If a polynomial $p \in \mathbb{R}[t]$ has only real zeros, then its derivative p' has only real zeros.

This implies:

If a polynomial $h \in \mathbb{R}[x_1, \ldots, x_n]$ is hyperbolic with respect to e, then its directional derivative

$$
D_e h = \sum_{i=1}^n e_i \cdot \frac{\partial h}{\partial x_i}
$$

is hyperbolic with respect to e as well.

Question Is the hyperbolicity cone of D_e (det $A(x)$) spectrahedral?

メター・メディ メディー

If a polynomial $p \in \mathbb{R}[t]$ has only real zeros, then its derivative p' has only real zeros.

This implies:

If a polynomial $h \in \mathbb{R}[x_1, \ldots, x_n]$ is hyperbolic with respect to e, then its directional derivative

$$
D_e^k h = \sum_{i=1}^n e_i \cdot \frac{\partial h}{\partial x_i}
$$

is hyperbolic with respect to e as well.

Question Is the hyperbolicity cone of $D_e^k(\det A(x))$ spectrahedral?

メタト メミト メミト

It suffices to prove that the hyperbolicity cone of $D_f^k(\det X)$ is spectrahedral where X is the generic $d \times d$ symmetric matrix and *I* the $d \times d$ identity matrix.

It suffices to prove that the hyperbolicity cone of $D_f^k(\det X)$ is spectrahedral where X is the generic $d \times d$ symmetric matrix and *I* the $d \times d$ identity matrix.

Let us write

$$
\det(tI - X) = \sum_{k=0}^{d} (-1)^k p_k t^{d-k}
$$

for suitable polynomials p_k of degree k $(p_1 = \text{tr}(X), p_d = \text{det}(X))$.

It suffices to prove that the hyperbolicity cone of $D_f^k(\det X)$ is spectrahedral where X is the generic $d \times d$ symmetric matrix and *I* the $d \times d$ identity matrix.

Let us write

$$
\det(tI - X) = \sum_{k=0}^{d} (-1)^k p_k t^{d-k}
$$

for suitable polynomials p_k of degree k $(p_1 = \text{tr}(X), p_d = \text{det}(X))$.

$$
\blacktriangleright \ \ p_k = \frac{1}{(d-k)!} \mathcal{D}_l^{d-k}(\det X).
$$

It suffices to prove that the hyperbolicity cone of $D_f^k(\det X)$ is spectrahedral where X is the generic $d \times d$ symmetric matrix and *I* the $d \times d$ identity matrix.

Let us write

$$
\det(tI - X) = \sum_{k=0}^{d} (-1)^k p_k t^{d-k}
$$

for suitable polynomials p_k of degree k $(p_1 = \text{tr}(X), p_d = \text{det}(X))$.

$$
\blacktriangleright \ \ p_k = \frac{1}{(d-k)!} \mathcal{D}_l^{d-k}(\det X).
$$

 \blacktriangleright $p_k = \sigma_{k,d}(\lambda(X))$ where $\sigma_{k,d}$ is the elementary symmetric polynomial of degree k in d variables and $\lambda(X)$ the vector of eigenvalues of X.

マーロー マニューマニュー

$$
H: \mathrm{Sym}_2(\mathbb{R}^d) \to \mathbb{R}, X \mapsto h(\lambda(X))
$$

where $\lambda(X)$ is the vector of eigenvalues of X.

A + + = + + = +

$$
H: \mathrm{Sym}_2(\mathbb{R}^d) \to \mathbb{R}, X \mapsto h(\lambda(X))
$$

where $\lambda(X)$ is the vector of eigenvalues of X.

a) H is a polynomial.

A + + = + + = +

$$
H: \mathrm{Sym}_2(\mathbb{R}^d) \to \mathbb{R}, X \mapsto h(\lambda(X))
$$

where $\lambda(X)$ is the vector of eigenvalues of X.

- a) H is a polynomial.
- b) H is hyperbolic with respect to I .

A + + = + + = +

$$
H: \mathrm{Sym}_2(\mathbb{R}^d) \to \mathbb{R}, X \mapsto h(\lambda(X))
$$

where $\lambda(X)$ is the vector of eigenvalues of X.

- a) H is a polynomial.
- b) H is hyperbolic with respect to I .
- c) $C(H, I) = \{X : \lambda(X) \in C(h, e)\}.$

A + + = + + = +

Corollary

A symmetric $d \times d$ matrix A is in the hyperbolicity cone of D^{d-k}_{l} $I^{\sigma-\kappa}_I(\det X)$ if and only if its spectrum $\lambda(A)$ is in the hyperbolicity cone of the elementary symmetric polynomial $\sigma_{k,d}$.

 Ω

a Basa Ba

Corollary

A symmetric $d \times d$ matrix A is in the hyperbolicity cone of D^{d-k}_{l} $I^{\sigma-\kappa}_I(\det X)$ if and only if its spectrum $\lambda(A)$ is in the hyperbolicity cone of the elementary symmetric polynomial $\sigma_{k,d}$.

 \triangleright Using this and a spectrahedral representation of the hyperbolicity cone of $\sigma_{d-1,d}$ due to Sanyal, Saunderson proved that the hyperbolicity cone of $\mathrm{D}^1_I(\det X)$ is spectrahedral.

桐 トラ ミュ エト

Corollary

A symmetric $d \times d$ matrix A is in the hyperbolicity cone of D^{d-k}_{l} $I^{\sigma-\kappa}_I(\det X)$ if and only if its spectrum $\lambda(A)$ is in the hyperbolicity cone of the elementary symmetric polynomial σ_{kd} .

- \triangleright Using this and a spectrahedral representation of the hyperbolicity cone of $\sigma_{d-1,d}$ due to Sanyal, Saunderson proved that the hyperbolicity cone of $\mathrm{D}^1_I(\det X)$ is spectrahedral.
- \triangleright Brändén constructed a spectrahedral representation of the hyperbolicity cone of $\sigma_{k,d}$ for all k.

A + + = + + = +

Question Let $S \subset \mathbb{R}^n$ be a spectrahedral cone which is symmetric under permuting the coordinates. Is the spectral convex set

$$
\Lambda(S) = \{A \in \text{Sym}_2(\mathbb{R}^n) : \lambda(A) \in S\}
$$

also spectrahedral?

 $2Q$

 \rightarrow \equiv \rightarrow

Question Let $S \subset \mathbb{R}^n$ be a spectrahedral cone which is symmetric under permuting the coordinates. Is the spectral convex set

$$
\Lambda(S) = \{A \in \mathrm{Sym}_2(\mathbb{R}^n) : \lambda(A) \in S\}
$$

also spectrahedral?

 \triangleright $\Lambda(S)$ is a hyperbolicity cone. (Bauschke–Güler–Lewis–Sendov)

 Ω

4 E 3 4 E 3

Question Let $S \subset \mathbb{R}^n$ be a spectrahedral cone which is symmetric under permuting the coordinates. Is the spectral convex set

$$
\Lambda(S) = \{A \in \mathrm{Sym}_2(\mathbb{R}^n) : \lambda(A) \in S\}
$$

also spectrahedral?

- \triangleright $\Lambda(S)$ is a hyperbolicity cone. (Bauschke–Güler–Lewis–Sendov)
- \triangleright Yes, if S is a polyhedral cone. (Sanyal–Saunderson)

医骨盆 医骨盆

Definition

A representation of \mathfrak{S}_n is *short* if it consists only of such irreducible representations that correspond to partitions of length at most 2.

a mara a mara

Definition

A representation of \mathfrak{S}_n is *short* if it consists only of such irreducible representations that correspond to partitions of length at most 2.

Example

Let $\text{Ma}_{d,n} \subset \mathbb{R}[x_1,\ldots,x_n]$ be the vector space of all homogeneous multiaffine polynomials of degree d. Then $\text{Ma}_{d,n}$ is a short representation:

$$
\blacktriangleright \text{Ma}_{d,n} = \text{Ind}_{\mathfrak{S}_d \times \mathfrak{S}_{n-d}}^{\mathfrak{S}_n}(\text{Trv})
$$

$$
\blacktriangleright
$$
 Young's rule:
$$
Ma_{d,n} = \bigoplus_{i=0}^{\min(d,n-d)} V_{n-i,i}
$$

 $\epsilon = 1$ ia ⊞is

Theorem

Let V be a short representation of \mathfrak{S}_n and $\varphi : \mathbb{R}^n \to \mathrm{Sym}_2(V)$ an \mathfrak{S}_n -linear map. Let $S \subset \mathbb{R}^n$ be the preimage of the positive semidefinite cone in $\mathrm{Sym}_2(V)$ under φ . Then $\mathsf{\Lambda}(S) \subset \mathrm{Sym}_2(\mathbb{R}^n)$ is a spectrahedral cone.

Theorem

Let V be a short representation of \mathfrak{S}_n and $\varphi : \mathbb{R}^n \to \mathrm{Sym}_2(V)$ an \mathfrak{S}_n -linear map. Let $S \subset \mathbb{R}^n$ be the preimage of the positive semidefinite cone in $\mathrm{Sym}_2(V)$ under φ . Then $\mathsf{\Lambda}(S) \subset \mathrm{Sym}_2(\mathbb{R}^n)$ is a spectrahedral cone.

Corollary

The hyperbolicity cone of $D_f^k(\det A(x))$ spectrahedral.

 \triangleright For any fixed k, the size of this spectrahedral representation is $\mathcal{O}(n^{2 \cdot (\min(k,n-k)+1)})$ when the size n of $A(x)$ grows.

A + + = + + = +

Theorem Let V be a short representation of \mathfrak{S}_n and

$$
\varphi:\mathbb{R}^n\to\mathrm{Sym}_2(V)
$$

an \mathfrak{S}_n -linear map. Then there is a representation W of $O(n)$ and an $O(n)$ -linear map map

$$
\Phi:\mathrm{Sym}_2(\mathbb{R}^n)\to\mathrm{Sym}_2(W)
$$

such that $\Phi(A)$ is positive semidefinite if and only $\varphi(\lambda(A))$ is positive semidefinite.

→ <唐> <唐>

A BANDA

Let $\text{Min}_{d,n}$ the vector space spanned by the $d \times d$ minors of the generic symmetric $n \times n$ matrix.

桐 トラ ミュ エト

Let $\text{Min}_{d,n}$ the vector space spanned by the $d \times d$ minors of the generic symmetric $n \times n$ matrix. Then:

 \blacktriangleright The decomposition of the O(n)-module $\text{Min}_{d,n}$ into irreducibles is $\operatorname{Min}_{d,n} = \oplus_{i=0}^{d} E^{(i,i)'}$.

A + + = + + = +

Let $\text{Min}_{d,n}$ the vector space spanned by the $d \times d$ minors of the generic symmetric $n \times n$ matrix. Then:

- \blacktriangleright The decomposition of the $O(n)$ -module $\text{Min}_{d,n}$ into irreducibles is $\operatorname{Min}_{d,n} = \oplus_{i=0}^{d} E^{(i,i)'}$.
- ► Here $E^{(i,i)'} = \text{ker}(\mathbf{D}_I^{d-i+1})$ $I^{d-i+1}) \cap \mathsf{ker}(\mathrm{D}_I^{d-i})$ $j^{d-j})^{\perp}.$

A + + = + + = +

Let $\text{Min}_{d,n}$ the vector space spanned by the $d \times d$ minors of the generic symmetric $n \times n$ matrix. Then:

- \blacktriangleright The decomposition of the $O(n)$ -module $\text{Min}_{d,n}$ into irreducibles is $\operatorname{Min}_{d,n} = \oplus_{i=0}^{d} E^{(i,i)'}$.
- ► Here $E^{(i,i)'} = \text{ker}(\mathbf{D}_I^{d-i+1})$ $I^{d-i+1}) \cap \mathsf{ker}(\mathrm{D}_I^{d-i})$ $j^{d-j})^{\perp}.$

To obtain W replace each $V_{n-i,i}$ in V by $E^{(i,i)'}$.

A + + = + + = +

Let V be a short representation and $V=V^1\oplus\cdots\oplus V^r$ its decomposition into irreducibles. What are the \mathfrak{S}_n -linear maps $\varphi : \mathbb{R}^n \to \text{Sym}_2(V)$?

 $2Q$

a Bara Ba

Let V be a short representation and $V=V^1\oplus\cdots\oplus V^r$ its decomposition into irreducibles. What are the \mathfrak{S}_n -linear maps $\varphi : \mathbb{R}^n \to \text{Sym}_2(V)$?

 V ¹ V 2 · · · V ¹ Sym² (V 1) Hom(V 2 , V 1) · · · V ² Hom(V 2 , V 1) Sym² (V 2) · · ·

 $2Q$

a Bara Ba

Let V be a short representation and $V=V^1\oplus\cdots\oplus V^r$ its decomposition into irreducibles. What are the \mathfrak{S}_n -linear maps $\varphi : \mathbb{R}^n \to \text{Sym}_2(V)$?

$$
\begin{array}{ccc}\nV^1 & V^2 & \cdots \\
V^1 & \text{Sym}_2(V^1) & \text{Hom}(V^2, V^1) & \cdots \\
V^2 & \text{Hom}(V^2, V^1) & \text{Sym}_2(V^2) & \cdots \\
\vdots & \vdots & \vdots & \ddots\n\end{array}
$$

Have to understand \mathfrak{S}_n -linear maps:

 $\blacktriangleright \mathbb{R}^n \to \mathrm{Sym}_2(V^i)$ $\blacktriangleright \ \mathbb{R}^n \to \text{Hom}(V^i, V^j)$

医单位 医骨盆

Lemma Let $0 \le 2d < 2d' \le n$. There is a nonzero \mathfrak{S}_n -linear map $\mathbb{R}^n \to \mathrm{Hom}(\mathcal{V}_{n-d',d'}, \mathcal{V}_{n-d,d})$ if and only if $d'=d+1$. In that case it is unique up to a scalar factor and given by $a \mapsto D_{a}$.

Lemma Let $0 \le 2d < 2d' \le n$. There is a nonzero \mathfrak{S}_n -linear map $\mathbb{R}^n \to \mathrm{Hom}(\mathcal{V}_{n-d',d'}, \mathcal{V}_{n-d,d})$ if and only if $d'=d+1$. In that case it is unique up to a scalar factor and given by $a \mapsto D_{a}$.

 \blacktriangleright The corresponding $O(n)$ -linear map $\mathrm{Sym}_2(\mathbb{R}^n)\rightarrow \mathrm{Hom}(E^{(d^i,d')'},E^{(d,d)'})$ is then just $A\mapsto \mathrm{D}_A.$

桐 トラ ミュ エト

Lemma Let $0 \le 2d < 2d' \le n$. There is a nonzero \mathfrak{S}_n -linear map $\mathbb{R}^n \to \mathrm{Hom}(\mathcal{V}_{n-d',d'}, \mathcal{V}_{n-d,d})$ if and only if $d'=d+1$. In that case it is unique up to a scalar factor and given by $a \mapsto D_{a}$.

- \blacktriangleright The corresponding $O(n)$ -linear map $\mathrm{Sym}_2(\mathbb{R}^n)\rightarrow \mathrm{Hom}(E^{(d^i,d')'},E^{(d,d)'})$ is then just $A\mapsto \mathrm{D}_A.$
- ► Similar procedure for $\mathbb{R}^n \to \text{Sym}_2(V_{n-d,d})$.

A + + = + + = +

Theorem Let V be a short representation of \mathfrak{S}_n and

$$
\varphi:\mathbb{R}^n\to\mathrm{Sym}_2(V)
$$

an \mathfrak{S}_n -linear map. Then there is a representation W of $O(n)$ and an $O(n)$ -linear map map

$$
\Phi:\mathrm{Sym}_2(\mathbb{R}^n)\to\mathrm{Sym}_2(W)
$$

such that $\Phi(A)$ is positive semidefinite if and only $\varphi(\lambda(A))$ is positive semidefinite.

→ ス重 → ス重 →

メロメ メタメ メミメ メミメン 差し

 299