Variational algorithms and quantum computer Co-Design Frank Wilhelm

UNIVERSITÄT DES SAARLANDES Saarland University

Team and current projects

- EU Flagship project "An Open Superconducting Quantum Computer" (OpenSuperQ)
- IARPA project "Flux-based quantum speedup" (FluQS) in the quantum-enhanced optimization program
- EU ITN "Quantum sensing with optimal control" (Qusco)
- BMBF project Verticons
- BSI study "status of quantum computers"
- Industry graduate students: Daimler, DLR, IBM, HQS

August 2019

Contents

- Why co-Design? Why a not-quite-universal quantum computer?
- Example: A crossing-free architecture for variational self-energy calculations
- Example: QAOA with only single-qubit controls
- Excursion: A route to extremely high gate fidelities
- Conclusion and speculation: Programming a variational quantum computer

Why co-design?

Noisy Intermediate-scale quantum computer (NSQ)

Simple, primitive, error-prone hardware: Coding needs to follow architecture

Clive Sinclair

Gates and physical interactions $\hat{H} = \hat{H}_0 + \sum F_i(t)\hat{H}_i$

Boixo et al.

$$\hat{U}_{\text{gate}} = \exp(-i\hat{H}t_g)$$
$$\hat{U}_{(t_f)} = \mathbb{T}\exp\left(-\frac{i}{\hbar}\int_0^{t_f} d\tau \,\hat{H}(\tau)\right)$$

Physical connectivity / interaction range Puts price to two-qubit gates

Quantum annealing as co-design

 $H(s) = (1 - A(s))H_d + A(s)H_p$

Driver:
$$H_d = -D\sum_i \hat{X}_i$$

Problem Hamiltonian:

$$H_p = \sum_{i} h_i Z_i + \sum_{i < j} J_{ij} Z_i Z_j + \sum_{i < j < k} K_{ijk} Z_i Z_j Z_k + \dots$$

Annealing schedule:

A(0) = 0A(1) = 1A

Gate model hardware

Hybrid algorithms

- let the (cheap) classical computer do what it is best at
- enhance its performance with the (expensive) quantum computer

"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy."

Richard P. Feynman, "Simulating physics with computers", 1981

Input initial guess

Is there a Co-design for this?

Co-Design for variational selfenergy techniques

From molecules to materials!

Moonshot of quantum computer chemistry

YBCO

More is different

Do we need $poly(N_A)$ qubits?

High-Tc and Hubbard model

Low (<1 eV) physics of electrons on lattices

• non-integrable

- QMC: Fermionic sign problem
- reproduces d-wave superconductivity

Manybody dynamics

Goal: Characterize phases and find phase transtions

 $G^{(j)}\left(\vec{r},t|\vec{r}',t'\right) = -i\left\langle \mathbf{T}^{(j)}\Psi(\vec{r},t)\Psi^{\dagger}(\vec{r}',t')\right\rangle$

Superconductivity: Nambu spinors: makes G a 2x2 matrix

Off-diagonal component detects superconducting order: Pair amplitude $F(\vec{r},t|\vec{r}',t') = -i \langle \mathbf{T}\Psi(\vec{r},t)\Psi(\vec{r}',t') \rangle$

Green's function allows to compute observables

Self-energy:

Effect of the manybody system on the single propagating particle: Dyson equation

Useful manybody algorithms should give the Green's function

Describe physical properties through the time-ordered two-point Green's function

$$\Psi = \begin{pmatrix} \Psi \uparrow \\ \Psi \downarrow^{\dagger} \end{pmatrix} \quad G = \begin{pmatrix} G & F \\ F^* & -G \end{pmatrix}$$

Variational eigensolver for solids

Describe physical properties through the time-ordered two-point Green's function

$$G^{(j)}\left(\vec{r},t|\vec{r}',t'\right) = -i\left\langle \mathbf{T}^{(j)}\Psi(\vec{r},t)\Psi^{\dagger}(\vec{r}',t')\right\rangle$$

Self-energy: Effect of the manybody system on the single propagating particle: Dyson equation

Variational principle

$$\frac{\delta \Omega_t \left[\boldsymbol{\Sigma} \right]}{\delta \boldsymbol{\Sigma}} = \left(\mathbf{G}_{\mathbf{0t}}^{-1} - \boldsymbol{\Sigma} \right)^{-1} - \mathbf{G} = \mathbf{G}_{\mathbf{0t}}^{-1} - \mathbf{G} = \mathbf{G}_{\mathbf{0t}}^{-1} - \mathbf{G} = \mathbf{G}_{\mathbf{0t}}^{-1} - \mathbf{G}_{\mathbf{0t}}^{-$$

Varational principle for the self-energy:

Variational cluster method (Pothoff, Senechal)

P.-L. Dallaire-Demers and FKW, 2016 (2 papers)

13 FQHE: M.P. Kaicher, S.B. Jäger, P.-L. Dallaire-Demers, and FKW, 2020

Variational cluster

Exact cluster Green's function

Classical variational calculus for

Potthoff, Senechal ...

$$\mathbf{G}^{\prime-1}\left(\omega\right) = \omega - \mathbf{t}^{\prime} - \Sigma^{\prime}\left(\omega\right)$$

V

- split lattice into exact clusters
- couple clusters perturbatively: Closed form

$$\mathbf{G}\left[\mathbf{\Sigma}'
ight] = \mathbf{G}_{\mathrm{cpt}} = \left(\mathbf{G}'^{-1} - \mathbf{V}
ight)^{-1}.$$

$$\Omega_t \left[\mathbf{\Sigma}' \right] = \Omega' - \operatorname{Tr} \ln \left[\mathbf{1} - \mathbf{V} \mathbf{G}' \right].$$

- -

Architecture and performance

Look ma, no crossings!

Hubbard register (acceptable SWAP-OH) **Thermalization** (acceptable SWAP-OH)

Dimension(s)	Size	Orbitals (singlets) $[n]$	Dim. of Hilbert space $[2^n]$	Qubits required $[n + 1]$	Measured correl. functions [< $4n^2$]	c - SQGs to tune [7 <i>n</i>]	$c - \pm iSWAPs$ to tune $[2n - 2]$	Gates / Trotter-Suzuki step (hopping terms)
1D	2	4	16	5	64	28	6	24
1D	3	6	64	7	144	42	10	48
1D	4	8	256	9	256	56	14	72
2D	2×2	8	256	9	256	56	14	96
2D	3×3	18	262,144	19	1,296	126	34	336
2D	4 imes 4	32	4,294,967,296	33	4,096	224	62	768
3D	$2 \times 2 \times 2$	16	65,536	17	1,024	112	30	416
3D	$3 \times 3 \times 3$	54	$1.8 imes 10^{16}$	55	11,664	378	106	2,736
3D	$4 \times 4 \times 4$	128	$3.4 imes 10^{38}$	129	65,536	896	254	10,368

QAOA with only single qubit controls

Approximating the quantum approximate optimization algorithm

D. Headley, T. Müller, A. Martin, E. Solano, M. Sanz, FKW, arXiv:20002.12215

QAQA

- A hybrid quantum classical variational algorithm
- Apply driver and problem Hamiltonian for time set by variational parameter Classical optimiser finds best parameters using expectation of problem Trotterized adiabatic quantum computing

$$\left|\vec{\beta},\vec{\gamma}\right\rangle = \prod_{p'=0}^{p} e^{i\beta_{p'}H_{\rm D}} e^{i\gamma_{p'}H_{\rm P}} \left|+\right\rangle^{\otimes n}$$

Avoiding controls

First step: Keep problem Hamiltonian static

- Time application of H_p through waiting times
- Error during single-qubit application depends on speed ratio $\alpha =$ ω_r
- Error of simultaneous application $\simeq N^2 \alpha^2$
- Too pessimistic

Numerical simulation

Extensive numerical simulation: Really good performance up to critical speed ratio

- We do not need to get the same state based on the same β_i, γ_i
- We need to sample the state of possible solutions the same way
- Variational algorithm can adjust parameters to correct erors

Avoiding even more controls

- So far: Needed to preset problem
 Hamiltonian, but avoid dynamic control —
 Hardware can work with d-wave style static
 preset
- Now: work with a single resource H
- All-to-all connectivity
- Use conjugation with X-gates to sw unwanted interactions
- Finding the right pattern of X-gates is a polynomial matrix inversion problem

$$H_{\text{Resource}} = \sum_{j < k}^{n} r_{jk} Z_j Z_k$$

Compiling DA-QAOA

- Can take a QAOA problem Hamiltonian and express in DA-scheme
- Here is a 5-regular random MAX-CUT problem on 8 qubits

a)

and now it's time for something completely different

Lower error rates And variational aspects

Pulse shaping control

Find out how to make a gate on given hardware

$$\hat{H} = \hat{H}_0 + \sum_i u_i(t)\hat{H}_i$$

H_{0:} Drift, u_i: Control fields, H_i: Control Hamiltonians

 u_k

Find $u_i(t)$ to reach

$$\hat{U}(t_f) = \mathbb{T} \exp\left(-\frac{i}{\hbar} \int_0^{t_f} d\tau \ \hat{H}(\tau)\right)$$

with search based on analytical gradients

Find controls that maximize fidelity

S.J. Glaser et al., EPJ D 2015

D.J. Egger and FKW, SUST 2014

DRAG - pulse-shaping

Bandwidth limitations from higher levels

Spectral limitation: Duration/bandwith uncertainty

Drive between 0 and 1

$$u_1(t)\cos\omega t + u_2(t)\sin\omega t$$
$$u_2 = \frac{\dot{u}_1}{\Delta_2}$$

Simple parameterization of numerical result: Implementable pulse

DRAG: Motzoi et al., PRL 2009

Few-Parameter Workflow

Experimental task

Calibration on experimental toolkit

Experiment

Why don't they work with the fully optimized pulses?

Tuneup challenge

- Fabrication uncertainty
- Transfer function uncertainty

$$H = H_0 + I$$

Unwanted degrees of freedom: i) non-computational energy levels ii) spurious DOFs [Markovian decoherence usually beaten by speed]

- Best detector: The qubit itself
- One solution: Be like the other fields (Heeres et al., 2016): Extreme precision at limited bandwidth (not exploring all of OC potential)

$\hat{H}_{junk} + \sum_{i} u_{i}(t) \left(\hat{H}_{i} + \hat{H}_{i,junk} \right)$

The breakthrough

- trace out quantum speed limit
- 7-fold reduction of error
- strong deviation from DRAG

M. Werninghaus, D.J. Egger, F. Roy, S. Machnes, FKW, and S. Fillip 2020

Ingredients

Closing the loop

Gradient search on simple Ansatz

D.J. Egger and FKW, PRL 2014

S. Machnes, E. Assemat, D. Tannor, FKW, 2018 S.Kirchhoff, T. Keßler, P.J. Liebermann, E. Assémat, S. Machnes, F. Motzoi, FKW, 2018

Model identification with Al

S. Machnes, N. Wittler, F. Roy, K. Pack, A.S. Roy, M. Werninghaus, D.J. Egger, S. Filipp, FKW in preparation

Programming a variational quantum processor

Many ways to write an algorithm

Gate-based algorithm Universal gate set Tuneup of gates Deal with junk DOFs

> Optimal control Controllability Analogue programming Reduce controls

Statements for discussion

- Disruptive programming for quantum computers closely integrates software on and for quantum computers
- Adiabatic quantum computing, gate model, and quantum controls are three initial programming paradigms motivated by physics, computer science, and chemistry
- We have not found the best paradigm to program quantum computers yet
- Co-Design of algorithms and hardware continues to be necessary you are missing out be being all-purpose