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Why quantum many-body problems are hard to solve classically ?

- Exponentially large Hilbert space
- Entanglement
- Sign problem

- Glassiness
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Taming the exponential scaling: variational algorithms

Minimize the energy of a Hamiltonian describing a system of n qubits
over a class of variational states that depend only on poly(n) parameters.
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Hardware limitations: depth of the state preparation circuit must be small enough
to enable reliable implementation on NISQ devices. Qubit connectivity may be limited,
e.g. only 2D or 3D. Highly entangled ground states are out of scope.
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Limitations of VQE

Hardware limitations: depth of the state preparation circuit must be small enough
to enable reliable implementation on NISQ devices. Qubit connectivity may be limited,
e.g. only 2D or 3D. Highly entangled ground states are out of scope.

Algorithmic limitations: the number of variational parameters must be small enough
to enable efficient energy minimization. Large-scale VQE with an extensive number of
variational parameters may give rise to intractable optimization problems.
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Variational Quantum Eigensolver (VQE)

Electronic structure simulation for chemistry or material science
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Variational Quantum Eigensolver (VQE)

Electronic structure simulation for chemistry or material science
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20d quantization map to qubits

Expected value of a multi-qubit Pauli operator can be
inferred by measuring each qubit in X or Y or Z basis
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/ Quantum Mean Value problem

Suppose U is a low-depth quantum circuit on n qubits and € > 0 1s the error tolerance.
Given a tensor product observable

P=PLQPKY Q MK, 1Pl <1
approximate QMV = (OnlU TpU | 0™) within an additive error &.
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/ Quantum Mean Value problem \

Suppose U is a low-depth quantum circuit on n qubits and € > 0 1s the error tolerance.
Given a tensor product observable

P=PLQPKY Q MK, 1Pl <1
approximate QMV = (OnlU TpU |0n) within an additive error €.

Do we really need a quantum computer to solve the problem ?



Quantum Mean Value problem: classical runtime

.y L , our
variational circuit best previously known [1,2] algorithm
constant depth, 2D 20t /%) 0(ne™*)
constant depth, 3D 20(n*/%) ~220(n' /%)

[1] Aaronson and Chen, arXiv:1612.05903

2] Markov and Shi, SIAM J. on Comp. (2008), quant-ph/0511069




Quantum Mean Value problem: classical runtime

.y L , our
variational circuit best previously known [1,2] algorithm
constant depth, 2D 20t /%) 0(ne™*)
constant depth, 3D 20(n*/%) g72 20/

No quantum advantage if variational circuits are 2D and constant depth !



Quantum Mean Value problem: classical runtime

o . , our
variational circuit best previously known [1,2] algorithm
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constant depth, 3D 20(n?/%) £=220(m' /%)
constant depth, ~
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Caveat: we can only compute

the magnitude of QMV



Quantum Mean Value problem: classical runtime

variational circuit best previously known [1,2] out
result
constant depth, 2D 20t/
constant depth, 3D 20(n?/3) =2 20(n'/3)
general 0(n2" -
n2m) 20(/nlog(1/e))
constant depth :

Caveat: we can only compute

the magnitude of QMV



Aside: inner product algorithm

(W1[¥,) =>

Etticient approximation algorithm for computationally tractable states such that

~
* Amplitudes (x|¥;) are easy to compute

* Distributions I(xILIJi)IZ are easy to sample
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(W1[¥,) =>

Etticient approximation algorithm for computationally tractable states such that
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* Amplitudes (x|¥;) are easy to compute

* Distributions I(xILIJi)IZ are easy to sample
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Example: Matrix Product States with a small bond dimension are computationally tractable
for any order of qubits.



Aside: inner product algorithm

(W1[¥,) =>

Etticient approximation algorithm for computationally tractable states such that

~
* Amplitudes (x|¥;) are easy to compute

* Distributions I(xILIJi)IZ are easy to sample
- /

The algorithm approximates the inner product with a small additive error.
Computing the inner product exactly or with a small multiplicative error 1s #P-hard.
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Aside: inner product algorithm

(W1[¥,) =>

Monte Carlo approach:

x|,
(911%,) = Z )+

\ }
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mean value of a function f (x)
over a distribution p(x)

Var(f) £1

M
1 .
(W] W,) =22 ) ()

\ B }
|
empirical mean value of f(x)

over M samples from p(x)

Approximation error: €~M —1/2



Consider a system of n qubits that live at sites of a 2D grid of size ynX+/n

Depth-d circuit U consists of d layers of nearest-neighbor two-qubit gates.



Consider a system of n qubits that live at sites of a 2D grid of size ynX+/n

Depth-d circuit U consists of d layers of nearest-neighbor two-qubit gates.
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Quantum Mean Value algorithm

Step 1: compute each dressed observable Q; = U T(P] X le1se)U

Locality - Simulation within a single light cone

:s



Quantum Mean Value algorithm

Step 1: compute each dressed observable Q; = U T(P] X le1se)U

Locality ‘ Simulation within a single light cone

Id

Q:Q; = Q;0;

QMV = (0™ UT(P,® P, ® - ® P)U|0™) = (0"Q,Q; -+ Q,,|0™)



Quantum Mean Value algorithm

Step 2: coarse grain the lattice such that each dressed observable @Q; acts on a 2x2 block.

=

Now each lattice site has local dimension D = 20(d2)



Quantum Mean Value algorithm

QMV = (0n|Q1Q2 Qn|0n>

Q; act on 2x2 blocks of sites and pairwise commute
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Quantum Mean Value algorithm

QMV = (0n|Q1Q2 Qn|0n>

Q; act on 2x2 blocks of sites and pairwise commute

Step 3: reorder the terms to get the inner product of two Matrix Product States (MPS)
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Quantum Mean Value algorithm

QMV = (0"|Q1Q3 - Q,[0™) = (P4 |[W[W¥p)
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Quantum Mean Value algorithm

QMV = (0"|Q1Q3 - Q,[0™) = (P4 |[W[W¥p)
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permutation of n qubits
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Quantum Approximate Optimization Algorithm

Maximize a classical cost function C : {1,—1}"* - R

Example: C(z) = z JapZaZp G =(V,E)
(a,b)EE

-

1) Promote the cost function to a quantum Hamiltonian: C = ),, C(z)|z) (z|
2) Maximize expected energy (Y |C|y) over variational states Y with a few parametets.

3) Measure the optimal state Y to obtain a classical solution z € {1, —1}™.
K Mean value of C(z) equals (Y|C|P).

/




Quantum Approximate Optimization Algorithm

Level-p variational state:
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Quantum Approximate Optimization Algorithm

Level-p variational state:
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Variational parameters: 5,y € RP

Trotterized version of the Adiabatic Quantum Computation for p = poly(n)
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Quantum Approximate Optimization Algorithm

Level-p variational state:

4 I
W(B, Y)Y =| |exp[—iB;j(Xy + - + Xp)]exp|—iy;C| [+ + -+ +) |+)~[0) + [1)
j=1
- J

=

Variational parameters: 5,y € RP

Trotterized version of the Adiabatic Quantum Computation for p = poly(n)

Reasons for keeping the level p small:

* Non-linear optimization over 5 and y is hard
* Need to keep the circuit depth small for near-term implementation
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Can low-level QAOA beat classical approximation algorithms for some problem ?

No-go theorems:

Level-1 QAOA is inferior to local classical optimizers for bounded-degree graphs

Level-p QAOA with p = 0(1) is inferior to the best known classical approximation
algorithm (Goemans-Williamson SDP relaxation) for bounded-degree graphs.



Can low-level QAOA beat classical approximation algorithms for some problem ?

No-go theorems:

Level-1 QAOA is inferior to local classical optimizers for bounded-degree graphs

Level-p QAOA with p = 0(1) is inferior to the best known classical approximation
algorithm (Goemans-Williamson SDP relaxation) for bounded-degree graphs.

4 )

Can we overcome these limitations ?
New idea: variable elimination and recursive QAOA

N /
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Variable elimination

1. Run the standard level-p QAOA with cost function ((z) = 2 JapZaZp
that depends on n variables (a,b)EE

2. Compute quantum mean values Mg p = (W(B, V)| ZaZpY (B, 7))

3. Identify a maximally correlated pair of variables
(a,b) = argmax |[Mgp|
a

4. Impose a constraint Zp, = Sign(Ma,b)Za and eliminate Zp from the cost function

]b,chZc < ]b,cSign(Ma,b)ZaZc



Variable elimination

1. Run the standard level-p QAOA with cost function ((z) = 2 JapZaZp
that depends on n variables (a,b)EE

2. Compute quantum mean values Mg p = (W(B, V)| ZaZpY (B, 7))

3. Identify a maximally correlated pair of variables
(a,b) = arg max | Mg p|
a

4. Impose a constraint Zp, = Sign(Ma,b)Za and eliminate Zp from the cost function

]b,chZc < ]b,cSign(Ma,b)ZaZc

{ We get a new Ising-like cost function C'(z) that depends on n — 1 variables. 1




Recursive QAOA

Apply the variable elimination process recursively until only a few variables are left.
Solve the final problem instance by brute force.
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Recursive QAOA

Apply the variable elimination process recursively until only a few variables are left.
Solve the final problem instance by brute force.
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Recursive QAOA

Apply the variable elimination process recursively until only a few variables are left.
Solve the final problem instance by brute force.
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Recursive QAOA

Apply the variable elimination process recursively until only a few variables are left.
Solve the final problem instance by brute force.
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Recursive QAOA

Apply the variable elimination process recursively until only a few variables are left.
Solve the final problem instance by brute force.
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QAOA Z3 = 23
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M2,4 — —04
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Numerical simulation of level-1 QAOA and RQAOA for 100 qubits.
Cost function: random-bond Ising model on the complete graph.
SDP: Goemans-Williamson semidefinite programming relaxation with 100 rounding trials.
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problem instance
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MAX 3-CUT problem

Variables: vertex colors z, € {0,1,2}
G=({V,E)

Cost function: C(z) = #{edges (a,b) : z, #* zp}

Goal: approximate C,,q, = max C(z)
Z

Random guessing: C(z) = (g) Crnax

SDP relaxation algorithm: C(z) = 0.836 - Cipax
[Klerk, Pasechnik, Warners 2004]



Numerical simulations of level-1 QAOA and RQAOA for 50 qutrits and the MAX 3-CUT
cost function. We consider a random ensemble of 3-colorable dense graphs with 50 vertices
randomly partitioned into red/blue/green.
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add random red-blue, red-green,
0.5 blue-green edges with probability
-5 0 5 10 15 20 '/2 for each pair of vertices

Problem instance



Bad news: no quantum advantage for level-1 RQAOA



Bad news: no quantum advantage for level-1 RQAOA

The only “quantum” step: computing quantum mean values

Map = W(B. VI ZaZp Y (B, 7))

Eftficient classical algorithm for level-1 QAOA

PHYSICAL REVIEW A 97, 022304 (2018)

Quantum approximate optimization algorithm for MaxCut: A fermionic view

Zhihui Wang,'-? Stuart Hadfield,> Zhang Jiang,"* and Eleanor G. Rieffel'
Y"Quantum Artificial Intelligence Laboratory, NASA Ames Research Center, California 94035, USA
2Universities Space Research Association, Columbia, Maryland 21046, USA
3Department of Computer Science, Columbia University, New York, New York 10027, USA
4Stinger Ghaffarian Technologies, Inc., Greenbelt, Maryland 20770, USA



Quantum Mean Value problem for level-1 QAOA

X-rotation
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Quantum Mean Value problem for level-1 QAOA

QMV = (Y(B,1)|012[¥ (B, 7))

exp|[—iyC]
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Quantum Mean Value problem for level-1 QAOA

QMV = (p(B,1)|012[(B. 1)) =

S

T

Cancel all gates that do not touch qudits 1,2



Quantum Mean Value problem for level-1 QAOA

QMV = (p(B,1)|012[(B. 1)) =
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Quantum Mean Value problem for level-1 QAOA

QMV = (p(B,1)|012[(B. 1)) =
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Change the order of gates such that qudits 1,2 are coupled to qudits 3,4,...,n sequentially.



Quantum Mean Value problem for level-1 QAOA

QMV = (p(B,1)|012[(B. 1)) =

o+ i 0 i +)
(+ rt H +)
<+ i i1 _|_>

Change the order of gates such that qudits 1,2 are coupled to qudits 3,4,...,n sequentially.



Quantum Mean Value problem for level-1 QAOA

QMV = (p(B,1)|012[(B. 1)) =

T T

Change the order of gates such that qudits 1,2 are coupled to qudits 3,4,...,n sequentially.



Quantum Mean Value problem for level-1 QAOA

QMV = (Y(B,¥)|012[(B,7)) = (+ +|@p 0 ©pp_y 0+ 0 D3(0)|+ +)

(+] |+)

J-th qudit

Sequential coupling: need to compute a product of two-qudit quantum channels.
Classical simulation time 0 (n) assuming that qudit dimension is O (1).
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Quantum Mean Value problem for level-2 QAOA

Our algorithm:

-

Arbitrary interaction graph: runtime 222

J

oraph: runtime O (n?€~%) . Works for qudits of constant dimension.

Planar interaction




Quantum Mean Value problem for level-2 QAOA

B-layers: single-qubit X-rotations

C-layers: diagonal two-qubit gates



Quantum Mean Value problem for level-2 QAOA

Step 1: conjugate the observable O by the inner B-layers.
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This gives a modified two-qubit observable O.
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~

This gives a modified two-qubit observable O.



Quantum Mean Value problem for level-2 QAOA

Step 2: conjugate O by the inner C-layers



Quantum Mean Value problem for level-2 QAOA

Step 2: conjugate O by the inner C-layers



Quantum Mean Value problem for level-2 QAOA

Linear combination of O(1)
tensor product observables




Quantum Mean Value problem for level-2 QAOA

P — P1®P1®®Pn



Quantum Mean Value problem for level-2 QAOA

T

P — P1®P1®®Pn

Step 3: conjugate the observable P by the inner B-layers.



Quantum Mean Value problem for level-2 QAOA

P

Step 3: conjugate the observable P by the inner B-layers.
This gives a modified tensor product observable p.




Quantum Mean Value problem for level-2 QAOA
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Step 4: express the QMYV as the inner product of computationally tractable states.
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Quantum Mean Value problem for level-2 QAOA

(+ H T +)
(st i
(+ NI 1
(it RN

Step 4: express the QMYV as the inner product of computationally tractable states.
Approximate the inner product (W1 |W;) using Van den Nest algorithm.,



Quantum Mean Value problem for level-2 QAOA
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Claim:

any amplitude (W1 |x) can be computed
in time roughly Pz,
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Quantum Mean Value problem for level-2 QAOA

(+ 10 o ~
i Claim:
o 1B -1 any amplitude (W1 |x) can be computed
(+ : E: i: 1) in time roughly 2n/2,
Lol \_ )
<_|_ 11 1 0)
LIYJ | * The C-layer includes only diagonal two-qubit gates

* It cannot entangle a qubit initialized 1n a basis state
* Half of all qubits remains unentangled

Approximating the inner product QMV = (W¥; |W,) by Monte-Catlo takes time 2M/2 =2



Quantum Mean Value problem for level-2 QAOA

(+ H T +)
(st i
(+ NI 1
(it RN

Suppose the C-layer only includes nearest-neighbor gates on a planar graph.
Can we pick a good partition of qubits making W; and W, less entangled ?
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Theorem. Suppose G = (V, E) is a planar graph. There exists a partition IV = V;V,
such that the subgraphs of G induced by V; and V;, have treewidth at most 2.
Such partition can be efficiently computed.
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Theorem. Suppose G = (V, E) is a planar graph. There exists a partition IV = V;V,
such that the subgraphs of G induced by V; and V;, have treewidth at most 2.
Such partition can be efficiently computed.
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Amplitudes of W; are defined by a tensor
network on the subgraph induces by V.
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Subgraph induced by I/
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Two-qubit gates touching a qubit in V;, disappear.

Amplitudes of W; are defined by a tensor
network on the subgraph induces by V.

Low-treewidth tensor networks are easy to contract.
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Recap: we obtained a polynomial-time classical algorithm for approximating

QMV = <1/)(ﬁ' Y)lZaZbll/J(,B, )/)>

for level-2 QAOA states with the Ising-like cost function on any planar graph.

Bonus feature: RQAOA preserves planarity Zg ) *Za
Zp

variable elimination

4 )
Corollary: level-2 RQAOA on planar graphs can be simulated classically in

polynomial time.
\_ J




Summary

Variational quantum algorithms based on constant-depth geometrically
local circuits in 2D can be simulated classically in linear time.

Large-scale classical simulation of level-1 RQAOA 1s reported.
Classical simulation of level-2 RQAOA 1s a work in progress.

Open problems

Establish classical hardnes of approximating quantum mean values for
low-depth circuits or low-level QAOA

Rigorous bounds on the performance of RQAOA. More general variable
elimination methods.



