# Obstacles to State Preparation and Variational Optimization from Symmetry Protection

Robert König

joint work with

Sergey Bravyi, Alexander Kliesch and Eugene Tang

arXiv:1910.08980



robert.koenig@tum.de



### Variational methods

How well do these methods perform?

(1) What is the best energy attained by a state from *S*(2) What is the best energy of a state that can be computed efficiently.



#### many-body Hamiltonian H





optimize over product states

mean-field theory

### Variational methods

How well do these

methods perform?

(1) What is the best energy attained by a state from S(2) What is the best energy of a state that can be computed efficiently.



#### **Combinatorial optimization**

Quantum approximate optimization (QAOA)

# **Combinatorial optimization**

**Given:** A function  $C: \{0,1\}^n \to \mathbb{R}$ .

**Goal:** Find  $x^* \in \{0,1\}^n$  such that  $C(x^*)$  approximates the maximum

 $\max_{x\in\{0,1\}^n}C(x)$ 



**Example:** MaxCUT for G = (V, E)

$$C_G(x) = \frac{1}{2} \sum_{(u,v) \in E} (1 - (-1)^{x_u} (-1)^{x_v})$$

Computing maximum exactly Is NP-hard.

**Figure of merit** for an algorithm  $\mathcal{A}$ :

(expected) approximation ratio

$$\alpha(\mathcal{A}) = \frac{\mathbb{E}_{x^* \leftarrow \mathcal{A}}[C(x^*)]}{\max_{x \in \{0,1\}^n} C(x)}$$

A polynomial-time algorithm achieving  $G\alpha$  (A)  $\geq 0.878$  for every graph G ! W

Goemans and Williamson (1995)

Assuming the unique games conjecture andS. Khot and $P \neq NP$  there is no polynomial-time algorithmN. Vishnoi, $\mathcal{A}$  satisfying  $\alpha(\mathcal{A}) > 0.878$  for every graph G.FOCS (2005)

**Given:** A function  $C: \{0,1\}^n \to \mathbb{R}$ .

**Goal:** Find  $x^* \in \{0,1\}^n$  such that  $C(x^*)$  approximates the maximum

 $\max_{x\in\{0,1\}^n} C(x)$ 

**Figure of merit** for an algorithm  $\mathcal{A}$ :

(expected) approximation ratio

$$\alpha(\mathcal{A}) = \frac{\mathbb{E}_{x^* \leftarrow \mathcal{A}}[C(x^*)]}{\max_{x \in \{0,1\}^n} C(x)}$$

E. Farhi, J. Goldstone, S. Gutmann, arXiv:1411.4028.

$$H = \sum_{x \in \{0,1\}^n} C(x) |x\rangle \langle x|$$

 $|x\rangle = |x_1\rangle \otimes |x_2\rangle \otimes \cdots \otimes |x_n\rangle$ 

#### Level-p QAOA algorithm

1. Prepare state  $\psi^*$  such that  $\langle \psi^* | H | \psi^* \rangle$  approximates

$$\max_{\psi} \quad \langle \psi | H | \psi \rangle$$



$$\psi(\beta, \gamma) = \prod_{k=1}^{p} e^{i\beta_k B} e^{i\gamma_k H} |+\rangle^{\otimes n}$$

E. Farhi, J. Goldstone, S. Gutmann, arXiv:1411.4028.

$$H = \sum_{x \in \{0,1\}^n} C(x) |x\rangle \langle x| \qquad B = \sum_{j=1}^n X_j$$

 $|x\rangle = |x_1\rangle \otimes |x_2\rangle \otimes \cdots \otimes |x_n\rangle$ 

#### Level-p QAOA algorithm

1. Prepare state  $\psi^*$  such that  $\langle \psi^* | H | \psi^* \rangle$  approximates

 $\max_{\psi} \quad \langle \psi | H | \psi \rangle$ 



$$\psi(\beta, \gamma) = \prod_{k=1}^{p} e^{i\beta_k B} e^{i\gamma_k H} |+\rangle^{\otimes n}$$

E. Farhi, J. Goldstone, S. Gutmann, arXiv:1411.4028.

$$H = \sum_{x \in \{0,1\}^n} C(x) |x\rangle \langle x| \qquad B = \sum_{x \in \{0,1\}^n} C(x) |x\rangle \langle x|$$

 $B = \sum_{j=1}^{n} X_j$ 

 $|x\rangle = |x_1\rangle \otimes |x_2\rangle \otimes \cdots \otimes |x_n\rangle$ 

#### Level-p QAOA algorithm

1. Prepare state  $\psi^*$  such that  $\langle \psi^* | H | \psi^* \rangle$  approximates

 $\max_{\psi} \langle \psi | H | \psi \rangle$ 



$$\psi(\beta,\gamma) = \prod_{k=1}^{p} e^{i\beta_k B} e^{i\gamma_k H} |+\rangle^{\otimes n}$$

E. Farhi, J. Goldstone, S. Gutmann, arXiv:1411.4028.

$$H = \sum_{x \in \{0,1\}^n} C(x) |x\rangle \langle x| \qquad B = \sum_{j=1}^n X_j$$

 $|x\rangle = |x_1\rangle \otimes |x_2\rangle \otimes \cdots \otimes |x_n\rangle$ 

#### Level-p QAOA algorithm

1. Prepare state  $\psi^*$  such that  $\langle \psi^* | H | \psi^* \rangle$  approximates

 $\max_{\psi} \quad \langle \psi | H | \psi \rangle$ 



$$\psi(\beta, \gamma) = \prod_{k=1}^{p} e^{i\beta_k B} e^{i\gamma_k H} |+\rangle^{\otimes n}$$

E. Farhi, J. Goldstone, S. Gutmann, arXiv:1411.4028.

$$H = \sum_{x \in \{0,1\}^n} C(x) |x\rangle \langle x| \qquad B = \sum_{j=1}^n X_j$$

 $|x\rangle = |x_1\rangle \otimes |x_2\rangle \otimes \cdots \otimes |x_n\rangle$ 

#### QAOA algorithm: Limitations on level p

- descriptive power of variational class of states increases with level p
- energy maximization becomes more challenging with increasing p
- NISQ implementation requires constant (small) p

Main question:Can constant-level QAOA outperform the best known classical<br/>algorithm (i.e., Goemans-Williamson) for MAXCUT?

# Main theme:Lower bounds on circuit-depth/circuit-rangenecessary to prepare low-energy statesusing symmetric unitary preparation circuits



### Symmetric Hamiltonians/unitaries and states

A Hamiltonian *H* is  $\mathbb{Z}_2$ -symmetric if  $[H, X^{\otimes n}] = 0$ .

**Examples:** 

$$H_{TF} = -\sum_{k\in\mathbb{Z}_n} X_k$$

$$H_{Ising} = -\sum_{k \in \mathbb{Z}_n} Z_k Z_{k+1}$$

A state 
$$\psi$$
 is  $\mathbb{Z}_2$ -symmetric if  $X^{\otimes n}\psi = \psi$  or  $X^{\otimes n}\psi = -\psi$ .

**Examples:**  $|+\rangle^{\otimes n} = |+\rangle \otimes |+\rangle \otimes \cdots \otimes |+\rangle$   $|GHZ_n\rangle = \frac{1}{\sqrt{2}}(|0\rangle^{\otimes n} + |1\rangle^{\otimes n})$ 

A unitary U is  $\mathbb{Z}_2$ -symmetric if  $UX^{\otimes n} U^{\dagger} = X^{\otimes n}$ .

**Examples:**  $U = X^{\bigotimes n}$ 

any circuit U composed of  $\mathbb{Z}_2$ -symmetric gates.

### QAOA: a $\mathbb{Z}_2$ -symmetric circuit



$$H = \sum_{x \in \{0,1\}^n} C(x) |x\rangle \langle x| \qquad B = \sum_{j=1}^n X_j$$

 $|x\rangle = |x_1\rangle \otimes |x_2\rangle \otimes \cdots \otimes |x_n\rangle$ 

This circuit is  $\mathbb{Z}_2$ -symmetric if

 $C(x) = C(\bar{x})$  where  $\bar{x}_j = 1 - x_j$ 

e.g., for MAXCUT!

This initial state is  $\mathbb{Z}_2$ -symmetric!

$$H_n = \sum_{k \in \mathbb{Z}_n} (I - Z_k Z_{k+1})$$

#### **Conventions throughout this talk:**

- $\{H_n\}_n$  family of local Hamiltonians with n = number of qubits
- Hamiltonians are sums of local terms of strength O(1)
- Ground state energy zero for every Hamiltonian:  $min_{\psi} \langle \psi | H_n | \psi \rangle = 0$

$$H_n = \sum_{k \in \mathbb{Z}_n} (I - Z_k Z_{k+1})$$

### **Goal:** prepare *a ground state* $|\psi\rangle = U|+\rangle^{\otimes n}$ from $|+\rangle^{\otimes n}$

What is the required circuit range for U?

#### U has

(backward) *range*  $R^{\leftarrow}$  if the backward light-cone of every output qubit *j* is contained in  $(j - R^{\leftarrow}, j + R^{\leftarrow})$  (forward) **range**  $R^{\rightarrow}$  if the forward light-cone of every input qubit k is contained in  $(k - R^{\rightarrow}, k + R^{\rightarrow})$ 

range  $R = \max\{R^{\leftarrow}, R^{\rightarrow}\}.$ 



$$H_n = \sum_{k \in \mathbb{Z}_n} (I - Z_k Z_{k+1})$$

**Goal:** prepare *a ground state*  $|\psi\rangle = U|+\rangle^{\otimes n}$  from  $|+\rangle^{\otimes n}$ 

If U is arbitrary (**no symmetry**):

$$\begin{split} |\psi\rangle &= \alpha |0\rangle^{\otimes n} + \beta |1\rangle^{\otimes n}, \ \alpha,\beta \text{ arbitrary} \\ & \downarrow \\ \text{Choose } |\psi\rangle &= |0\rangle^{\otimes n} \text{ and } U = H^{\otimes n} \\ & \text{Easy! (range-1, local)} \end{split}$$

If U is Z<sub>2</sub>-symmetric:  $|\psi\rangle$  has to be  $|GHZ_n\rangle = \frac{1}{\sqrt{2}}(|0\rangle^{\otimes n} + |1\rangle^{\otimes n})$ Need linear range!

This is a fundamental limitation of  $\mathbb{Z}_2$ -symmetric circuits!

### Circuit range lower bound for preparing $|GHZ_n\rangle$

**Claim:** Suppose a circuit *U* prepares  $|GHZ_n\rangle$  from a product state, i.e.,  $|GHZ_n\rangle = U|+\rangle^{\bigotimes n}$ . Then the range of *U* satisfies  $R \ge \frac{n}{2}$ .

$$|GHZ_{n}^{+}\rangle = \frac{1}{\sqrt{2}}(|0\rangle^{\otimes n} + |1\rangle^{\otimes n})$$
$$GHZ_{n}^{-}\rangle = \frac{1}{\sqrt{2}}(|0\rangle^{\otimes n} - |1\rangle^{\otimes n})$$

These two states are orthogonal, but *locally indistinguishable*: the reduced density operators on n-1 qubits are identical.

The observable  $UO_jU^{-1}$  distinguishes these two states.

 $U^{-1}|\mathbf{GHZ}_n^+\rangle = |+\rangle^{\otimes n}$ 

 $U^{-1}|GHZ_n^-\rangle$ 

These states are *locally distinguishable* because they are orthogonal and the first is a product state

There is a single-qubit observable  $O_j$  distinguishing these two states.

S. Bravyi, M. B. Hastings, and F. Verstraete, Phys. Rev. Lett. 97, 050401 (2006).

 $|+\rangle$   $|+\rangle$   $j - R^{\leftarrow}$   $j + R^{\leftarrow}$   $0_{j}$   $|+\rangle$   $|+\rangle$ 

### Saturating the range lower bound: GHZ-preparing circuit



$$H_n = \sum_{k \in \mathbb{Z}_n} (I - Z_k Z_{k+1})$$

**Goal:** prepare *a ground state*  $|\psi\rangle = U|+\rangle^{\otimes n}$  from  $|+\rangle^{\otimes n}$ 

If U is arbitrary (no symmetry): (range-1 suffices)

### If U is $\mathbb{Z}_2$ -symmetric:

Need linear range!



#### "Symmetry protection"

Haldane. PRL 50:1153-1156, 1983. Affleck, Kennedy, Lieb, Tasaki. PRL 59:799-802, 1987. Gu, Wen, PRB 80:155131, (2009) Pollmann, Turner, Berg, Oshikawa. PRB 81:054439 (2010) Haegeman, Perez-Garcia, Cirac, Schuch, PRL 102, 050402 (2012) Chiu, Teo, Schnyder, Ryu. Rev. Mod. Phys., 88:035005,2016.



### Low-energy states of Ising model: Preparation with symmetry

$$H_n = \sum_{k \in \mathbb{Z}_n} (I - Z_k Z_{k+1})$$

**Theorem:** Suppose  $|\psi\rangle = U|+\rangle^{\otimes n}$  where U has range R < n/4 and is  $\mathbb{Z}_2$ -symmetric.

Then 
$$\langle \psi | H_n | \psi \rangle \ge \frac{1}{2R+1} n$$

#### Preparing any state with an energy density lower than $\varepsilon$ density requires $R = \Omega(1/\epsilon)$ .

#### Symmetry obstructs the preparation of low-energy states!

also see G. Mbeng, R. Fazio, G. Santoro, arXiv:190608948 for QAOA

# Toric code: no zero-energy trivial states

Geometrically local circuits require  $\Omega(\sqrt{n})$  depth.

Bravyi, Hastings, Verstraete, PRL 97, 050401 (2006)

All toric code *zero-energy states* are *non-trivial* (topologically ordered).



### Toric code: existence of low-energy trivial states

If  $n \ge d^2$  the output state is NOT a ground state of  $H_n^{toric}$ 

Bravyi, Hastings, Verstraete, PRL 97, 050401 (2006)

All toric code *zero-energy states* are *non-trivial* (topologically ordered).



constant-size patches of local ground states (can be created in parallel)



For every constant  $\varepsilon > 0$  there is a **constant-depth** circuit U such that  $\langle +|^{\otimes n}U^{\dagger}H_{n}^{toric}U|+\rangle^{\otimes n} \leq \varepsilon n$ 

The toric code has *low-energy states that are trivial.* 

# The NLTS conjecture

Freedman and Hastings, Quant. Inf. Comp. 14 (2014)

#### No low-energy trivial states (NLTS) property:

There is  $\varepsilon > 0$  and a function  $f: \mathbb{N} \to \mathbb{N}$  such that for any depth-d (local) circuit U

$$\langle +|^{\otimes n}U^{\dagger}H_{n}U|+\rangle^{\otimes n} > \varepsilon n$$
 for any  $n \ge f(d)$ 

#### **Conjecture**: There is a family $\{H_n\}_n$ of local Hamiltonians that has the NLTS property.

The following families  $\{H_n\}_n$ **do not** satisfy the NLTS property:

| Hamiltonian family                                                               | Reference                |
|----------------------------------------------------------------------------------|--------------------------|
| toric code Hamiltonians                                                          | Freedman & Hastings 2014 |
| 2-local Hamiltonians on non-expanding graphs                                     | Brandao and Harrow 2013  |
| 2-local Hamiltonians with commuting terms                                        | Bravyi and Vyalyi 2005   |
| 3-qubit Hamiltonian with commuting terms                                         | Aharonov and Eldar 2011  |
| O(1)-local Hamiltonians with commuting terms with high local expansion           | Aharonov and Eldar 2015  |
| Sparse commuting O(1)-local Hamiltonians corresponding to graphs with high girth | Hastings 2012            |

# The NLTS conjecture

Freedman and Hastings, Quant. Inf. Comp. 14 (2014)

#### No low-energy trivial states (NLTS) property:

There is  $\varepsilon > 0$  and a function  $f: \mathbb{N} \to \mathbb{N}$  such that for any depth-d (local) circuit U

$$\langle +|^{\otimes n}U^{\dagger}H_{n}U|+\rangle^{\otimes n} > \varepsilon n$$
 for any  $n \ge f(d)$ 

**Conjecture**: There is a family  $\{H_n\}_n$  of local Hamiltonians that has the NLTS property.

Evidence for the NLTS conjecture:

- There is a family of toric-code like (CSS-stabilizer) Hamiltonians on simplicial complexes such that an NLTS-like statement holds *when one restricts to a certain subset of excited states*. (Freedman and Hastings)
- There is a family of Hamiltonians satisfying a related "*no lowerror trivial states property*" (Harrow and Eldar, FOCS 2017)

# Main result: NLTS with symmetry protection

for a family

 $\{H_n\}_n$  of local  $\mathbb{Z}_2$ -symmetric Hamiltonians No low-energy  $\mathbb{Z}_2$  -trivial states property:

There is  $\varepsilon > 0$  and a function  $f: \mathbb{N} \to \mathbb{N}$  such that for any  $\mathbb{Z}_2$ -symmetric depth-d (local) circuit U

$$\langle +|^{\otimes n}U^{\dagger}H_{n}U|+\rangle^{\otimes n} > \varepsilon n$$
 for any  $n \ge f(d)$ 

**Main result**: Construction of a family  $\{H_n\}_n$  of local Hamiltonians that has the NLZ<sub>2</sub>TS property.



Symmetryprotected NLTS

 $\mathbf{NL} \mathbb{Z}_2 \mathbf{TS}$ 

Let  $\{G_n\}_{n \in I}$  be an infinite family of *D*-regular graphs such that  $h(G_n) \ge h$  for all  $n \in I$ 

Graph 
$$G = (V, E)$$
 given $S \subset V$ (edge) boundary $\partial(S) = \{e \in E \mid |e \cap S| = 1\}$ Cheeger constant of  $G$ : $h(G) = \min_{\substack{S \subseteq V \\ 0 < |S| \le |V|/2}} \frac{|\partial(S)|}{|S|}$ 

We need infinite families of D-regular graphs with  $h = \Omega(1)$ .

#### Ramanujan graphs:

- connected
- satisfy  $h(G) \ge \frac{1}{2}(D 2\sqrt{D 1})$

There is an infinite family of *D*-regular Ramanujan graphs for every  $D \ge 3$ .

Marcus, Spielman, Srivastava, Annals of Mathematics 182, 307 (2015)

Let  $\{G_n\}_{n \in I}$  be an infinite family of *D*-regular graphs such that  $h(G_n) \ge h$  for all  $n \in I$ 

Let 
$$H_n = \frac{1}{2} \sum_{(u,v) \in E_n} (I - Z_u Z_v)$$



Let  $\{G_n\}_{n \in I}$  be an infinite family of *D*-regular graphs such that  $h(G_n) \ge h$  for all  $n \in I$ 

Let 
$$H_n = \frac{1}{2} \sum_{(u,v) \in E_n} (I - Z_u Z_v)$$

Theorem:
$$(+|^{\otimes n}U^{\dagger}H_{n}U|+)^{\otimes n} > \binom{h}{6}n$$
for any $n > 24^{2}2^{4d/3}$ Image: and any  $\mathbb{Z}_{2}$ -symmetric depth-  $d$  (local) circuit  $U$ Image: and any  $\mathbb{Z}_{2}$ -symmetric depth-  $d$  (local) circuit  $U$ Proof: $|+\rangle - symmetric - circuit U$ Suppose $(+|^{\otimes n}U^{\dagger}H_{n}U|+)^{\otimes n} < \binom{h}{6}n$ Image: and any  $\mathbb{Z}_{2}$ -symmetric depth-  $d$  (local) circuit  $U$ Image: and any  $\mathbb{Z}_{2}$ -symmetric depth-  $d$  (local) circuit  $U$ Proof: $|+\rangle - symmetric - circuit U$ Image: and any  $\mathbb{Z}_{2}$ -symmetric depth-  $d$  (local) circuit  $U$ Image: and any  $\mathbb{Z}_{2}$ -symmetric depth  $d$ Image: and any  $\mathbb{Z}_{2}$ -symmetric depth-  $d$  (local) circuit  $U$ Image: and any  $\mathbb{Z}_{2}$ -symmetric depth  $d$ Image: and any  $\mathbb{Z}_{2}$ -symmetric depth-  $d$  (local) circuit  $U$ Image: and any  $\mathbb{Z}_{2}$ -symmetric depth  $d$ Image: and any  $\mathbb{Z}_{2}$ -symmetric depth-  $d$  (local) circuit  $U$ Image: and any  $\mathbb{Z}_{2}$ -symmetric depth  $d$ Image: and any  $\mathbb{Z}_{2}$ -symmetric depth-  $d$  (local) circuit  $U$ Image: and any  $\mathbb{Z}_{2}$ -symmetric depth  $d$ Image: and any  $\mathbb{Z}_{2}$ -symmetric depth  $d$ Image: an one of the transformation of

Let  $\{G_n\}_{n \in I}$  be an infinite family of *D*-regular graphs such that  $h(G_n) \ge h$  for all  $n \in I$ 

Let 
$$H_n = \frac{1}{2} \sum_{(u,v) \in E_n} (I - Z_u Z_v)$$

Theorem:
$$(+|^{\otimes n}U^{\dagger}H_{n}U|+)^{\otimes n} > \binom{h}{6}n$$
for any $n > 24^{2}2^{4d/3}$ Proof: $|+\rangle$ symmetric $x_{1}$ Suppose $(+|^{\otimes n}U^{\dagger}H_{n}U|+)^{\otimes n} < \binom{h}{6}n$ Proof: $|+\rangle$ symmetric $x_{2}$ Suppose $(+|^{\otimes n}U^{\dagger}H_{n}U|+)^{\otimes n} < \binom{h}{6}n$  $|+\rangle$ of depth d $x_{2}$ Suppose $(+|^{\otimes n}U^{\dagger}H_{n}U|+)^{\otimes n} < \binom{h}{6}n$ By Markov's inequality $p(S_{low}) \ge 1/2$ where $S_{low} \coloneqq \{x \in \{0,1\}^{n} \mid \langle x|H|x \rangle < \frac{h}{2}n\}$ 

#### "low energy configurations"



Let  $\{G_n\}_{n \in I}$  be an infinite family of *D*-regular graphs such that  $h(G_n) \ge h$  for all  $n \in I$ 

Let 
$$H_n = \frac{1}{2} \sum_{(u,v) \in E_n} (I - Z_u Z_v)$$

Theorem:
$$\langle +|^{\otimes n}U^{\dagger}H_{n}U|+\rangle^{\otimes n} > \left(\frac{h}{6}\right)n$$
for any $n > 24^{2}2^{4d/3}$   
and any  $\mathbb{Z}_{2}$ -symmetric depth-  $d$  (local) circuit  $U$ Proof: $|+\rangle - symmetric - x_{1}$   
 $|+\rangle - of depth d - x_{2}$   
 $|+\rangle - of depth d - x_{n}$ Suppose $\langle +|^{\otimes n}U^{\dagger}H_{n}U|+\rangle^{\otimes n} < \left(\frac{h}{6}\right)n$   
Consider the distribution  
 $p(x) = |\langle x|U|+\rangle^{\otimes n}|^{2}$  where  
 $x \in \{0,1\}^{n}$ by  $\mathbb{Z}_{2}$ -symmetry: $p(S_{0}) \ge 1/4$  and  
 $p(S_{1}) \ge 1/4$  $p(S_{1}) \ge 1/4$  $p(S_{1}) \ge 1/4$ 

### Circuit depth lower bound for sampling from bimodal distributions

Theorem:

(Corollary 43, Eldar & Harrow, 2017) Let p(x) denote the output distribution of a depth-d quantum circuit U. Let  $S_0, S_1 \subset \{0,1\}^n$  be such that  $p(S_0) > 0$  and  $p(S_1) > 0$ . Then  $\operatorname{dist} (S_0, S_1) \leq \frac{4n^{1/2}2^{3d/2}}{\min\{p(S_0), p(S_1)\}}$ 

A distribution produced by a shallow quantum circuit does not have large support on any two distant subsets of strings at the same time.



level-p QAOA variational state

$$\psi(\beta,\gamma) = \prod_{k=1}^{p} e^{i\beta_k B} e^{i\gamma_k H} |+\rangle^{\otimes n}$$



| MAXCUT on graph                   | approximation ratio<br>to classical algorithm | approximation ratio<br>achieved by QAOA                        | required<br>QAOA level p |                                                                                                     |
|-----------------------------------|-----------------------------------------------|----------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------|
| any                               |                                               | 1                                                              | $p  ightarrow \infty$    | Farhi et al. 2014<br>Lloyd 2018                                                                     |
| triangle-free<br>D-regular graphs |                                               | $\frac{1}{2} + \frac{1}{2\sqrt{D}}(1 - \frac{1}{D})^{(D-1)/2}$ | p = 1                    | Wang, Hadfield, Jiang, Rieffel,<br>PRA 97, 022304 (2018)<br>Ryan-Anderson, arXiv:1812.04735 (2018). |

Sampling from the output distribution of (p = 1) –QAOA cannot be efficiently simulated classically unless the polynomial hierarchy collapses (Farhi & Harrow 2016)

level-p QAOA variational state

$$\psi(\beta,\gamma) = \prod_{k=1}^{p} e^{i\beta_k B} e^{i\gamma_k H} |+\rangle^{\otimes n}$$



| MAXCUT on graph                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | approximation ratio<br>to classical algorithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | approximation ratio<br>achieved by QAOA                                                                                                                                                                        | required<br>QAOA level p                  |                                      |                                                                                                                                            |                                                          |                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| any                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                              | $p  ightarrow \infty$                     | classical<br>algorithm<br>D 2 0.2500 |                                                                                                                                            | classical<br>algorithm C                                 |                                                                                                                                |
| triangle-free<br>D-regular graphs<br>$D \le 1000$                                                                                                                                                                                                                                                                                                                                                                                                                                  | numerically optimized<br>local algorithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{1}{2} + \frac{1}{2\sqrt{D}} (1 - \frac{1}{D})^{(D-1)/2}$                                                                                                                                                | p = 1                                     |                                      | 3       0.187         4       0.140         5       0.156         6       0.122         7       0.128                                      | 75<br>96<br>92<br>91<br>92                               | 0.1925<br>0.1624<br>0.1431<br>0.1294<br>0.1190                                                                                 |
| <sup>1</sup> Station Q, Microsoft<br><sup>2</sup> Quantum Architectures and Compu-<br>We consider some classical and depth. First, we define a class of "I<br>step version of these algorithms can<br>MAX-3-LIN-2. Second, we show tha<br>considered in the literature[I], and a<br>the single-step QAOA on all triang<br>degree, existing single-step classical<br>while for the remaining 4 choices we<br>consider the QAOA and provide stro<br>on MAX-3-LIN-2 on bounded degree | Bounded Depth Approximation<br>Matthew B. Hastings <sup>1, 2</sup><br>Research, Santa Barbara, CA 93106-6105,<br><i>itation Group, Microsoft Research, Redmond</i> ,<br>quantum approximate optimization algorithm<br>local" classical optimization algorithms and s<br>in achieve the same performance as the sing<br>at this class of classical algorithms generalizes<br>also that a single step of the classical algorithm<br>gle-free MAX-CUT instances. In fact, for all<br>algorithms already outperform the QAOA<br>is show that the generalization here outperfor-<br>ing evidence that, for any fixed number of step<br>be graphs cannot achieve the same scaling as | Algorithms USA WA 98052, USA ms with bounded how that a single le step QAOA on a class previously n will outperform l but 4 choices of on these graphs, ms it. Finally, we s, its performance can be done by a | XCUT on D-regular graph for $D \leq 1000$ | ıs,                                  | 8 0.116<br>9 0.107<br>10 0.107<br>11 0.092<br>12 0.098<br>13 0.088<br>14 0.090<br>15 0.085<br>16 0.083<br>17 0.081<br>18 0.077<br>19 0.077 | 66<br>77<br>25<br>67<br>66<br>95<br>63<br>63<br>71<br>78 | 0.1108<br>0.1040<br>0.0984<br>0.0936<br>0.0894<br>0.0858<br>0.0825<br>0.0796<br>0.0770<br>0.0770<br>0.0747<br>0.0725<br>0.0705 |

class of "global" classical algorithms. These results suggest that such local classical algorithms are likely to be at least as promising as the QAOA for approximate optimization.

on MAX-3-LIN-2 on bounded degree graphs cannot achieve the same scaling as can be done by a

level-p QAOA variational state

$$\psi(\beta,\gamma) = \prod_{k=1}^{p} e^{i\beta_k B} e^{i\gamma_k H} |+\rangle^{\otimes n}$$



| MAXCUT on graph                                              | approximation ratio<br>to classical algorithm | approximation ratio<br>achieved by QAOA                         | required<br>QAOA level p            |                                                                                                                                                         |
|--------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| any                                                          |                                               | 1                                                               | $p  ightarrow \infty$               | Farhi et al. 2014<br>Lloyd 2018                                                                                                                         |
| triangle-free<br>D-regular graphs<br>$D \le 1000$            | numerically optimized<br>local algorithm      | $\frac{1}{2} + \frac{1}{2\sqrt{D}} (1 - \frac{1}{D})^{(D-1)/2}$ | p = 1                               | Wang, Hadfield, Jiang, Rieffel,<br>PRA 97, 022304 (2018)<br>Ryan-Anderson, arXiv:1812.04735 (2018).<br>Hastings 2019<br>(based on Hirvonen et al. 2014) |
| triangle-free bipartite<br>3-regular graphs, o(n)<br>squares | 0.87856                                       | 0.756                                                           | p = 2                               | Farhi et al. 2014                                                                                                                                       |
|                                                              | 0.87856                                       | ?                                                               | WHAT ABOUT<br>p > 1 ?<br>(constant) |                                                                                                                                                         |

Goemans and Williamson, 1995

# Main result for MAXCUT-QAOA with p > 1

**Theorem:** For every  $D \ge 3$  there is an infinite family of *D*-regular bipartite graphs  $\{G_n\}_{n \in I}$  such that

$$\alpha(QAOA_p) \le \frac{5}{6} + \frac{\sqrt{D-1}}{3D}$$
 if  $p \le D^{-1}(\frac{1}{3}\log_2 n - 4)$ 

In particular:

 $\alpha(QAOA_p) < 0.87856 = \alpha$ (Goemans-Williamson) if  $D \ge 54$ 

The best classical polynomial-time algorithm (Goemans-Williamson) beats QAOA for any constant level p

# Main result for MAXCUT-QAOA with p > 1

**Theorem:** For every  $D \ge 3$  there is an infinite family of *D*-regular bipartite graphs  $\{G_n\}_{n \in I}$  such that

$$\alpha(QAOA_p) \le \frac{5}{6} + \frac{\sqrt{D-1}}{3D}$$
 if  $p \le D^{-1}(\frac{1}{3}\log_2 n - 4)$ 

**Proof:** Take  $\{G_n\}_n$  to be family of D-regular bipartite Ramanujan graphs. (Marcus, Spielman, Srivastava 2015)

$$\max_{\psi} \langle \psi | H_n | \psi \rangle = |E_n|$$

$$H_n = \frac{1}{2} \Sigma_{(u,v) \in E_n} (I - Z_u Z_v)$$
because  $G_n$  is bipartite.
$$\max_{(\beta,\gamma)} \langle \psi(\beta,\gamma) | H_n | \psi(\beta,\gamma) \rangle = \frac{|E_n|}{2} + \max_{(\beta,\gamma)} \langle \widehat{\Psi}(\beta,\gamma) | \widehat{H}_n | \widehat{\Psi}(\beta,\gamma) \rangle \quad \widehat{H}_n = \frac{1}{2} \Sigma_{(u,v) \in E_n} Z_u Z_v$$

**NL**  $\mathbb{Z}_2$ **TS:**  $\langle \widehat{\Psi}(\beta,\gamma) | \widehat{H}_n | \widehat{\Psi}(\beta,\gamma) \rangle < \frac{|E_n|}{2} - \frac{hn}{6}$  because  $\prod_{k=1}^p e^{i\beta_k B} e^{i\gamma_k H_n}$  is  $\mathbb{Z}_2$ -symmetric depth, depth  $d \leq p D$ 

#### The **best classical polynomial-time algorithm** (Goemans-Williamson) beats QAOA for any constant level p

level-p QAOA variational state

$$\psi(\beta,\gamma) = \prod_{k=1}^{p} e^{i\beta_k B} e^{i\gamma_k H} |+\rangle^{\otimes \gamma}$$



| MAXCUT on graph                                              | approximation ratio<br>to classical algorithm | approximation ratio<br>achieved by QAOA                                        | required<br>QAOA level p |                                                                                                                                                       |
|--------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| any                                                          |                                               | 1                                                                              | $p  ightarrow \infty$    | Farhi et al. 2014<br>Lloyd 2018                                                                                                                       |
| triangle-free<br>D-regular graphs<br>$D \le 1000$            | numerically optimized<br>local algorithm      | $\frac{1}{2} + \frac{1}{2\sqrt{D}} (1 - \frac{1}{D})^{(D-1)/2}$                | p = 1                    | Wang, Hadfield, Jiang, Rieffel,<br>PRA 97, 022304 (2018)<br>Ryan-Anderson, arXiv:1812.04735 (2018<br>Hastings 2019<br>(based on Hirvonen et al. 2014) |
| triangle-free bipartite<br>3-regular graphs, o(n)<br>squares | 0.87856                                       | 0.756                                                                          | <i>p</i> = 2             | Farhi et al. 2014                                                                                                                                     |
| <b>D</b> -regular bipartite expander graphs                  | 0.87856                                       | $\leq \frac{5}{6} + \frac{\text{const}}{\sqrt{D}} \to 0.8333$ $(D \to \infty)$ | $1$                      | Goemans and<br>Williamson, 1995<br>THIS WORK                                                                                                          |

The best classical polynomial-time algorithm (Goemans-Williamson) beats QAOA for any constant level p

# Conclusions and open problems

- $\mathbb{Z}_2$ -symmetric No Low Energy Trivial States (NLTS) property for a family of Ising models on expander graphs
  - Other symmetries?
  - General NLTS conjecture still open
- Limitations to quantum approximate optimization algorithm (QAOA): Efficient (i.e., constant-level) QAOA underperforms compared to the best classical polynomial-time algorithm (Goemans-Williamson)
  - Comparison for generic instances (instead of worst-case)? Finding independent sets in random graphs:

The Quantum Approximate Optimization Algorithm Needs to See the Whole Graph: A Typical Case

Edward Farhi<sup>1</sup>, David Gamarnik<sup>2</sup>, and Sam Gutmann

 $^1$ Google Inc., Venice CA 90291 and Center for Theoretical Physics, MIT, Cambridge MA, 02139  $^2$  Operations Research Center and Sloan School of Management MIT, Cambridge MA, 02140

April 21, 2020

- Non-local modifications of QAOA/RQAOA: some evidence for their suitability:
  - More extensive benchmarks/case studies?