
Online Learning in MDPs
Part 1

Ambuj Tewari

Department of Statistics, and
Department of EECS (by courtesy),
University of Michigan, Ann Arbor

RL20 Boot Camp
September 1, 2020



Outline

1 Introduction

2 UCRL2 Algorithm

3 UCRL2 Analysis

4 Discussion



Outline

1 Introduction

2 UCRL2 Algorithm

3 UCRL2 Analysis

4 Discussion



Introduction

Origins of RL

Minsky first used the term “Reinforcement Learning” [Min61]

Waltz and Fu independently used the term a few years later [WF65]

Earliest ML research viewed as directly relevant now Samuel’s checker
playing program 1959

Not much activity in 1970s

Modern field of RL created in the late 1980s
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Introduction

Beginnings of Regret Analysis

Progress continued into the 1990s

Sutton & Barto 1st edition 1998
Kaelbling, Littman, Moore 1996 survey [KLM96]
“Unfortunately, results concerning the regret of algorithms are quite
hard to obtain”

Sample complexity concerns arose in the early 2000s

E 3 [KS02] and R-MAX [BT02]
Sham Kakade’s thesis 2003 [Kak03]

UCRL2 paper [JOA10] kicks off regret analysis in MDPs
(conference version in NIPS 2008)
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Introduction

Online Learning and Regret

In online learning, an agent learns from sequential interaction with an
environment (often an MDP)

Experience arrives bit by bit
No separation between learning phase and evaluation phase

Explore-Exploit trade-off: learning vs earning, estimation vs control

Regret measures the difference between:

some benchmark/competitor/yardstick (typically known only in
hindsight), and
the agent’s actual performance

This part (Part 1) deals with the fixed MDP case

Part 2 will deal with changing MDPs, potentially chosen adversarially
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Introduction

The Hare and the Tortoise

“If the inference/algorithm race is a tortoise-and-hare affair, then modern
electronic computation has bred a bionic hare.”

– Efron & Hastie, Computer Age Statistical Inference

Deep RL has taken off in the past 5-6 years

Google Scholar lists 16,600 papers during 2011-2020 with RL in the
title (for 2001-2010 it’s 6,400)

Sutton & Barto 2nd edition 2018 (“twice as large as the first”)

The “theory tortoise” has lots to catch up

Hope that the RL20 program will breed a faster tortoise!
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Introduction

E 3 (Explicit Explore or Exploit) algorithm

Makes a distinction between known and unknown based on visitation
counts

In unknown state: take least tried action

Maintain a partial model: this will be good on the known states

In a known state: perform two calculations

attempted exploitation: is there a high return policy based on the
partial model?
attempted exploration: is there a policy with non-trivial probability of
leaving the known states fast?

Analysis hinges on two key lemmas

Simulation Lemma: Values of a policy in actual MDP restricted to the
known states and in partial model are close
Explore or Exploit Lemma: At least one of the attempted calculations
will succeed
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Introduction

R-MAX

Retains the distinction between known and unknown states

But simplifies the algorithm with implicit explore-exploit

Uses OFU (Optimism in the Face of Uncertainty) principle

Unknown states are given maximum reward (R-MAX!) with self-loops

Analysis covers not just MDPs but also (2-player, fixed sum)
stochastic games
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Introduction

OFU Principle

Appears under “Ad-hoc techniques” in [KLM96]

Sutton & Barto: “a simple trick that can be quite effective on
stationary problems”

Related ideas in adaptive control:

cost-biased estimation [CK98]
bet-on-the-best principle [BC06]

The R-MAX paper provided theoretical justification for the OFU
principle
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Introduction

E 3, R-MAX and UCRL2

K/U = Known/Unknown state distinction
E/E = Explore/Exploit distinction

Explicit K/U Explicit E/E Explicit OFU

E 3 X X ×
R-MAX X × X
UCRL2 × × X
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UCRL2 Algorithm

High Level Description

Runs in episodes – these are used by the algorithm only

Actual experience is one long trajectory

s1, a1, r1, s2, a2, r2, . . . , sT , aT , rT

generated during interaction with a tabular MDP with S states, A
actions, reward function r(s, a) and transition function p(s ′|s, a)

In every episode:

Use collected statistics to create set of plausible MDPs
Pick most optimistic MDP from this set
Follow the optimal policy for this MDP until a stopping criterion is
satisfied
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UCRL2 Algorithm

Set of Plausible MDPs - I

Let tk be the start time for episode k

Visitation count for (s, a) pairs and (s, a, s ′) triples

Nk(s, a) = |{τ < tk : sτ = s, aτ = a}|

Nk(s, a, s ′) =
∣∣{τ < tk : sτ = s, aτ = a, sτ+1 = s ′

}∣∣
Accumulated reward for (s, a) pairs

Rk(s, a) =
∑
τ<tk

rτ1(sτ=s,aτ=a)

Reward and transition function estimates

r̂k(s, a) =
Rk(s, a)

1 ∨ Nk(s, a)
p̂k(s ′|s, a) =

Nk(s, a, s ′)

1 ∨ Nk(s, a)
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UCRL2 Algorithm

Set of Plausible MDPs - II

Mk consists of all MDPs with reward and transition functions close
to our estimates

∀s, a, |r(s, a)− r̂k(s, a)| ≤

√
log(SAtk/δ)

1 ∨ Nk(s, a)

∀s, a,
∥∥p(s ′|s, a)− p̂k(s ′|s, a)

∥∥
1
≤

√
S log(Atk/δ)

1 ∨ Nk(s, a)
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UCRL2 Algorithm

Optimism and Stopping Criterion

ρ?(M): optimal long term average reward obtainable in MDP M

Find optimistic MDP M̃k such that

M̃k := argmax
M∈Mk ,D(M)≤D

ρ?(M)

and let π̃k be an optimal policy for M̃k

Follow the policy π̃k until you reach a state st such that

vk(st , π̃k(st)) ≥ 1 ∨ Nk(st , π̃k(st))

vk(s, a) is the visitation count within episode k
(so Nk+1 = Nk + vk)
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UCRL2 Algorithm

Average Reward Criterion

The long term average reward

ρ(M, π, s) := lim sup
T→∞

1

T
EM,π

[
T∑
t=1

rt

∣∣∣∣∣s1 = s

]

Assume MDP is communicating, i.e., has finite diameter

D(M) := max
s 6=s′

min
π

EM,π[Ts′ |s1 = s]

where Ts′ = first time you visit s ′ (under π starting from s)

Then optimal reward ρ?(M) is well defined and independent of start
state

∀s, ρ?(M) = ρ?(M, s) := max
π
ρ(M, π, s)
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UCRL2 Algorithm

Bellman equation

The optimal policy π? with (state-independent) gain ρ? satisfies

∀s, ρ? + h?(s) = r(s, π?(s)) +
∑
s′

p(s ′|s, π?(s))h?(s ′)

The bias vector h? is not unique
(e.g., can shift it by a constant)

Relationship with diameter

span(h?) ≤ D

where span(h) = maxs h(s)−mins h(s)
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UCRL2 Analysis

Regret

T -step regret of algorithm A in M starting from s:

∆(M,A, s,T ) := ρ?(M) · T︸ ︷︷ ︸
benchmark performance

−
T∑
t=1

rt︸ ︷︷ ︸
A’s performance

With probability at least 1− δ, for any s and any T > 1,

∆(M,UCRL2, s,T ) ≤ 34 · DS
√
AT log(T/δ)

in any MDP with S states, A actions, and diameter D.
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UCRL2 Analysis

Reduction to Per Episode Regret

For simplicity assume deterministic reward r(s, a)

Per episode regret

∆k =
∑
s,a

vk(s, a)(ρ? − r(s, a))

Decompose regret over episodes

∆ =
m∑

k=1

∆k

Due to the stopping criterion for episodes, can show that
m = O(SA logT )
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UCRL2 Analysis

Failure of Confidence Regions

The set are chosen so that standard concentration arguments give

P (M /∈M(t)) ≤ δ

15t6

This can be used to show that w.h.p.

m∑
k=1

∆k1(M /∈Mk ) ≤
√
T
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UCRL2 Analysis

Using Optimism

Suppose our confidence regions are correct

∆k =
∑
s,a

vk(s, a)(ρ? − r(s, a))

≤
∑
s,a

vk(s, a)(ρ̃k − r(s, a))

Due to optimism, we know that ρ̃k ≥ ρ?

Bellman equation for π̃k

ρ̃k1 + h̃k = r̃k + P̃k h̃k

where

r̃k(s) = r̃k(s, π̃k(s)) P̃k(s, s ′) = p̃k(s ′|s, π̃k(s))
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UCRL2 Analysis

Isolating the Dominant Term

∆k ≤
∑
s,a

vk(s, a)(ρ̃k − r(s, a))

=
∑
s,a

vk(s, a)(ρ̃k − r̃k(s, a))︸ ︷︷ ︸
dominant contribution to regret

+
∑
s,a

vk(s, a)(r̃(s, a)− r(s, a))︸ ︷︷ ︸
essentially

vk (s,a)√
1∨Nk (s,a)

19



UCRL2 Analysis

Controlling the Dominant Term - I

∑
s,a

vk(s, a)(ρ̃k − r̃k(s, a))

=
∑
s

vk(s, π̃k(s))(ρ̃k − r̃k(s, π̃k(s))

= v>k (ρ̃k1− r̃k)

= v>k (P̃k − I)h̃k recall Bellman equation below

Bellman equation:
ρ̃k1 + h̃k = r̃k + P̃k h̃k
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UCRL2 Analysis

Controlling the Dominant Term - II

Transition kernel of π̃k in the true MDP:

Pk(s, s ′) = p(s ′|s, π̃k(s))

v>k (P̃k − I)h̃k

= v>k (P̃k − Pk)h̃k + vk(Pk − I)︸ ︷︷ ︸
would be zero for SD of π̃k

h̃k

≤ v>k (P̃k − Pk)h̃k︸ ︷︷ ︸
P̃k ,Pk are close

+ martingale diff. seq. + D︸ ︷︷ ︸
overall contribution Õ(D

√
T )+mD
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UCRL2 Analysis

Controlling the Dominant Term - III

v>k (P̃k − Pk)h̃k

=
∑
s

∑
s′

vk(s, π̃k(s)) · (p̃k(s ′|s, π̃k(s))− pk(s ′|s, π̃k(s)) · h̃k(s ′)

=
∑
s

vk(s, π̃k(s))
∑
s′

(p̃k(s ′|s, π̃k(s))− pk(s ′|s, π̃k(s)) · h̃k(s ′)

=
∑
s

vk(s, π̃k(s)) · ‖p̃k(·|s, π̃k(s))− pk(·|s, π̃k(s))‖1 · ‖h̃k‖∞

≤
∑
s

vk(s, π̃k(s)) ·

√
S log(Atk/δ)

1 ∨ Nk(s, π̃k(s))
· D

≤ D
√
S log(AT/δ)

∑
s,a

vk(s, a)√
1 ∨ Nk(s, a)︸ ︷︷ ︸

overall contribution
√
SAT

= O
(
DS
√

AT log(T/δ)
)
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UCRL2 Analysis

Why
√
SAT?

m∑
k=1

∑
s,a

vk(s, a)√
1 ∨ Nk(s, a)

=
∑
s,a

m∑
k=1

vk(s, a)√
1 ∨ Nk(s, a)

≤
∑
s,a

3
√
N(s, a) fact below & vk ≤ Nk

≤ 3
√
SA

√∑
s,a

N(s, a) concavity of square-root

= 3
√
SAT

Fact: For Zk = 1 ∨
∑k−1

i=1 zk and 0 ≤ zk ≤ Zk , we have

n∑
k=1

zk√
Zk
≤ 3
√
Zn+1
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Discussion

Tightness of the Bound

The UCRL2 paper [JOA10] also proved a lower bound

For any algorithm A, any S ,A ≥ 10, D ≥ 20 logA S and T ≥ DSA,
there is an MDP with S states, A actions, diameter D such that for
any s

E [∆(M,A, s,T )] ≥ 0.015 ·
√
DSAT

Gap of roughly
√
DS between upper and lower bounds

Recent preprint [TBD19] claims to eliminate the gap by analyzing an
improved algorithm called UCRL-V
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Discussion

Posterior Sampling

Also called Thompson Sampling because of [Tho33]

Tends to perform better than optimism based algorithms

Start with a prior distribution over MDPs

In every episode:

Use collected statistics to create a posterior distribution over MDPs
Sample an MDP from this posterior
Follow the optimal policy for this MDP until a stopping criterion is
satisfied
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Discussion

Regret Analysis of Posterior Sampling

It is easier to analyze Bayesian regret of posterior sampling

At the start of the episode

E [ρ̃k |H<k ] = E [ρ?|H<k ]

However, the length of episode k may not be measurable w.r.t. Hk

(see [OVR16] for explanation of this subtlety)

Redefining the stopping criterion in posterior sampling allows us to
prove Bayesian regret bounds [OGNJ17]

Frequentist aka worst-case regret analysis more difficult and still not
fully resolved in the non-episodic setting
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Discussion

Beyond UCRL2 - I

Other algorithmic ideas: Thompson Sampling, Injecting Random
Noise

Other optimality criteria: discounted infinite horizon, finite horizon

Model-free vs model-based: do we need to build an (approximate)
model of the environment?

Large/continuous state spaces: Factored MDPs, function
approximation (recent work on LQ systems, Linear/Low Rank MDPs)
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Discussion

Beyond UCRL2 - II

Learning across multiple MDPs: learning to learn, meta-learning,
transfer learning, multi-task learning, curriculum learning

Causality: Can causal knowledge help learn faster? Help with transfer
learning?

Partial Observability: Hard even without learning!

Multi-agent RL: What is a good goal for learning?
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Discussion

Summary

How well is an agent learning in an online setup?

Finite-time regret analysis offers one theoretical approach among
many

UCRL2, like R-MAX, is based on the OFU principle

Provided a detailed overview of its regret analysis

Many interesting new research directions!
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