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Gates and physical interactions
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FIG. 1. Example of a random quantum circuit in a 1D array
of qubits. Vertical lines correspond to controlled-phase (CZ)
gates (see Sec. IV).

While we do not provide a formal definition of quan-
tum chaos here, we review several well known charac-
teristics of quantum chaos to argue that sampling the
output distribution of a random quantum circuit is a
hard computational task. In analogy with classical Lya-
punov exponents, a signature of quantum chaos is the
decrease of the overlap | h t| ✏

t
i |2 of the quantum state

| ti with the state | ✏

t
i resulting from a small perturba-

tion ✏ to the Hamiltonian that evolves | ti [4, 5, 8, 9].
The overlap decreases exponentially in the evolution time
t and ✏ because chaotic evolutions give rise to delocaliza-
tion of quantum states [6, 7]. Such states are closely
related to ensembles of random unitary matrices studied
in random matrix theory [6, 32], they possess no sym-
metries, and are spread over Hilbert space. Therefore,
as in the case of classical chaos, obtaining a description
of | ti requires a high fidelity classical simulation. This
challenge is compounded by the exponential growth of
Hilbert space N = 2n with the qubit dimension n.

It follows that unless a classical algorithm uses re-
sources that grow exponentially in n, its output would
be almost statistically uncorrelated with the output dis-
tribution corresponding to general global measurements
of the chaotic quantum state.1 Indeed, it has been
argued that classically solving related sampling prob-
lems requires computational resources with asymptotic
exponential scaling [20–30]. Examples include Boson-
Sampling [24] and approximate simulation of commuting
quantum computations [23, 29].

Random quantum circuits with gates sampled from a
universal gate set are examples of quantum chaotic evo-
lutions that naturally lend themselves to the quantum
computational framework [7, 10–12, 14, 16]. A circuit,
corresponding to a unitary transformation U , is a se-
quence of d clock cycles of one- and two-qubit gates,
with gates applied to di↵erent qubits in the same cy-
cle, see Fig. 1. With realistic superconducting hardware

1
A classical algorithm that uses time and space resources that

grow exponentially in n can reconstruct all measurements of the

chaotic quantum state exactly.

constraints [33, 34], gates act in parallel on distinct sets
of qubits restricted to a 1D or 2D lattice.

In this paper we study the computational task of sam-
pling bit-strings from the distribution defined by the out-
put state | i of a (pseudo-)random quantum circuit U of
size polynomial in n. We will compare the sampling out-
put of U to a generic classical sampling algorithm that
takes a specification of U as input and samples a bit-
string with computational time cost also polynomial in
n. We will show that a bit-string sampled from U is typ-
ically e times more likely than a bit-string sampled by
the classical algorithm. A quantum sample S of m mea-
surement outcomes x 2 {0, 1}n in a local qubit basis has
probability ⇧x2S | hx| i |2. Denote by Spcl a sample of m
bit-strings from the polynomial classical algorithm. We
argued above standard assumptions in chaos theory that
in this case Spcl is expected to be almost uncorrelated
with the distribution defined by | i. We will substantiate
this numerically and theoretically in later sections. The
sample Spcl is assigned a probability ⇧x2Spcl | hx| i |2 by
the distribution defined by | i. As we show in this paper,
the ratio of these probabilities for a su�ciently large cir-
cuit in the typical case is, within logarithmic equivalence,
⇧x2S | hx| i |2/⇧x2Spcl | hx| i |2 ⇠ em (see Eq. (9)). We
will also show that for a typical sample Sexp produced by
an experimental implementation of U this ratio is, within
logarithmic equivalence,

⇧x2Sexp | hx| i |2

⇧x2Spcl | hx| i |2 ⇠ eme
�rg

� 1 , (1)

where the parameter r provides an estimate of the e↵ec-
tive per-gate error rate, and g / nd is the total num-
ber of gates (see Eqs. (14) and (18)). Note the double
exponential structure in Eq. (1) with two large param-
eters m, g � 1. Therefore, the ratio of probabilities in
Eq. (1), an experimentally observable quantity, is enor-
mously sensitive to the e↵ective per-gate error rate r.
The parameter r can serve as an extremely accurate char-
acterization of the degree of correlation of Sexp with the
distribution defined by U , and provides a novel tool for
benchmarking complex multiqubit quantum circuits. We
will argue that r can be estimated theoretically and com-
pared with experiments to define a quantum supremacy
test.

We now give the main outline of the paper. In Sec. II
we obtain Eq. (1) from the cross entropy between the two
distributions and we explain how it can be measured in
an experiment. In Sec. III we explain theoretically and
numerically why the cross entropy is closely related to
the overall circuit fidelity. We also introduce an e↵ective
error model for the overall circuit, and compare it with
numerical simulations of the circuit with digital errors.
In Sec. IV we study numerically the convergence of the
circuit output to the Porter-Thomas distribution, char-
acteristic of quantum chaos. In Sec. V we use complexity
theory to argue that this sampling problem is computa-
tional hard.
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Physical connectivity / interaction range
Puts price to two-qubit gates

6
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Quantum annealing as co-design
H(s) = (1 − A(s))Hd + A(s)Hp

Driver:

Problem Hamiltonian:

Annealing schedule:

Hd = − D∑
i

X̂i

Hp = ∑
i

hiZi + ∑
i<j

JijZiZj + ∑
i<j<k

KijkZiZjZk + …

A ( t
T ) A(0) = 0

A(1) = 1

Gate model hardware

D-Wave



Hybrid algorithms

“Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful 
problem, because it doesn't look so easy.”
Richard P. Feynman, „Simulating physics with computers“, 1981

• let the (cheap) classical 
computer do what it is 
best at

• enhance its performance 
with the (expensive) 
quantum computer

Superconducting quantum simulator for the Fermi-Hubbard model
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Abstract

Many phenomena of strongly correlated materials are encapsulated in the Fermi-Hubbard model. In general, no closed-form solution is known
for lattices of more than one spatial dimension, but they can be numerically approximated using cluster methods. To model long-range
e↵ects such as order parameters, a powerful method to compute the cluster’s Green’s function consists in finding its self-energy through
a variational principle. This allows the possibility of studying various phase transitions at finite temperature in the Fermi-Hubbard model.
However, a classical cluster solver quickly hits an exponential wall in the memory (or computation time) required to store the computation
variables. We show theoretically that the cluster solver can be mapped to a subroutine on a quantum computer whose quantum memory
usage scales linearly with the number of orbitals in the simulated cluster and the number of measurements scales quadratically. We also
provide a gate decomposition of the cluster Hamiltonian and a simple planar superconducting architecture for a quantum simulator that
can also be used to simulate more general fermionic systems. A quantum computer with a few tens of qubits could therefore simulate the
thermodynamic properties of complex fermionic lattices inaccessible to classical supercomputers.

Self-Energy functional theory

The Hamiltonian of the Fermi-Hubbard model (FHM) [1] describes
a simple electronic band in a periodic lattice � where electrons are
free to hop between orbitals with kinetic energy t and interact
via a simple two-body Coulomb term U . The occupation of the
electronic orbitals is controlled by the chemical potential µ.

H = �t

X

hi ,ji,�

c
†

i�cj� � U

X

i

ni"ni# � µ
X

i ,�

ni� (1)

The self-energy functional theory (SFT) can be used as a general
theoretical framework to systematically construct approximations
to compute the thermal properties and the spectrum of single-
particle excitations of a certain class of strongly correlated electron
systems. The prototypical system that can be studied is the FHM.

Figure: The reference system generates a manifold of trial self-energies

⌃
0
parametrized by single-particle parameters t

0
. The self-energy functional

[5] can be evaluated exactly on this manifold as the interaction part of the

Hamiltonian is left unchanged.

The prime application of the SFT is to construct the variational
cluster approximation (VCA) [2]. An approximate solution of an
infinite lattice is obtained from an all-order perturbation theory of
terms connecting exactly solvable clusters. If Nc is the number of
cluster along each dimension of the lattice, then the superlattice
reciprocal space is given by

k̃x/y =
2⇡qx/y
Na

, qx/y = 0, . . . , Nc � 1 . (2)

Figure: The essence of the VCA method is to remove the one-body links

(denoted t) between small clusters (contained in V) from the lattice � and

consider only the reference lattice �
0
whose Hamiltonian H

0
is block

diagonal in the Wannier basis and easier to solve than the complete

problem H. The solution become asymptotically exact as the clusters are

made to include more sites.

The set of one-body terms linking the clusters are

V̂

⇣
k̃

⌘
⌘ t̂

⇣
k̃

⌘
� t̂

0. (3)

The exact Green’s function of a cluster is written as

G
0 (!) = 1

!�t0�⌃0(!)

=

✓
G

0 (!) F
0 (!)

F
0† (!) �G

0 (�!)

◆
.

(4)

Solutions to the FHM can be found by varying the functional of the
self-energy until a physical value of the Green’s function is found

⌦t = ⌦0

t 0 �
1

N

I

C

dz

2⇡i

X

k̃

ln det
h
Î� V̂

⇣
k̃

⌘
Ĝ

0 (z)
i

(5)

and the Dyson equation is satisfied:

@⌦t

@t0
= 0. (6)

Then the approximate Green’s function of the lattice of clusters is
given by

G

⇣
k̃,!

⌘
=
⇣
Ĝ

0�1 (!)� V̂

⇣
k̃

⌘⌘�1

(7)

and the Green’s function of the full lattice is obtained by a peri-
odization procedure such that

G (k,!) =
1

Lc

LcX

i ,j=1

Gij (k,!) e
�ik·(ri�rj). (8)

Quantum variational cluster approach

Scaling to larger clusters on classical computers requires an ex-
ponential amount of memory as a function of cluster size. We
propose solving the cluster problem on a quantum computer as a
quantum subroutine.

Figure: Hybrid quantum-classical loop to solve the Fermi-Hubbard model

using the variational cluster approach.

The quantum circuit involved in creating a low-temperature Gibbs
state [4] of the cluster Hamiltonian and measuring its time-
dependent correlation functions is shown in the next figure:

Figure: When the bath is traced out the system channel S is left in a

Gibbs state from which the di↵erent correlation functions can be read from

the one-qubit register P . Register R is used as a digital component and q

should therefore be the size required for the desired floating point accuracy

on s⇤, which is related to the inverse temperature � [4]. The numbers in

the controlled gates of register R denote the index of the qubit which is

acting as the control.

After a Gibbs state is prepared:

⇢Gibbs (�) ⌘
1

Z

X

m

e
��Em |�mi h�m| , (9)

the correlation functions of the Majorana operators

Xi� ⌘ ci� + c
†

i�

Yi� ⌘ +i
⇣
ci� � c

†

i�

⌘ (10)

are measured using the following circuit:

Figure: Circuit to measure the correlation function Cµ⌫ (⌧) from an input

Gibbs state

The measured functions are extracted from the P register as prob-
abilities

Cµ⌫ (⌧ ) = 2 (Pµ⌫ (M = 0, ⌧ )� Pµ⌫ (M = 1, ⌧ ))

=
P

1

s=0

⌧ s

s!
C

(s)

µ⌫ .

(11)

There is a linear map to recover the single-particle correlation func-
tions.
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The retarded Green’s functions can be recovered from

G
R

µ⌫ (!) = �i lim
⌘!0+

1X

s=0

C
(s)

µ⌫

(⌘ + i!)s+1
. (13)

Gate decomposition of a square cluster

The Fermionic creation and annihilation operators are mapped to
Pauli operators using the Jordan-Wigner transformation:

c
†

i"
= I⌦2(Lc�i)+1

⌦ �+ ⌦ �⌦2(i�1)

z

c
†

i#
= I⌦2(Lc�i)

⌦ �+ ⌦ �⌦2i�1

z .

(14)

The important types of Hamiltonian terms for a cluster are intro-
duced through the concrete example of a 2⇥ 2 cluster.

Figure: For a n = 2Lc square lattice, the sites are labeled sequentially in

linear stripes, this ensures that nearest-neighbor coupling terms of the

Hamiltonian in the Jordan-Wigner basis can be represented as Pauli string

of length at most O
�
2
p
Lc

�
.

The form of the Hamiltonian of a 2D cluster including the varia-
tional terms is the following:

H
0 = Hkin +Hint �Hs�pair �Hdx2�y2

�Hlocal �HAF. (15)

The local terms include the variational chemical potential that
enforces thermodynamical consistency and a possible symmetry-
breaking anti-ferromagnetic ordering:

Hlocal = µ0
X

i ,�

ni� +M
0
X

i

e
iQ·Ri (ni" � ni#) . (16)

The gate decomposition of the local terms has the form

Figure: The local terms of the cluster Hamiltonian corresponding to the

time evolution of Hlocal and HAF. The single qubit rotation

R
⇥
�n

⌘ e
�i ⇥2 e�i ⇥2 �z , the angles ⇥

±

loc ⌘ ��⌧ (µ0
±M

0
).

The kinetic term that describes nearest-neighbor hopping is

Hkin = �t

X

hi ,ji,�

c
†

i�cj� + c
†

j�ci�. (17)

It can be exactly implemented on a quantum simulator with a gate
sequence of the following form:

(a)

(b)

Figure: The hopping terms of the cluster Hamiltonian corresponding to

the time evolution of Hkin are decomposed into gates.

The two-qubit + and � gates correspond to ±iSwap, which can
be physically implemented by �x ⌦ �x + �y ⌦ �y Hamiltonians.
The FHM has local interaction terms of the form

Hint = U

X

i

ni"ni#. (18)

They can be implemented with the gate sequence

(a)

(b)

Figure: The interaction terms of the cluster Hamiltonian corresponding

to the time evolution of Hint are decomposed into gates. The angle

⇥int ⌘ +�⌧U . The single-qubit rotation gate R
⇥
�U ⌘ e

+i ⇥2 e�i ⇥2 �y .

In the case of attractive interaction U < 0, the FHM displays a
s-wave superconducting order parameter. The symmetry-breaking
term is modeled by

Hs�pair = �0

s

X

i

⇣
c
†

i"
c
†

i#
+ ci#ci"

⌘
. (19)

It can be decomposed as the following gate sequence:

(a)

(b)

Figure: The s-wave pairing terms of the cluster Hamiltonian

corresponding to Hs�pair are decomposed into gates. The angle

⇥� ⌘ ��⌧�0

s .

In the case of repulsive interaction U > 0 close to half-filling, the
FHM shows a d-wave ordering parameter of the form

Hdx2�y2
= �0

d

X

hi ,ji

dij

2

⇣
c
†

i"
c
†

j#
� c

†

i#
c
†

j"
+ cj#ci" � cj"ci#

⌘
, (20)

where

dij =

8
>><

>>:

1 if Ri � Rj = ±aex

�1 if Ri � Rj = ±aey

0 otherwise.

(21)

The gate sequence for a d-wave ordering term has the form

(a)

(b)

(c)

Figure: The d-wave pairing terms of the cluster Hamiltonian

corresponding to the time evolution of Hdx2�y2
are decomposed into gates.

The angle ⇥d ⌘ ��⌧�0

d .

Since the kinetic and interaction terms of the FHM do not com-
mute, a Trotter-Suzuki approximation must be used to do the time
evolution of the simulated system:

e
�iH

0
�⌧

'

 
MY

i=1

e
�

iH0
i�⌧

N

!N

. (22)

The time decimation can be used to achieve arbitrary precision of
the evolution operator:

Figure: Numerical worst case error

✏ (�⌧) = 1�
1

16Lc

��Tr
⇥
UTS (N�⌧)U†

(N�⌧)
⇤��2 for the Trotter-Suzuki

(order O
�
�⌧ 3

�
) and the Ruth (order O

�
�⌧ 4

�
) decompositions for a

constant simulation time such that ⌧ = N�⌧ = 3. To emulate a typical

worst-case error, all variational parameters µ0
= M

0
= �

0

s = �
0

d = 3. The

interaction U = 8 and all energy and time units are made unitless by

referencing them to the hopping energy t = 1.

Superconducting quantum simulators

As shown in the following table, the amount of quantum resources
to simulate a cluster of the FHM scale favorably when compared
to the memory requirement on a classical computer.

Figure: Quantum resources required to solve a cluster of the

Fermi-Hubbard once the Gibbs state is prepared. The information processed

by the classical computer is proportional to the number of measured

correlation functions which scales quadratically with the number of orbitals

in the cluster.

The form of the quantum algorithm suggests a natural layout of
qubits where the analog simulation occurring in registers S + B

is separated from the digital register R by qubit P , which is both
used to mediate information and measure correlation functions.

Figure: Proposed layout of physical qubits with no crossing interaction

line. Boxes represent physical qubits in di↵erent labelled registers. Arbitrary

single qubit gates are assumed to be implementable on every qubit.

The following notation is introduced to apply controlled gates from
register R on registers S+B by swapping back and forth in register
P :

Figure: How the interaction through register P is done.

This way, it is possible to build a QFT with no crossing interaction
lines.

Figure: Recursive gate decomposition of the QFT . It uses

2(n � 1) SWAPs and an ancilla qubit P . This variant can be implemented

physically by having all qubits couple to the middle qubit P .

Here we introduce Superconducting Planar ARchitectures for
Quantum Simulations (SPARQS). We present two variations. The
first is based on Google’s RezQu architecture where qubits are
coupled by bringing them in and out of resonance with a fixed-
frequency bus:

Figure: This is a modified RezQu architecture [3]. Each

frequency-tunable qubit (represented by a crossed box) is coupled to a

common transmission line. Not shown are the flux control lines of the

qubits to change their detuning from the bus.

The two-qubit ±iSwap can be implemented quickly in this archi-
tecture using optimal control methods:

10�4

10�3

10�2

10�1

100

20 24 28 32 36 40 44 48 52 56 60

In
fid

el
ity

1
�
�

Gate duration tg [ns]

iSwap
iFredkin

Figure: Speed limit for the 3 Z -controls of the iFredkin for the fidelity

� = 0.9999, compared to the iSWAP-gate with only two Z -controls, S1

ans S2, and P is set to a parking frequency of 10GHz. The target fidelity

in both cases is � = 0.9999.

The second variant is based on IBM’s architecture where fixed-
frequency qubits are coupled with tunable couplers:

Figure: A modified IBM architecture [6] with fixed frequency

superconducting qubits that also implements the quantum simulator layout.

Our main results are the following:

I It scales linearly in memory: 1 spin orbital corresponds to 1
qubit.

I It scales favorably in number of measurements which are
proportional to L

2

c at worst.

I The number of time measurements determines precision in
frequency space (same as classical, decoherence means less
information, good enough is possible).

I The most di�cult terms require O
⇣
L

2D�1
D

c

⌘
±iSWAPs (the

longest gate).

I Trotter-Suzuki errors can be made as small as desired.

I The proposed architecture has no crossing interaction lines
whose number scales as O (Lc) with no long range
interaction required.

I The number of gates that need to be tuned scales as
O (Lc).

I The architecture could be used to factorize if modular
exponentiation can be implemented in register S + B .
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Co-Design for variational self-
energy techniques



From molecules to materials!

Moonshot of quantum computer chemistry

More is differentYBCO

Do we need poly(NA) qubits?



High-Tc and Hubbard model

•  non-integrable  

• QMC: Fermionic sign problem 

• reproduces d-wave superconductivity

Low (<1 eV) physics of  electrons on lattices



Manybody dynamics

Describe physical properties through the time-ordered two-point Green’s function

Superconductivity: Nambu spinors:
makes G a 2x2 matrix 

Useful manybody algorithms should give the Green’s function

Off-diagonal component detects superconducting order: Pair amplitude

Green’s function allows to compute observables

Goal: Characterize phases and find phase transtions

Self-energy:  
Effect of the manybody system on the single propagating particle:  
Dyson equation



Variational eigensolver for solids
Describe physical properties through the time-ordered two-point Green’s function

G(j) (~r, t|~r0, t0) = �i
D
T(j) (~r, t) †(~r0, t0)

E

Self-energy: Effect of the manybody system on the single 
propagating particle:  
Dyson equation

34 the fermi-hubbard model

systematically approximate the self-energy is to consider a reference
lattice of isolated clusters G0 with the same local interaction term U
as the lattice G and pick S from the exact solution of the reference lat-
tice. This method allows for the construction of solutions to the FHM
that are very accurate except for long range correlations that exceed
the dimensions of the clusters. The main advantage of this scheme
is that the solutions are guaranteed to become asymptotically exact
as the size of the cluster reaches the size of the original lattice. The
next step consists in rewriting the grand canonical potential Wt as a
functional of the lattice self-energy S instead of the Green’s function
G.

2.3.1.2 Self-energy functional theory

The variational principle of the self-energy of a cluster [57] intends to
account for solutions of the Hubbard model with spontaneous sym-
metry breaking caused by long-range interactions. The grand canon-
ical potential Wt [G] can be rewritten as a functional of the self-energy
Wt [S] by applying the Legendre transformation G [S] =

�
G�1

0t � S
��1

such that

Wt [G] = F [G]� Tr
⇥�

G�1
0t � G�1� G

⇤
+ Tr ln [�G]

= F [G]� Tr [SG]| {z }
L[S]

+ Tr ln [�G]

= L [S]� Tr ln
⇥
�G�1

0t + S
⇤

= Wt [S] .

(2.14)

Let’s then notice that Wt [S] is still exact and now only depends on
the self-energy S and the non-interacting Green’s function G0t. The
Legendre transformed Luttinger-Ward functional L [S] has the nice
property

dL [S]
dS

= �G, (2.15)

which is used to recover the Dyson equation of the system and the
variational principle depending on the self-energy

dWt [S]
dS

=
�
G�1

0t � S
��1

� G = 0. (2.16)

As shown in figure 2.4, solutions to the FHM can be found by varying
the self-energy until a physical value of the Green’s function is found
and the Dyson equation is satisfied. However, since this is in general
a saddle-point problem, the optimal point cannot be interpreted as an

Variational 
principle

2.3 solving the fermi-hubbard model with the variational cluster approach 35

Figure 2.4: How the different functional spaces are connected. The red dots
represent the exact self-energy at the stationary point of Eq. 2.16.
The functional dependence of Wt [S] is not known for the com-
plete space of self-energies, but only those parametrized by the
single-particle parameters t0 shown by the red lines. The station-
ary point on that sub-manifold corresponds to the approximate
grand canonical potential. This figure has been reproduced from
[69].

upper bound to the exact energy (as in the Ritz variational method)
but as the most “physical” approximation of the grand canonical po-
tential allowed by a given parametrization of the self-energy. Com-
puting the exact single-particle self-energy for a large lattice and stor-
ing the result are tasks beyond the capabilities of classical computers.
The idea of cluster methods used to approximate the solution of the
full lattice G is to divide it into a reference lattice G0 of clusters of a
small number (i.e. computer tractable) of sites, solve a cluster exactly
and use perturbation theory to approximate the properties of the full
lattice.

Varational principle for the self-energy: 
Variational cluster method (Pothoff, Senechal)
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Figure 17: Proposed layout of physical qubits with no crossing interaction
line. Boxes represent physical qubits in different labelled reg-
isters. Arbitrary single qubit gates are assumed to be imple-
mentable on every qubit. Solid lines are tunable exchange in-
teractions (sx ⌦ sx + sy ⌦ sy). Early numerical work also sug-
gests using tunable dispersive interactions (sz ⌦ sz) for the S � P
and B� P connections to implement the required conditional two-
qubit gates more efficiently. The interactions between the qubits
in registers S (or B) and the qubit in P are used to implement
conditional ±iSWAPs and controlled single-qubit gates. The in-
teractions between the qubits in register R and the one in register
P are only used to implement SWAP gates. The interactions be-
tween the qubits in R are used to implement QFT† on this register.
Dashed lines are linked to qubits that are measured in the com-
putational basis at the end of the protocol. There are only a very
limited number of gates to benchmark and tune. The size the
register R depends on the desired precision and accuracy of the
Gibbs state preparation (floating point accuracy should roughly
correspond to the quantum supremacy crossover for this register).
The size of register S should be at least as large as the number of
spin orbitals in the simulated cluster Hamiltonian and the size of
register B is equal to the size of register S such that it can absorb
the excess entropy of the Gibbs state preparation.
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Variational cluster

• split lattice into exact 
clusters

• couple clusters pertur- 
batively: Closed form

Potthoff, Senechal …

36 the fermi-hubbard model

Figure 2.5: The essence of the VCA method is to remove the one-body links
(denoted t) between small clusters (contained in V) from the lat-
tice G and consider only the reference lattice G0 whose Hamilto-
nian H

0 is block diagonal in the Wannier basis and easier to solve
than the complete problem H. The reference system generates a
manifold of trial self-energies S0 parametrized by single-particle
parameters t0. The self-energy functional can be evaluated ex-
actly on this manifold as the interaction part of the Hamiltonian
(the Us) is left unchanged.. The solution becomes asymptotically
exact as the clusters are made to include more sites.

2.3.2 The variational cluster approach

Large lattices with millions of orbitals are impossible to simulate ex-
actly on classical computers since the memory required to store for
the associated state vectors scales exponentially in cluster size. A
method to mitigate this problem makes use of the translation invari-
ance of the lattice. It consists in breaking down the lattice in sev-
eral independent clusters and making use of the universality of the
Luttinger-Ward functional to recast the variational equation (2.16) on
a cluster-restricted domain of the self-energy. The exact solutions are
recovered when the size of the cluster is equal to the size of the origi-
nal lattice [83].

Good and thorough introductions to the VCA method can be found
in [56, 84]. In the restricted Hilbert space of a cluster, the goal is to
variationally find a self-energy S0 such that it is most physical (by
satisfying the VCA version of the Dyson equation) and minimizes
the free energy. As hinted at the end of subsection 2.3.1 and shown
in figure 2.5, the VCA approximation consists in subdividing a full
lattice G into a reference lattice of identical clusters G0 and solving the
reference model exactly in order to obtain its self-energy S0. In this
context, the Green’s function of a cluster is a frequency dependent
matrix given by

G0�1 (w) = w � t0 � S0 (w) (2.17)Exact cluster Green’s function
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The Legendre transformed Luttinger-Ward functional L only depends
on the interaction part of the Hamiltonian. Since by definition the in-
teraction part of the Hamiltonian is the same for the full system and
the reference system, the identity L [S0] = L [S] must hold. Let’s note
that this scheme would not work directly in the case of the extended
FHM (where there is intersite interaction), since a reference system of
independent clusters cannot be found by simply removing one-body
links of the Hamiltonian [85]. As in Eq. (2.14), the grand canonical
potential of the reference system is given by

W0
⌘ Wt0

⇥
S0
⇤
= L [S]� Tr ln

⇥
�G0

⇤
, (2.18)

where G0 is the Green’s function of the reference system. When they
are both evaluated at the self-energy of the reference system, the dif-
ference between the grand canonical potential of the full lattice and
the reference system is

Wt
⇥
S0
⇤
= W0 + Tr ln

⇥
�G0

⇤
� Tr ln [�G] . (2.19)

This relation is exact, the only approximation of the VCA is in the re-
striction of the domain of the self-energy. It can be further simplified
as the VCA is built within SFT as a well-defined variational extension
to the CPT. The full lattice Green’s function G [S] is equal to the CPT
Green’s function if its self-energy is restricted to the domain of the
reference system. As in figure 2.5, it is useful to define V ⌘ t�t0 as
a perturbation, where t contains all the one-body terms of the full
lattice G and t0 represents all the one-body terms of the lattice of clus-
ters G0. As a result of strong-coupling perturbation theory, the CPT
Green’s function is given by

G
⇥
S0
⇤
= Gcpt =

�
G0�1

� V
��1. (2.20)

With some algebra, Eq. (2.19) can be written as

Wt
⇥
S0
⇤
= W0

� Tr ln
⇥
1 � VG0

⇤
. (2.21)

The functional is exact as no classes of diagrams have been explic-
itly excluded. At the saddle-point, it represents the quantity which
is physically the closest to the physical grand canonical potential of
the full lattice when the self-energy is computed on the reference
lattice. The effect of single-particle correlations and intra-cluster two-
particle correlations is treated non-perturbatively but the inter-cluster
two-particle effects are neglected in the one-particle spectrum. Even
if only a small cluster is exactly solved, the self-energy variational
principle (2.16) can be used to study the properties of the infinite sys-
tem like the various order parameters in a thermodynamically con-
sistent framework. Since the VCA is a well defined generalization of
the CPT, it also shares similar characteristics. It is exact in the limit
U
t ! 0 where the self-energy disappears to yield the tight binding

Classical variational calculus for 
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Architecture and performance

P.-L. Dallaire-Demers and FKW, PRA 2017
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Figure 17: Proposed layout of physical qubits with no crossing interaction
line. Boxes represent physical qubits in different labelled reg-
isters. Arbitrary single qubit gates are assumed to be imple-
mentable on every qubit. Solid lines are tunable exchange in-
teractions (sx ⌦ sx + sy ⌦ sy). Early numerical work also sug-
gests using tunable dispersive interactions (sz ⌦ sz) for the S � P
and B� P connections to implement the required conditional two-
qubit gates more efficiently. The interactions between the qubits
in registers S (or B) and the qubit in P are used to implement
conditional ±iSWAPs and controlled single-qubit gates. The in-
teractions between the qubits in register R and the one in register
P are only used to implement SWAP gates. The interactions be-
tween the qubits in R are used to implement QFT† on this register.
Dashed lines are linked to qubits that are measured in the com-
putational basis at the end of the protocol. There are only a very
limited number of gates to benchmark and tune. The size the
register R depends on the desired precision and accuracy of the
Gibbs state preparation (floating point accuracy should roughly
correspond to the quantum supremacy crossover for this register).
The size of register S should be at least as large as the number of
spin orbitals in the simulated cluster Hamiltonian and the size of
register B is equal to the size of register S such that it can absorb
the excess entropy of the Gibbs state preparation.
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1D 2 4 16 5 64 28 6 24

1D 3 6 64 7 144 42 10 48

1D 4 8 256 9 256 56 14 72

2D 2 ⇥ 2 8 256 9 256 56 14 96

2D 3 ⇥ 3 18 262, 144 19 1, 296 126 34 336

2D 4 ⇥ 4 32 4, 294, 967, 296 33 4, 096 224 62 768

3D 2 ⇥ 2 ⇥ 2 16 65, 536 17 1, 024 112 30 416

3D 3 ⇥ 3 ⇥ 3 54 1.8 ⇥ 1016 55 11, 664 378 106 2, 736

3D 4 ⇥ 4 ⇥ 4 128 3.4 ⇥ 1038 129 65, 536 896 254 10, 368

Table 3: Quantum ressources required to solve a cluster of the FHM once the
Gibbs state is prepared. The information processed by the classical
computer is proportional to the number of measured correlation
functions which scales quadratically with the number of orbitals in
the cluster.
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QAOA with only single qubit 
controls

D. Headley, T. Müller, A. Martin, E. Solano, M. Sanz, FKW, arXiv:20002.12215

Approximating the quantum approximate optimization algorithm



QAOA

● A hybrid quantum classical variational algorithm

● Apply driver and problem Hamiltonian for time set by variational parameter

● Classical optimiser finds best parameters using expectation of problem

● Trotterized adiabatic quantum computing 



Avoiding controls

• Time application of  through waiting 
times


• Error during single-qubit application 

depends on speed ratio 


• Error of simultaneous application 


• Too pessimistic 

Hp

α =
J
ωr

≃ N2α2

First step:  Keep problem Hamiltonian static



Numerical simulation

Extensive numerical simulation: Really good performance up to critical speed ratio



Variation to the rescue

• We do not need to get the same state based on the same 


• We need to sample the state of possible solutions the same way


• Variational algorithm can adjust parameters to correct erors
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● So far: Needed to preset problem 
Hamiltonian, but avoid dynamic control — 
Hardware can work with d-wave style static 
preset


● Now: work with a single resource Hamiltonian

● All-to-all connectivity

● Use conjugation with X-gates to switch off 

unwanted interactions

● Finding the right pattern of X-gates is a 

polynomial matrix inversion problem

Avoiding even more controls


Hp = ∑
i,j

aiajXiXj HResource ∑
i,j

aiajXiXj



Compiling DA-QAOA

● Can take a QAOA problem 
Hamiltonian and express in 
DA-scheme


● Here is a 5-regular random 
MAX-CUT problem on 8 
qubits
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Lower error rates 
And variational aspects



Pulse shaping control
Find out how to make a gate on given hardware

Find ui(t) to reach 

with search based on analytical
gradients

Ĥ = Ĥ0 +
X

i

ui(t)Ĥi
H0: Drift, ui: Control fields,  
Hi: Control Hamiltonians

S.J. Glaser et al., EPJ D 2015

Find controls that maximize fidelity

How to debug something 
complex, non-intuitive?

Û(tf ) = 𝕋 exp (−
i
ℏ ∫

tf

0
dτ Ĥ(τ))

24
D.J. Egger and FKW, SUST 2014



DRAG - pulse-shaping

12

ω

ωω
S

01

Spectral limitation: 
Duration/bandwith uncertainty

�2

tg

DRAG: Motzoi et al., PRL 2009

u1(t)cos!t+ u2(t) sin!t

u2 =
u̇1

�2

Simple parameterization of 
numerical result: 
Implementable  pulse

Bandwidth limitations  
 from higher levels

25

Drive between

 0 and 1

-1



Few-Parameter 
Workflow

Experimental task Numerical optimization

Simple parameterizationCalibration on 
experimental toolkit

Experiment
Why don’t they work with the 
fully optimized pulses?

26



Tuneup challenge
• Fabrication uncertainty

• Transfer function uncertainty

• Best detector:  The qubit itself

• One solution: Be like the other fields (Heeres 
et al., 2016): Extreme precision at limited 
bandwidth (not exploring all of OC potential)

Ĥ = Ĥ0 + Ĥjunk +
X

i

ui(t)
⇣
Ĥi + Ĥi,junk

⌘

Unwanted degrees of freedom: i) non-computational energy levels ii) spurious DOFs
[Markovian decoherence usually beaten by speed]

a)
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a b c

FIG. 1. Experimental system and demonstration of control strategy. a, Schematic drawing of the experimental system. A �/4 coax-stub
cavity resonator is coupled to a transmon and readout resonator on a sapphire substrate. Input couplers close to the transmon and cavity
deliver the respective time-dependent microwave control fields ✏T (t) and ✏C(t). b, Lower panel: optimized transmon and oscillator control
waveforms of length approximately 2⇡/� to take the oscillator from vacuum to the 6-photon Fock state. Solid (dotted) lines represent the
in-phase (quadrature) field component. Upper panel: oscillator photon-number population trajectory versus time conditioned on transmon
in |gi. A complex trajectory occupying a wide range of photon numbers is taken to perform the intended operation. c, Characterization
of the oscillator state using Wigner tomography (bottom) and transmon spectroscopy (top), where grey dashed lines indicate the transition
frequency associated with the first 7 Fock states. The single peak in the spectroscopy data directly reveals the oscillator’s population due to
the dispersive interaction giving a frequency shift of 6�/2⇡ ⇡ 13 MHz.

model of the system, its successful application is powerful
evidence that the Hamiltonian used accurately captures the
system dynamics over a broad range of driving conditions.

The physical system used in our experiments is schemat-
ically depicted in Fig. 1a. The seamless aluminum �/4
coax-stub cavity resonator [23] with a fundamental fre-
quency 4452.6 MHz has an energy relaxation time of
2.7 ms. A single-junction transmon with transition frequency
5664.0 MHz and anharmonicity of 236 MHz is dispersively
coupled to the oscillator, resulting in an interaction term
�â†â|eihe|, with �/2⇡ = �2.2 MHz. Crucially, additional
higher order terms are determined accurately through a sep-
arate set of calibration experiments (Table SI, Supplemen-
tary Information). Control of the system is implemented
through full in-phase/quadrature (IQ) modulated microwave
fields centered on the transmon (oscillator) frequency and
sent to the pin coupling to the transmon (oscillator) mode.
In the rotating wave approximation, this results in the drive
Hamiltonian Hc/~ = ✏Ca + ✏T�� + h.c. Modulation using an
arbitrary waveform generator allows the coe�cients ✏C and
✏T to be arbitrary complex-valued functions of time.

As an example application of grape to our system, we find
✏C(t) and ✏T (t) such that, starting from the vacuum, after 500
ns of driven evolution the system ends up in the state |g, 6i
(Fig. 1bc). This highly nontrivial operation, e↵ectively real-
izing a |6ih0| coupling term on the oscillator, is enabled by
the dispersive Hamiltonian using only linear drives on the
transmon and the oscillator.

Using this control strategy, we can target the creation and
manipulation of a logical qubit encoded in an even-parity
four-component cat subspace. Omitting normalization, the

code states in this subspace can be written as

|±ZLi = |↵i + |�↵i ± |i↵i ± |�i↵i (1)

where we use ↵ =
p

3. These code words are both of even
photon number parity, and are distinguished by their photon
number modulo 4:

|+ZLi =
X

n

↵4n

p
(4n)!

|4ni (2)

|�ZLi =
X

n

↵4n+2
p

(4n + 2)!
|4n + 2i (3)

Single photon loss, the dominant error channel for the sys-
tem, transforms both code words to states of odd photon
number parity. The encoded information, however, is pre-
served by this process as long as one can keep track of the
number of photons that have been lost. Since parity mea-
surements can be performed e�ciently and non-destructively
[24], single photon loss is a correctable error [5].

Using grape, we create a universal set of gates on our
logical qubit, which includes X and Y rotations by ⇡ and
⇡/2, as well as Hadamard and T gates. These pulses are
each 1100 ns ⇡ 2.4 ⇥ 2⇡/� in length with a 2 ns time res-
olution, although 99% of the spectral content lies within a
bandwidth of 33 MHz (27 MHz) for the transmon (oscilla-
tor) drive (Fig. S2, Supplementary Information). Each op-
eration is designed to begin and end with the transmon in
the ground state. Additionally, we create encode (Uenc) and
decode (Udec) pulses to transfer a bit of quantum informa-
tion between our transmon {|g, 0i, |e, 0i} subspace, which we
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The breakthrough

• trace out quantum speed limit


• 7-fold reduction of error


• strong deviation from DRAG

2

x

y

0

1

Θ

0 1 2 3 4

0 1 2 3 4 5 6 7 8 9
samples

time (ns)

ȳx

ȳy

(a) (b)

am
pl

itu
de

 (a
rb

. u
.)

a  ,bn n

Figure 1. (a) The dashed lines show the analytic DRAG
pulse, with ⌦x in red and ⌦y in blue. The solid lines show the
same pulse sampled by the AWG. The optimization param-
eters an and bn of the piecewise-constant pulse are depicted
as modifications of the sampled DRAG pulse by grey arrows
and dashed lines. (b) Ideal Bloch sphere trajectory of the ⌦x-
pulse. The rotation angle ⇥ is given by the total area under
the pulse.

thesizing this signals by an arbitrary waveform generator
(AWG) results in real-time control over phase, frequency
and amplitude [44].

In a frame rotating at the qubit frequency, the trans-
mon Hamiltonian is given by

Ĥ
R

h̄
= � |2ih2|+⌦x(t)

2

2X

j=1

�̂
x
j,j�1+

⌦y(t)

2

2X

j=1

�̂
y
j,j�1, (1)

where terms rotating at twice of the qubit frequency have
been omitted. The i

th level of the transmon is denoted
by |ii. The operators �̂

x
j,j�1 =

p
j (|jihj � 1|+ |j � 1ihj|)

and �̂
y
j,j�1 = i

p
j (|jihj � 1|� |j � 1ihj|) couple adjacent

energy levels. Therefore, ⌦x-pulses at the resonance fre-
quency !01 drive rotations about the x�axis of the Bloch
sphere spanned by {|0i , |1i}, see Fig. 1. The total area of
the pulse envelope defines the rotation angle ⇥. The rota-
tion axis can be freely chosen in the xy-plane by changing
the phase of the drive signal �. By selecting � = n⇡/2

(n = 0, 1, . . .) and ⇥ = ⇡/2, ±X/2 and ±Y/2 single-qubit
operations are realized.

Since transmons have a low anharmonicity, fast pulses
with a wide frequency response lead to leakage out of
the computational subspace defined by the two lowest-
lying energy eigenstates. This process is suppressed by
derivative removal gates (DRAG) [6, 45, 46], designed
to reduce leakage and phase errors caused by inadvertent
driving of the |1i $ |2i transition. The first-order DRAG
correction (Fig. 1(a); dashed lines) to a Gaussian shaped
pulse ⌦x(t) = A exp

�
�t

2
/(2�

2
)
 

with amplitude A and
width �, is

⌦DRAG(t) = ⌦x(t) + i
�

�

d⌦x(t)

dt
. (2)

The correction in the imaginary component of ⌦DRAG(t)
with the scaling parameter � eliminates the spectral
weight of the pulse at the |1i $ |2i transition.

Although being designed for fast, short gates DRAG
fails to produce high fidelities when the gate duration is
lower than ⇠ 10/� [6]. To overcome this, either higher-
order correction terms or pulses with more degrees of
freedom have to be employed. To find suitable pulses
we use a parameterization that applies a correction �n =

an + ibn at each point in time to a calibrated DRAG
pulse, similar to common optimal control approaches [17,
47]. This results in a list of piecewise-constant control
amplitudes

⌦n = ⌦DRAG(n�t) + �n, (3)

as shown in Fig. 1(a). The time discretization �t is
naturally given by the sampling rate of the AWG gen-
erating the pulse envelope. We use a Zurich Instru-
ments HDAWG [48] operating at a sampling rate of
fs = 2.4 GS/s. The optimization parameters are the am-
plitude corrections an and bn to the n-th sample of ⌦x

and ⌦y, respectively, with the initial guess an = bn = 0.

A. Pulse parameter optimization

Since the parametrization in Eq. (3) no longer permits
an individual optimization of each parameter we simulta-
neously optimize all of them using the Covariance Matrix
Adaptation - Evolution Strategy (CMA-ES) optimization
algorithm [39] (see Methods section). It is based on gen-
erating sets of parameters Sk that describe k = 1, ...,�

different pulse shapes as candidate solutions. The param-
eters in Sk are defined by the parametrization of the pulse
shape. The fidelity of each candidate solution is evalu-
ated by a cost function, which serves to generate a new
set of candidate solutions. This process is repeated until
convergence is reached and the best solution is found.

As a cost function we use randomized benchmarking
(RB) sequences with a fixed number of m Clifford gates
[27] averaged over K sequence realizations, see Fig. 2(a).
This corresponds to evaluating only a single point in a
standard RB measurement [49, 50] which reduces the
runtime to evaluate the cost function. We construct the
Clifford gates by composing ±X/2 and ±Y/2 pulses, each
based on the pulse shape defined by Sk, see Fig. 2(b).
The average ground state population p0(m) of the final
qubit state defines the cost function, which is maximized
by the optimizer. To estimate the fidelity of the opti-
mized pulses we finally perform a full randomized bench-
marking measurement.

B. Fidelity estimates of optimized short pulses

We optimize single-qubit pulses of varying duration
ranging from N = 10 to N = 26 samples per pulse, corre-
sponding to a duration ⌧ = N ·fs ranging from 4.16 ns to
10.83 ns. We use K = 20 sequences of m = 120 Clifford
gates. Each sequence is measured 1000 times using the

3

Figure 2. (a) Single-qubit Clifford gate sequence of length
m. (b) Schematic visualization of the composition of a Clif-
ford gate from ±X/2,±Y/2 pulses based on a specific pulse
shape. The ⌦x and ⌦y components are displayed in red and
blue, respectively. (c) Simulated datasets showing the cost
function for m = 120 Clifford gates as a point on the full
randomized benchmarking curves for several fidelities. (d)
Experimental data of a full optimization run for a 23 dimen-
sional parameter space. The blue points represent the cost
function of each candidate pulse shape based on a unique pa-
rameter set Sk evaluated using 20 Clifford sequences. The red
points represent the average cost function at each iteration of
the optimizer.

restless measurement protocol [38] at a rate of 100 kHz.
We first use the CMA-ES based optimization procedure
to calibrate DRAG pulses, defined in Eq. (2). For this
we choose the amplitude A, the DRAG parameter � and
the sideband frequency !ssb as optimization parameters,
i.e. S = {A,�,!ssb}. The results of our CMA-ES based
calibration is shown in Fig. 3 (blue circles). The result-
ing fidelities compare well with standard sequential error
amplification calibration methods [46]. The optimized
DRAG pulse then serves as initial guess for a second op-
timization step in which we extend S by the amplitude
corrections to S 0

= {A,�,!ssb, a1, b1, ..., aN , bN}.
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Figure 3. Fidelity measured with RB as a function of
pulse length for optimized DRAG (blue circles) and piecewise-
constant pulses (red squares). Simulated fidelities are shown
with red dashed and blue dotted lines (see Methods). The
dashed black line indicates the T1 limit on the gate fidelity.

For gates longer than ⌧ = 6 ns we find a constant
fidelity of F = 99.87(1)% both for the DRAG pulse and
the piecewise-constant optimized pulse, see Fig. 3. For
gates shorter than 6 ns we observe a decrease of fidelity
for the DRAG pulses consistent with the 10/� limit (see
the grey line in Fig. 3), while the fidelity of the piecewise-
constant optimized pulses remains constant even for the
shortest gate duration. Drive power limitations prevent
us from implementing gates shorter than 4 ns.

To assess the influence of leakage on the shortest
4.16 ns pulse displayed in Fig. 4(a) and Fig. 4(b) we follow
the leakage randomized benchmarking protocol outlined
in [37]. The leakage RB analysis requires measuring the
probabilities pj to occupy the states |ji with j 2 {0, 1, 2}
after the standard RB gate sequences. The probability
p�1 = p0 + p1 = 1 � p2 of remaining in the computa-
tional subspace �1 = {|0i , |1i} is fitted using the decay
model A + B�

n
1 to find the average leakage per Clifford

L1 = (1�A) (1� �1). Here n is the number of Clifford
gates while A, B, and �1 are fit parameters.

Using the extracted leakage decay B�
n
1 we fit p0(n)

using the double decay model A0 + B�
n
1 + C0�

n
2 to find

the average Clifford gate fidelity

F =
1

2
[�2 + 1� L1] . (4)

The leakage rate of the optimized piecewise-constant
pulses L

PWC
1 = 0.044(25)% is five times lower than the

leakage rate of the DRAG pulse L
DRAG
1 = 0.29(3)%,

see Fig. 4(c). Additionally, we observe a reduction
of standard errors from 1 � �

DRAG
2 = 1.49(15)% to

1� �
PWC
2 = 0.44(15)%, see Fig. 4(d). The resulting av-

erage fidelity per Clifford gate, computed using Eq. (4),
is FPWC = 99.76(8)% for the piecewise-constant pulse
and FDRAG = 99.11(8)% for the DRAG pulse.
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Figure 4. (a) In-phase and (b) quadrature amplitude com-
ponent of the pulse envelope before (blue) and after the
piecewise-constant optimization (red), as represented in AWG
memory. (c) Remaining population in the computational sub-
space �1 for randomized benchmarking measurements using
pulses based on the DRAG and optimized piecewise-constant
pulses. The decay constant �1 characterizes the population
remaining in �1. (d) Full leakage RB analysis characteriza-
tion using a double decay with decay constants �1 and �2 for
leakage and standard errors, respectively.

III. DISCUSSION

Our results show that optimal pulse shaping using
a piecewise-constant basis improves the gate fidelity of
short pulses, reducing leakage errors by a factor of seven
and standard errors by a factor of three. At longer gate
durations, controlling the pulse shapes beyond analyti-
cal DRAG pulses does not improve the fidelity. All our
pulses, aside from the DRAG pulses shorter than 5.5 ns,
are limited to an error per gate of 0.13(1)% on average.

The fidelities that we measured are, however, not lim-
ited by the T1-time, which sets an error per gate limit
of 5 · 10�5, see Fig. 3. Instead, the fidelity limitation we
observe may be explained by a dephasing proportional
to the Rabi rate of the drive [46], as illustrated by the
simulated fidelities shown in Fig. 3 (see Methods).

The improvements with more complex pulse shapes
come at the expense of long calibration times. Optimiz-
ing the longest pulse shape with N = 26 samples (i.e. 55

parameters) took up to 25 hours. To understand how this
time can be reduced we have measured the time taken to
create the pulse sequences, initialize the control electron-
ics, and gather the data (see Methods section). Creating
the pulse sequences and initializing the control electron-
ics at each iteration consumes the most time. Gathering
the required data is only a small fraction of the total ex-
perimental run time. With further improvements of the
control electronics, for instance an internal generation of
the 100 MHz side-band modulation, we expect further
significant reductions in the overall runtime of the opti-
mizer.

Our work demonstrates that optimizing – or calibrat-
ing – pulses with up to 55 parameters is experimentally
feasible. This opens up the possibility to explore more

Figure 5. (a) Experimental runtime consisting of processing
the pulse sequences (red right triangles), initializing the setup
(blue circles) and measuring the cost function (grey left trian-
gles). (b) Time per iteration of CMA-ES split into those three
categories. In one iteration the cost function of each candidate
solution in the whole population of size � is measured. Error
bars are smaller than the size of the data points. (c) Time per
evaluation, as a function of population size. Each candidate
solution in a given population requires one evaluation. As the
population size increase the experimental run-time to evalu-
ate a full iteration increases and the average time to evaluate
a candidate solution decreases.

elaborate optimal control methods on superconducting
qubit platforms. We plan to extend this scheme to multi-
qubit gates, where system dynamics are more complex
and analytic optimal control methods are not as devel-
oped as for single-qubit gates [16]. While a piecewise-
constant parametrization, as done for single-qubit gates,
is harder due to the long duration of two-qubit gates,
other analytical pulse representations, such as its spec-
tral components, will be explored to improve on gate per-
formance.

IV. METHODS

To optimize all parameters of the pulse shape simul-
taneously on the experimental setup, we have chosen
the Covariance Matrix Adaptation - Evolution Strategy
(CMA-ES) optimization algorithm as a noise-resilient
and time-efficient optimizer [39]. This algorithm opti-
mizes a population of � candidate solutions which are
normally distributed in the parameter space. The cen-
ter and spread of the distibution are chosen as starting
conditions of the optimization.

Generally, the choice of the population size � is a trade-
off between fast convergence speed and avoiding local op-
tima [39]. However, experimentally we have to consider
the time required to process the pulse sequences (i.e. the
time required to compile the pulse sequences into AWG
files), to initialize the hardware (including data transfer)
and to measure the cost function for different population
sizes �, see Fig. 5. We benchmark these three times using
a set of 20 Clifford gate sequences per candidate solution,
each with 100 Clifford gates. By dividing the total time
required to evaluate the entire population by � we calcu-
late the effective time required to asses a single candidate
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Programming a variational 
quantum processor



Many ways to write an algorithm

Variational parameters

Gate-based algorithm

Universal gate set

Tuneup of gates

Deal with junk DOFs

Optimal control

Controllability 

Analogue programming
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Statements for discussion
• Disruptive programming for quantum computers closely integrates 

software on and for quantum computers


• Adiabatic quantum computing, gate model, and quantum controls are 
three initial programming paradigms motivated by physics, computer 
science, and chemistry


• We have not found the best paradigm to program quantum computers yet


• Co-Design of algorithms and hardware continues to be necessary - you 
are missing out be being all-purpose


