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I. Simulation: Basic Terminology
Simulation:
I Generate trajectories of a dynamical system

xn+1 = g(xn)

or
d

dt
x(t) = µ(x(t))

Stochastic Simulation:
I Generate trajectories of a (stochastic) dynamical system

Xn+1 = g(Xn, ⇠n+1)

or
d

dt
X(t) = µ(X(t)) + ⇠(t)
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II. Connection to Numerical Integration

Goal: Compute ↵ = E[W ], where W = f(X0, X1, . . . , XT )

Method:

I Generate n iid replications W1,W2, . . . ,Wn of W

I Estimate ↵ via

↵n =
1

n

nX

i=1

Wi
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Note that if

Xi+1 = g(Xi, ⇠i+1)

s/t X0 = x

then

↵ = E[W ]

= E [f(X0, X1, . . . , Xd)]

= E

h
ef(Z1, . . . , Zd)

i

=

Z

Rd

ef(z1, . . . , zd)
dY

i=1

hi(zi)dzi

Such an expectation can be expressed as a d-dimensional integral

Typically, with d large
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Conversely, if

↵ =

Z

Rd

q(z1, . . . , zd)dz1 . . . dzd

=

Z

Rd

q(z1, . . . , zd)Qd
i=1 hi(zi)

dY

i=1

hi(zi)

= E

"
q(Z1, . . . , Zd)Qd

i=1 hi(Zi)

#

Every d-dimensional integral can be represented as an expectation
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Using sampling-based methods to compute (higher dimensional) integrals is
known as the Monte Carlo method

Stochastic Simulation () Monte Carlo Method
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III. The Monte Carlo Method

Goal: Compute ↵ = E[W ]

Method:

I Generate n iid replications W1,W2, . . . ,Wn of W

I Form

↵n = W n =
1

n

nX

i=1

Wi

Proof of validity: Law of Large Numbers (LLN)

↵n
a.s.! ↵

as n ! 1
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Convergence rate analysis:

Central Limit Theorem (CLT): If �2 = Var(Z1) < 1, then
p
n(↵n � ↵) ) �N(0, 1)

as n ! 1

Informally,

↵n
D⇡ ↵ +

�p
n
N(0, 1)

Implications:
I Slow convergence rate
I Problem hardness characterized by a single constant �
I Slow convergence rate suggests error assessment is important
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Error assessment via asymptotically valid confidence intervals

P

✓
↵ 2


↵n � z

�p
n
,↵n + z

�p
n

�◆
! 1� �

where z is selected to that P (�z  N(0, 1)  z) = 1� �

�
2 is unknown but can be estimated (internally, from the sample) via

s
2
n =

1

n� 1

nX

i=1

�
Wi �W n

�2

So, 
↵n � z

snp
n
,↵n + z

snp
n

�

is an approximate 100(1� ↵)% CI
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Asymptotic Validity vs Hard Error Bounds
Asymptotic validity:

I If �2 = Var(Z1) < 1, then

P

✓
↵ 2


↵n � z

snp
n
,↵n + z

snp
n

�◆
! 1� �

as n ! 1

I No guarantee for fixed n

Hard error bounds:

I Chebyshev’s inequality:

P

✓
↵ 2


↵n � ✏p

n
,↵n +

✏p
n

�◆
� 1� c2

✏2

if P (|W |  c) = 1, so we have a hard error bound

The great majority of Monte Carlo theory focuses on asymptotic validity (using limit

theorems)
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IV. Dimensional Insensitivity for Monte Carlo

Goal: Compute

↵( ef) = E

h
ef(U1, . . . , Ud)

i
�
= E

h
W ( ef)

i

where the Ui’s are iid uniform on [0, 1]

I For any (weighted) integration rule, it is known that

sup
ef2Cr(k)

���↵c( ef)� ↵( ef)
��� = O

�
c
�r/d

�

as c ! 1

“curse of dimensionality”
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I Put ↵n( ef) = n
�1
Pn

i=1 Wi( ef)
I Chebyshev implies that if | ef |  k, then

P

✓���↵n( ef)� ↵( ef)
��� >

✏p
n

◆
 k

2

✏2

I For a given computational budget c, n ⇡ c/d.
So,

P

 ���↵c( ef)� ↵( ef)
��� > ✏

r
d

c

!
 k

2

✏2

I “Dimensional insensitivity”
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V. Quasi-Random Sequences

I These are deterministic sequences u1, u2, . . . in [0, 1]d that are
“equidistributed”:

sup
a2[0,1]d

�����
1

n

nX

i=1

I(ui  a)�
dY

i=1

ai

����� = O

✓
(log n)d

n

◆

I This implies that
�����
1

n

nX

i=1

ef(ui)� ↵( ef)

����� = O

✓
(log n)d

n

◆

if f has finite Hardy-Krause variation

I Can be very e↵ective at integration in moderate d settings
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VI. Output Analysis

Suppose we have a simulation-based algorithm for computing ↵

How long do we need to run the simulation to get a required accuracy?

?y

Output Analysis
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Setting 1: IID Replications

Goal: Compute ↵ = E[W ]

Method: Generate iid copies W1, . . . ,Wn and estimate via ↵n = W n

Two types of procedures:

I Fixed sample size:
Choose n and construct confidence interval of unknown size

I Sequential procedures:
Choose error tolerance ✏ and generate samples until confidence interval
is of required size
I Chow-Robbins (1965)

I G-Whitt (1992)
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Setting 2: Smooth Functions of Expectations

I Goal: Compute ↵ = g(E[Z])

I Estimator: ↵n = g(Zn)

I Central Limit Theorem:

↵n � ↵ = rg(E[Z])
�
Zn � E[Z]

�
+ oP (n

�1/2)

n
1/2(↵n � ↵)

sn
) N(0, 1)

as n ! 1, where s
2
n ) �

2 and �
2 = Var(rg(E[Z])(Z � E[Z]))
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Application

Goal: Compute

↵ = Ex

" 1X

i=0

e
�↵i

r(Xi)

#

Note that

↵ = Ex

2

4
⌧(x)�1X

i=0

e
�↵i

r(Xi)

3

5+ Ex

⇥
e
�↵⌧(x)

⇤
· ↵

So,

↵ =
Ex

hP⌧(x)�1
i=0 e

�↵i
r(Xi)

i

1� Ex [e�↵⌧(x)]
= g(E[Z]),

where g(z1, z2) = z1/(1� z2)
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Setting 3: Steady-State Simulation
I Markov chain X = (Xn : n � 0) with unique equilibrium distribution ⇡(·)
I Goal: Compute

↵ =

Z

S

r(x)⇡(dx) (= E[r(X1)])

Estimator:

↵n =
1

n

n�1X

i=0

r(Xi)

n
1/2(↵n � ↵) ) �N(0, 1)

where

�
2 = Var⇡(r(X0)) + 2

1X

j=1

Cov⇡ (r(X0), r(Xj))

The time-average variance constant (TAVC) �2 is 2⇡f(0), where f(·) is the
spectral density of X
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There are many simulation settings in which the variance is di�cult to estimate:

I Smooth functions of expectations

I Steady-state simulation

I Stochastic gradient descent

I Quantiles

I etc.
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VII: Replication

There are many simulation settings in which the variance is di�cult to estimate:

I Goal: Compute ↵

I Algorithm: An estimator ↵n

I A limit theorem:
an(↵n � ↵) ) �N(0, 1)

Now, repeat the algorithm m iid times (m “replications”): ↵1
n,↵

2
n, . . . ,↵

m
n

I Note that
↵
i
n

D⇡ N(↵, �2
/a

2
n)

I m approximately normal rv’s with unknown mean and unknown variance

I Confidence interval: Student-t with m� 1 degrees of freedom
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VIII: Sub-Sampling
Suppose that we wish to compute ↵ using a Monte Carlo algorithm ↵n for which

n
a(↵n � ↵) ) W

where W is a continuous rv. (It can be non-Gaussian and include “nuisance
parameters”)
I If m ⌧ n,

m
a(↵m � ↵)

D⇡ m
a(↵m � ↵n)

D⇡ W

I So, construct multiple sub-samples of size m from our n-sample, and use
empirical of

m
a(↵i

m � ↵n), 1  i  r

to estimate w1, w2 such that

P (w1  W  w2) ⇡ 1� �

I Then,
P

⇣
↵ 2

h
↵n �

w2

na
,↵n �

w1

na

i⌘
⇡ 1� �
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IX: Output Analysis in Parallel Computing Context
I Goal: Compute ↵ = E[W ]
I p parallel processors available
I c units of compute time
I Run simulations independently on each processor

W i(c) =

PNi(c)
j=1 Wij

Ni(c)

I Biased estimator

1

p

pX

i=1

W i(c)
D⇡ E

⇥
W (c)

⇤
+

⌘
p
pc

N(0, 1)

Bias can dominate if p is large
G + Heidelberger (1990’s)
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