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. Simulation: Basic Terminology
Simulation:
» Generate trajectories of a dynamical system

Tn+1 ::9($n)

or
d

—x(t) = ple(t
Za(t) = p(e (1)
Stochastic Simulation:

» Generate trajectories of a (stochastic) dynamical system

}(n+l ::g()(na£n+1)

or
d

SX(t) = u(X (1) + €0
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Il. Connection to Numerical Integration

Goal: Compute aw = E[W], where W = f(Xo, X1,..., X7)

Method:
» Generate n iid replications Wy, Ws, ... . W, of W

» Estimate « via .
1
o =~ 2; Wi
1=
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Note that if

Xiy1 = Q(Xn&'ﬂ)
S/t XU =X

then

= » f(zl, ceey 2d) H hi(zi)dz;

=1
Such an expectation can be expressed as a d-dimensional integral

Typically, with d large
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Conversely, if
a:/ q(z1,...,29)dz1 .. .dzq
Rd

q(z1, .., 2q)
= ———— | | (=) da,
re [1 hi(z) 111
q<Z17 ) Zd)
1, hi(Z)

Every d-dimensional integral can be represented as an expectation
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Using sampling-based methods to compute (higher dimensional) integrals is
known as the Monte Carlo method

Stochastic Simulation <= Monte Carlo Method
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I1l. The Monte Carlo Method

Goal: Compute o = E[W]

Method:
» Generate n iid replications Wy, Ws, ..., W,, of W
» Form

— 1
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I1l. The Monte Carlo Method

Goal: Compute oo = E[W]

Method:
» Generate n iid replications Wy, Ws, ..., W,, of W
» Form

— 1
o =W, = Z_; Wi
Proof of validity: Law of Large Numbers (LLN)
Q, — Q
as n — 00
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Convergence rate analysis:
w

l
Central Limit Theorem (CLT): If 6% = Var() < oo, then
Vn(a, —a) = oN(0,1)

as n — o0

Informally,

S

an%a—l-iN(O,l)
n

&I
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Convergence rate analysis:

\/Jl

Central Limit Theorem (CLT): If % = Var(#3) < oo, then
Vn(a, —a) = oN(0,1)

asn — 0o
Informally,
D o
a, ~a+ —=N(0,1)
vn
Implications:

» Slow convergence rate
» Problem hardness characterized by a single constant o
» Slow convergence rate suggests error assessment is important
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Error assessment via asymptotically valid confidence intervals

P(ae {an—za oy + 22— }>—>1—

where z is selected to that P(—z < N(0,1) < z)=1-—
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Error assessment via asymptotically valid confidence intervals

P(ae {an—za oy + 22— }>—>1—

where z is selected to that P(—z < N(0,1) < z)=1-—

o2 is unknown but can be estimated (internally, from the sample) via

n—1
=1

SO,
a, — Sn
" Z\/ﬁ’

is an approximate 100(1 — «)% ClI
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Asymptotic Validity vs Hard Error Bounds
Asymptotic validity:
> If 02 = Var(Z1) < oo, then

Sn ‘STL
P n 9 n 1_
(ae[a Zfa —|—z\/ﬁ}>—> )

as n — o0

» No guarantee for fixed n
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Asymptotic Validity vs Hard Error Bounds
Asymptotic validity: .~
> If 0% = Var(4{) < oo, then

S?’l ‘STL
P n 9 n 1_
(ae[a zfa —|—z\/ﬁ}>—> )

as n — o0

» No guarantee for fixed n
Hard error bounds:

» Chebyshev's inequality:

P(ae [an—\;ﬁ,anJr\;ﬁDzu i

if P(|[W| <¢) =1, so we have a hard error bound

mw‘ Q
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Asymptotic Validity vs Hard Error Bounds
Asymptotic validity:
> If o2 = Var(Z1) < oo, then

Sn Sn
P n =~ —yWUn — 1—
(ae[a z\/ﬁa +z\/ﬁ}>—> 1)

asn — oo
» No guarantee for fixed n
Hard error bounds:

» Chebyshev's inequality:

Plac|an——,an+—|)>1-
n ﬁ’ n \/ﬁ -
if P(|[W| <¢) =1, so we have a hard error bound

The great majority of Monte Carlo theory focuses on asymptotic validity (using limit
theorems)

2

mw‘ Q

11/23



IV. Dimensional Insensitivity for Monte Carlo

Goal: Compute
A

o(f) = B [ftn,.... U] 2 E[w (D]

where the U;'s are iid uniform on [0, 1]
» For any (weighted) integration rule, it is known that

a(f) = a(f)| =0 (/Y

sup
fecr (k)

as ¢ — o0

“curse of dimensionality”
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> Put a,(f) =n"" >0, Wi(f)
> Chebyshev implies that if | f| < k, then
~ ~ € k?
ol = al|> ==) <5

P( VG

» For a given computational budget ¢, n ~ ¢/d.

So,
P ( ao(F) ~ a(F)| > \/§> <&

» “Dimensional insensitivity”
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V. Quasi-Random Sequences

» These are deterministic sequences uy, us, ... in [0, 1]¢ that are

“equidistributed” :
ol
n

sup
a€l0,1]d

nZI Hai

» This implies that

ﬁZ?(ui)_aUC)

n
‘ : {
=1

if f has finite Hardy-Krause variation

» Can be very effective at integration in moderate d settings
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VI. Output Analysis

Suppose we have a simulation-based algorithm for computing «

How long do we need to run the simulation to get a required accuracy?

l

Output Analysis
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Setting 1: IID Replications

Goal: Compute oo = E[W]

Method: Generate iid copies W4, ..., W, and estimate via a,, = W,

Two types of procedures:

» Fixed sample size:
Choose n and construct confidence interval of unknown size

» Sequential procedures:

Choose error tolerance ¢ and generate samples until confidence interval

is of required size

» Chow-Robbins (1965)
» G-Whitt (1992)
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Setting 2: Smooth Functions of Expectations

» Goal: Compute a = g(E[Z])

» Estimator: a,, = g(Z,,)
» Central Limit Theorem:

an — o = Vg(E[Z)) (Z, — E|Z]) + op(n~"/?)

1/2 .
o =) v 1)

Sn

as n — oo, where s2 = 02 and 0® = Var(Vy(E|[Z])(Z — E[Z]))
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Application

Goal: Compute

a=EFE, Z e&"r(Xz)]
=0
Note that
7(z)—1 C c
a=F, e ¥r(X;)| +E [6_@”—(35)} a
=0
So,

1—E,[e-o@)]
where g(z1, 22) = 21 /(1 — 29)
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Setting 3: Steady-State Simulation

» Markov chain X = (X, : n > 0) with unique equilibrium distribution 7(-)
» Goal: Compute

o= /Sr(x)ﬂ(dx) (= Elr(X)))

Estimator:
=
an =~ ; r(X;)
n'?(a, —a) = oN(0,1)
where

o2 = Var(r(Xy)) + 2 Z Covy ((Xo), r(Xj))

j=1
The time-average variance constant (TAVC) o2 is 27 f(0), where f(-) is the
spectral density of X
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There are many simulation settings in which the variance is difficult to estimate:
» Smooth functions of expectations

Steady-state simulation

>
» Stochastic gradient descent
» Quantiles

>

etc.
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VII: Replication

There are many simulation settings in which the variance is difficult to estimate:
» Goal: Compute «
» Algorithm: An estimator «,,

» A limit theorem:
an(an, —a) = oN(0,1)

Now, repeat the algorithm m iid times (m “replications”): al a2, ... o™

» Note that 5
a;, = N(a,0°/a})

» m approximately normal rv's with unknown mean and unknown variance

» Confidence interval: Student-t with m — 1 degrees of freedom
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VII: Sub-Sampling
Suppose that we wish to compute « using a Monte Carlo algorithm «, for which
n*(a, —a) =W
where W is a continuous rv. (It can be non-Gaussian and include “nuisance
parameters”)
> If m<n, D D
m®(ay, —a) = m(ay, —a,) = W
» So, construct multiple sub-samples of size m from our n-sample, and use
empirical of

m®(al — ay,), 1<i<r

to estimate w;, wsy such that
Plw <W <wy)=1-9§
P(ae [an—%,an—ﬂ]) ~1—90
n

a n(l

» Then,
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IX: Output Analysis in Parallel Computing Context

» Goal: Compute o = E[W]

» p parallel processors available

» ¢ units of compute time

» Run simulations independently on each processor

o Zj\f:z(f)m
W ="No
> Biased estimator
RN D — n
- Wilc)= E|W(c)| + —=N(0,1
p; (c) (W ()] Nz (0,1)

Bias can dominate if p is large
G + Heidelberger (1990's)
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