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Why quantum many-body problems are hard to solve classically ? 

- Exponentially large Hilbert space
- Entanglement
- Sign problem
- Glassiness



Why quantum many-body problems are hard to solve classically ? 

Taming the exponential scaling:  variational algorithms

Minimize the energy of  a Hamiltonian describing a system of  𝑛 qubits
over a class of  variational states that depend only on poly(𝑛) parameters. 

- Exponentially large Hilbert space
- Entanglement
- Sign problem
- Glassiness



Variational Quantum Eigensolver (VQE)

quantum computer
control parameters 𝜃

measurement outcomes

𝜓(𝜃) = 𝑈 𝜃 |0!⟩

parameterized quantum circuit

Simulation of  electronic structure in molecules Peruzzo et al 2014, Kandala et al  2017
Quantum Approximate Optimization Algorithm (QAOA) Farhi, Goldstone, Gutmann 2014

Robust agains systematic unitary errors; random errors can be mitigated Temme, SB, Gambetta 2017

compute

classical computer

min
!

𝜓(𝜃) 𝐻 𝜓(𝜃)



Limitations of  VQE



Limitations of  VQE

all quantum stateslow-depth 
states

Hardware limitations: depth of  the state preparation circuit must be small enough
to enable reliable implementation on NISQ devices. Qubit connectivity may be limited, 
e.g. only 2D or 3D.  Highly entangled ground states are out of  scope.



Limitations of  VQE

all quantum stateslow-depth 
states

Algorithmic limitations: the number of  variational parameters must be small enough
to enable efficient energy minimization.  Large-scale VQE with an extensive number of
variational parameters may  give rise to intractable optimization problems.

efficiently 
computable
low-depth 

states

Hardware limitations: depth of  the state preparation circuit must be small enough
to enable reliable implementation on NISQ devices. Qubit connectivity may be limited, 
e.g. only 2D or 3D.  Highly entangled ground states are out of  scope.



Variational Quantum Eigensolver (VQE)

Electronic structure simulation for chemistry or material science

2nd quantization map to qubits
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Variational Quantum Eigensolver (VQE)

Electronic structure simulation for chemistry or material science

2nd quantization map to qubits

𝑡"#𝑎"$𝑎#

𝑢"#%&𝑎"$𝑎#
$𝑎%𝑎&

𝐻 = -
'()

*

𝑐' 𝑃"

𝑃" ∈ 𝐼, 𝑋, 𝑌, 𝑍 ⊗,

𝜓(𝜃) 𝑋 ⊗ 𝑌⊗ 𝑍⊗⋯ 𝜓(𝜃) = 𝔈 −1 *!$*"$*#$⋯

Expected value of  a multi-qubit Pauli operator can be 
inferred by measuring each qubit in X or Y or Z basis 
and classically multiplying the measured outcomes:

𝑚)

⋯

| ⟩𝜓(𝜃)

state prep

basis change

𝑈"

𝑚.

𝑚/

⋯

𝑈#

𝑈$
average over many experiments



Quantum Mean Value problem
Suppose 𝑈 is a low-depth quantum circuit on  𝑛 qubits and 𝜀 > 0 is the error tolerance.
Given a tensor product observable

𝑃 = 𝑃"⊗𝑃#⊗⋯⊗𝑃!,         𝑃% ≤ 1

approximate QMV ≡ ⟨0! 𝑈&𝑃𝑈 0!⟩ within an additive error 𝜀.



Do we really need a quantum computer to solve the problem ?

Quantum Mean Value problem
Suppose 𝑈 is a low-depth quantum circuit on  𝑛 qubits and 𝜀 > 0 is the error tolerance.
Given a tensor product observable

𝑃 = 𝑃"⊗𝑃#⊗⋯⊗𝑃!,         𝑃% ≤ 1

approximate QMV ≡ ⟨0! 𝑈&𝑃𝑈 0!⟩ within an additive error 𝜀.



Quantum Mean Value problem: classical runtime

variational circuit our
algorithmbest previously known [1,2]

constant depth, 2D

constant depth, 3D

2<(=! /#)

2<(=# /$)

𝑂(𝑛𝜀>?)

𝜀>? 2<(=! /$)

[1] Aaronson and Chen, arXiv:1612.05903
[2] Markov and Shi, SIAM J. on Comp. (2008), quant-ph/0511069



Quantum Mean Value problem: classical runtime

best previously known [1,2]

constant depth, 2D

constant depth, 3D

2<(=! /#)

2<(=# /$)

𝑂(𝑛𝜀>?)

𝜀>? 2<(=! /$)

variational circuit

No quantum advantage if  variational circuits are 2D and constant depth !

our
algorithm



Quantum Mean Value problem: classical runtime

best previously known [1,2]

constant depth,
all-to-all connectivity

constant depth, 2D

constant depth, 3D

2<(=! /#)

2<(=# /$)

𝑂(𝑛2=)

𝑂(𝑛𝜀>?)

𝜀>? 2<(=! /$)

2 @<( = ABC(D/F))

Caveat: we can only compute
the magnitude of  QMV

variational circuit our
algorithm



Quantum Mean Value problem: classical runtime

best previously known [1,2]

general
constant depth

constant depth, 2D

constant depth, 3D

2<(=! /#)

2<(=# /$)

𝑂(𝑛2=)

𝑂(𝑛𝜀>?)

𝜀>? 2<(=! /$)

2 @<( = ABC(D/F))

variational circuit our
result

Caveat: we can only compute
the magnitude of  QMV



Aside: inner product algorithm

Ψ! Ψ" = ?

Van den Nest, “Simulating quantum computers with probabilistic methods”, arXiv:0911.1624

Efficient approximation algorithm for computationally tractable states such that

• Amplitudes 𝑥 Ψ% are easy to compute

• Distributions 𝑥 Ψ% # are easy to sample



Aside: inner product algorithm

Ψ! Ψ" = ?

Van den Nest, “Simulating quantum computers with probabilistic methods”, arXiv:0911.1624

Efficient approximation algorithm for computationally tractable states such that

• Amplitudes 𝑥 Ψ% are easy to compute

• Distributions 𝑥 Ψ% # are easy to sample

Example: Matrix Product States with a small bond dimension are computationally tractable
for any order of  qubits.



Aside: inner product algorithm

Ψ! Ψ" = ?

Van den Nest, “Simulating quantum computers with probabilistic methods”, arXiv:0911.1624

Efficient approximation algorithm for computationally tractable states such that

• Amplitudes 𝑥 Ψ% are easy to compute

• Distributions 𝑥 Ψ% # are easy to sample

The algorithm approximates the inner product with a small additive error.
Computing the inner product exactly or with a small multiplicative error is #P-hard.



Aside: inner product algorithm

Ψ! Ψ" = ?

Van den Nest, “Simulating quantum computers with probabilistic methods”, arXiv:0911.1624

Monte Carlo approach:

Ψ" Ψ# =9
'

𝑥 Ψ" # :
𝑥 Ψ#
𝑥 Ψ"

mean value of  a function 𝑓(𝑥)
over a distribution 𝑝(𝑥)

𝑉𝑎𝑟(𝑓) ≤ 1



Aside: inner product algorithm

Ψ! Ψ" = ?

Van den Nest, “Simulating quantum computers with probabilistic methods”, arXiv:0911.1624

Monte Carlo approach:

Ψ" Ψ# =9
'

𝑥 Ψ" # :
𝑥 Ψ#
𝑥 Ψ"

mean value of  a function 𝑓(𝑥)
over a distribution 𝑝(𝑥)

Ψ" Ψ# ≈
1
𝑀
9
%("

)

𝑓(𝑥%)

empirical mean value of  𝑓(𝑥)
over 𝑀 samples from  𝑝(𝑥)
Approximation  error: 𝜖~𝑀*"/#

𝑉𝑎𝑟(𝑓) ≤ 1



Consider a system of  𝑛 qubits that live at sites of  a 2D grid of  size 𝑛× 𝑛

Depth-𝑑 circuit 𝑈 consists of  𝑑 layers of  nearest-neighbor two-qubit gates. 



Consider a system of  𝑛 qubits that live at sites of  a 2D grid of  size 𝑛× 𝑛

Depth-𝑑 circuit 𝑈 consists of  𝑑 layers of  nearest-neighbor two-qubit gates. 

𝑃, 𝑄, = 𝑈&(𝑃,⊗ 𝐼-./-)𝑈

𝑑

dressed observable

lightcone

𝑈



Quantum Mean Value algorithm

𝑑

Step 1: compute each dressed observable 𝑄, = 𝑈&(𝑃,⊗ 𝐼-./-)𝑈

Locality Simulation within a single light cone 



𝑑

Locality Simulation within a single light cone 

QMV = 0! 𝑈&(𝑃"⊗𝑃#⊗⋯⊗𝑃!)𝑈 0! = ⟨0! 𝑄"𝑄#⋯𝑄! 0!⟩

𝑄%𝑄, = 𝑄,𝑄%

Quantum Mean Value algorithm

Step 1: compute each dressed observable 𝑄, = 𝑈&(𝑃,⊗ 𝐼-./-)𝑈



Step 2: coarse grain the lattice such that each dressed observable 𝑄% acts on a 2x2 block.

Now each lattice site has local dimension 𝐷 = 20(2!)

Quantum Mean Value algorithm



QMV = ⟨0! 𝑄"𝑄#⋯𝑄! 0!⟩

𝑄% act on 2x2 blocks of  sites and pairwise commute

Quantum Mean Value algorithm



Step 3: reorder the terms to get the inner product of  two Matrix Product States (MPS)

𝑄% act on 2x2 blocks of  sites and pairwise commute

𝐴

Ψ4 =J
%∈4

𝑄%|0!⟩ Ψ6 =J
%∈6

𝑄%|0!⟩

𝐵

QMV = ⟨0! 𝑄"𝑄#⋯𝑄! 0!⟩

Quantum Mean Value algorithm



𝑄% act on 2x2 blocks of  sites and pairwise commute

𝐴

Ψ4 =J
%∈4

𝑄%|0!⟩ Ψ6 =J
%∈6

𝑄%|0!⟩

𝐵 MPS with bond 
dimension
𝜒 ≤ 𝐷# = 20(2!)

Step 3: reorder the terms to get the inner product of  two Matrix Product States (MPS)

QMV = ⟨0! 𝑄"𝑄#⋯𝑄! 0!⟩

Quantum Mean Value algorithm



QMV = 0! 𝑄"𝑄#⋯𝑄! 0! = ⟨Ψ4 𝑊 Ψ6⟩

𝐴

Ψ4 =J
%∈4

𝑄%|0!⟩ Ψ6 =J
%∈6

𝑄%|0!⟩

𝐵

permutation of  𝑛 qubits

MPS with bond 
dimension
𝜒 ≤ 𝐷# = 20(2!)

Quantum Mean Value algorithm



QMV = 0! 𝑄"𝑄#⋯𝑄! 0! = ⟨Ψ4 𝑊 Ψ6⟩

𝐴

Ψ4 =J
%∈4

𝑄%|0!⟩ Ψ6 =J
%∈6

𝑄%|0!⟩

𝐵

permutation of  𝑛 qubits

MPS with bond 
dimension
𝜒 ≤ 𝐷# = 20(2!)

Quantum Mean Value algorithm
Inner product of  
computationally  tractable states.
Apply Van den Nest algorithm.



Quantum Approximate Optimization Algorithm [Farhi, Goldstone, Gutmann 2014]



Maximize a classical cost function 𝐶 ∶ 1,−1 ! → ℝ

Quantum Approximate Optimization Algorithm [Farhi, Goldstone, Gutmann 2014]
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Quantum Approximate Optimization Algorithm [Farhi, Goldstone, Gutmann 2014]

𝐶(𝑧) = 9
(7,9)∈:

𝐽7,9𝑧7𝑧9 𝐺 = (𝑉, 𝐸)Example:



Maximize a classical cost function 𝐶 ∶ 1,−1 ! → ℝ

Quantum Approximate Optimization Algorithm [Farhi, Goldstone, Gutmann 2014]

𝐶(𝑧) = 9
(7,9)∈:

𝐽7,9𝑧7𝑧9 𝐺 = (𝑉, 𝐸)

1) Promote the cost function to a quantum Hamiltonian: 𝐶 = ∑; 𝐶 𝑧 | ⟩𝑧 ⟨𝑧|

2) Maximize expected energy 𝜓 𝐶 𝜓 over variational states 𝜓 with a few parameters.

3) Measure the optimal state 𝜓 to obtain a classical solution 𝑧 ∈ 1,−1 !.
Mean value of  𝐶(𝑧) equals 𝜓 𝐶 𝜓 .

Example:



Quantum Approximate Optimization Algorithm [Farhi, Goldstone, Gutmann 2014]

| ⟩𝜓 𝛽, 𝛾 =K
0()

1

exp[−𝑖𝛽0(𝑋) +⋯+ 𝑋,)]exp −𝑖𝛾0𝐶 | ⟩+ +⋯+

Level-𝑝 variational state:

Variational parameters: 𝛽, 𝛾 ∈ ℝ<

| ⟩+ ~| ⟩0 + | ⟩1



Quantum Approximate Optimization Algorithm [Farhi, Goldstone, Gutmann 2014]

| ⟩𝜓 𝛽, 𝛾 =K
0()

1

exp[−𝑖𝛽0(𝑋) +⋯+ 𝑋,)]exp −𝑖𝛾0𝐶 | ⟩+ +⋯+

Level-𝑝 variational state:

Variational parameters: 𝛽, 𝛾 ∈ ℝ<

Trotterized version of  the Adiabatic Quantum Computation for 𝑝 = 𝑝𝑜𝑙𝑦(𝑛)

| ⟩+ ~| ⟩0 + | ⟩1



Quantum Approximate Optimization Algorithm [Farhi, Goldstone, Gutmann 2014]

| ⟩𝜓 𝛽, 𝛾 =K
0()

1

exp[−𝑖𝛽0(𝑋) +⋯+ 𝑋,)]exp −𝑖𝛾0𝐶 | ⟩+ +⋯+

Level-𝑝 variational state:

Reasons for keeping the level 𝑝 small:
• Non-linear optimization over 𝛽 and 𝛾 is hard
• Need to keep the circuit depth small for near-term implementation

Variational parameters: 𝛽, 𝛾 ∈ ℝ<

Trotterized version of  the Adiabatic Quantum Computation for 𝑝 = 𝑝𝑜𝑙𝑦(𝑛)

| ⟩+ ~| ⟩0 + | ⟩1



Can low-level QAOA beat classical approximation algorithms for some problem ?



Can low-level QAOA beat classical approximation algorithms for some problem ?

Level-1 QAOA is inferior to local classical optimizers for bounded-degree graphs
[Hastings arXiv:1905.07047] 

No-go theorems:

Level-𝑝 QAOA with 𝑝 = 𝑂(1) is inferior to the best known classical approximation
algorithm (Goemans-Williamson SDP relaxation) for bounded-degree graphs.
See a talk by Robert Koenig later today



Can low-level QAOA beat classical approximation algorithms for some problem ?

Can we overcome these limitations ?
New idea: variable elimination and recursive QAOA
[SB, Kliesch, Koenig, Tang, arXiv:1910.08980]

Level-𝑝 QAOA with 𝑝 = 𝑂(1) is inferior to the best known classical approximation
algorithm (Goemans-Williamson SDP relaxation) for bounded-degree graphs.
See a talk by Robert Koenig later today

Level-1 QAOA is inferior to local classical optimizers for bounded-degree graphs
[Hastings arXiv:1905.07047] 

No-go theorems:



Variable elimination



1. Run the standard level-𝑝 QAOA with cost function
that depends on 𝑛 variables

𝐶(𝑧) = 9
(7,9)∈:

𝐽7,9𝑧7𝑧9

Variable elimination



1. Run the standard level-𝑝 QAOA with cost function
that depends on 𝑛 variables

2. Compute quantum mean values  𝑀7,9 = 𝜓(𝛽, 𝛾) 𝑍7𝑍9 𝜓(𝛽, 𝛾)
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that depends on 𝑛 variables

2. Compute quantum mean values  𝑀7,9 = 𝜓(𝛽, 𝛾) 𝑍7𝑍9 𝜓(𝛽, 𝛾)

3. Identify a maximally correlated pair of  variables
𝑎, 𝑏 = argmax

7=9
|𝑀7,9|

𝐶(𝑧) = 9
(7,9)∈:

𝐽7,9𝑧7𝑧9

Variable elimination



1. Run the standard level-𝑝 QAOA with cost function
that depends on 𝑛 variables

2. Compute quantum mean values  𝑀7,9 = 𝜓(𝛽, 𝛾) 𝑍7𝑍9 𝜓(𝛽, 𝛾)

3. Identify a maximally correlated pair of  variables
𝑎, 𝑏 = argmax

7=9
|𝑀7,9|

4. Impose a constraint 𝑧9 = sign 𝑀7,9 𝑧7 and eliminate 𝑧9 from the cost function

𝐽9,>𝑧9𝑧> ← 𝐽9,>sign 𝑀7,9 𝑧7𝑧>

𝐶(𝑧) = 9
(7,9)∈:

𝐽7,9𝑧7𝑧9

Variable elimination



1. Run the standard level-𝑝 QAOA with cost function
that depends on 𝑛 variables

2. Compute quantum mean values  𝑀7,9 = 𝜓(𝛽, 𝛾) 𝑍7𝑍9 𝜓(𝛽, 𝛾)

3. Identify a maximally correlated pair of  variables
𝑎, 𝑏 = argmax

7=9
|𝑀7,9|

4. Impose a constraint 𝑧9 = sign 𝑀7,9 𝑧7 and eliminate 𝑧9 from the cost function

We get a new Ising-like cost function 𝐶? 𝑧 that depends on 𝑛 − 1 variables.

𝐶(𝑧) = 9
(7,9)∈:

𝐽7,9𝑧7𝑧9

𝐽9,>𝑧9𝑧> ← 𝐽9,>sign 𝑀7,9 𝑧7𝑧>

Variable elimination



Recursive QAOA

Apply the variable elimination process recursively until only a few variables are left.
Solve the final problem instance by brute force.
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Recursive QAOA

Apply the variable elimination process recursively until only a few variables are left.
Solve the final problem instance by brute force.
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Recursive QAOA

Apply the variable elimination process recursively until only a few variables are left.
Solve the final problem instance by brute force.
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Recursive QAOA

Apply the variable elimination process recursively until only a few variables are left.
Solve the final problem instance by brute force.

1
2 3

45

1
2

45

𝑧$ = 𝑧#

𝑧@ = −𝑧#

QAOA
1

2 3

45

𝑀#,$ = 0.7

1
2

45

QAOA

𝑀#,@ = −0.4

1
2

5



Recursive QAOA

Apply the variable elimination process recursively until only a few variables are left.
Solve the final problem instance by brute force.
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Recursive QAOA

Apply the variable elimination process recursively until only a few variables are left.
Solve the final problem instance by brute force.
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2 3
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𝑀#,$ = 0.7

1
2
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𝑀#,@ = −0.4
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5
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−
+1
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45 +

−
+
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Numerical simulation of  level-1 QAOA and RQAOA for 100 qubits.
Cost function: random-bond Ising model on the complete graph.
SDP: Goemans-Williamson semidefinite programming relaxation with 100 rounding trials.

𝑏

𝑎

𝐽7,9 ∈ N(0,1)

𝐶(𝑧) = 9
7=9

𝐽7,9𝑧7𝑧9

𝐾"AA



MAX 3-CUT problem



Variables: vertex colors 𝑧7 ∈ 0,1,2
𝐺 = (𝑉, 𝐸)

𝑧7
𝑧9

Cost function: 𝐶 𝑧 = # edges 𝑎, 𝑏 ∶ 𝑧7 ≠ 𝑧9

MAX 3-CUT problem



𝐺 = (𝑉, 𝐸)

𝐶B7' = max
;
𝐶 𝑧Goal: approximate

𝑧7
𝑧9

Cost function: 𝐶 𝑧 = # edges 𝑎, 𝑏 ∶ 𝑧7 ≠ 𝑧9

Variables: vertex colors 𝑧7 ∈ 0,1,2

MAX 3-CUT problem



𝐺 = (𝑉, 𝐸)

𝐶B7' = max
;
𝐶 𝑧Goal: approximate

𝑧7
𝑧9

Random guessing:   𝐶(𝑧) ≥ #
$ 𝐶B7'

Cost function: 𝐶 𝑧 = # edges 𝑎, 𝑏 ∶ 𝑧7 ≠ 𝑧9

Variables: vertex colors 𝑧7 ∈ 0,1,2

MAX 3-CUT problem



𝐺 = (𝑉, 𝐸)

𝐶B7' = max
;
𝐶 𝑧Goal: approximate

𝑧7
𝑧9

Random guessing:   𝐶(𝑧) ≥ #
$ 𝐶B7'

SDP relaxation algorithm: 𝐶(𝑧) ≥ 0.836 : 𝐶B7'
[Klerk, Pasechnik, Warners 2004]

Cost function: 𝐶 𝑧 = # edges 𝑎, 𝑏 ∶ 𝑧7 ≠ 𝑧9

Variables: vertex colors 𝑧7 ∈ 0,1,2

MAX 3-CUT problem



Problem instance

A
pp

ro
xi

m
at

io
n 

ra
tio

Numerical simulations of  level-1 QAOA and RQAOA for 50 qutrits and the MAX 3-CUT
cost function. We consider a random ensemble of  3-colorable dense graphs with 50 vertices
randomly partitioned into red/blue/green.

add random red-blue, red-green,
blue-green edges with probability
½ for each pair of  vertices

SDP

RQAOA

QAOA



Bad news: no quantum advantage for level-1 RQAOA 



Bad news: no quantum advantage for level-1 RQAOA 

Efficient classical algorithm for level-1 QAOA

The only “quantum” step: computing quantum mean values

𝑀7,9 = 𝜓(𝛽, 𝛾) 𝑍7𝑍9 𝜓(𝛽, 𝛾)



Quantum Mean Value problem for level-1 QAOA 

| ⟩𝜓 𝛽, 𝛾 =

𝐵(𝛽)⨂"

exp −𝑖𝛾𝐶

| ⟩+
| ⟩+

| ⟩+

| ⟩+

Diagonal two-qudit gate

X-rotation



Quantum Mean Value problem for level-1 QAOA 

𝐵(𝛽)⨂"

exp −𝑖𝛾𝐶

| ⟩+
| ⟩+

| ⟩+

| ⟩+

QMV = 𝜓(𝛽, 𝛾) 𝑂",# 𝜓(𝛽, 𝛾) =
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|⟩ +
𝑂Φ, 𝑂 =

𝑗-th qudit

Sequential coupling: need to compute a product of  two-qudit quantum channels.
Classical simulation time 𝑂 𝑛 assuming that qudit dimension is 𝑂 1 .
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𝑂

Arbitrary interaction graph: runtime 2!/#𝜖*#
Our algorithm:

Planar interaction graph: runtime 𝑂(𝑛#𝜖*#) . Works for qudits of  constant dimension.
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B-layers: single-qubit X-rotations

C-layers: diagonal two-qubit gates
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Step 1: conjugate the observable 𝑂 by the inner B-layers.
This gives a modified two-qubit observable z𝑂.
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Step 2: conjugate z𝑂 by the inner C-layers
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Linear combination of  𝑂(1)
tensor product observables
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Step 3: conjugate the observable 𝑃 by the inner B-layers.
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Step 3: conjugate the observable 𝑃 by the inner B-layers.
This gives a modified tensor product observable z𝑃.

(𝑃
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Step 4: express the QMV as the inner product of  computationally tractable states.
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Step 4: express the QMV as the inner product of  computationally tractable states.
Approximate the inner product ⟨Ψ"| ⟩Ψ# using Van den Nest algorithm. 

Ψ" Ψ#
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• The C-layer includes only diagonal two-qubit gates
• It cannot entangle a qubit initialized in a basis state
• Half  of  all qubits remains unentangled 
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Claim: 
any amplitude ⟨Ψ"| ⟩𝑥 can be computed
in time roughly  2!/#.

Ψ"

| ⟩0

| ⟩1

| ⟩1
| ⟩0

• The C-layer includes only diagonal two-qubit gates
• It cannot entangle a qubit initialized in a basis state
• Half  of  all qubits remains unentangled 

Approximating the inner product QMV = Ψ" Ψ# by Monte-Carlo takes time 2!/#𝜖*#



Quantum Mean Value problem for level-2 QAOA 

| ⟩+
| ⟩+

| ⟩+

| ⟩+

|⟩ +
|⟩ +

|⟩ +

|⟩ +

Suppose the C-layer only includes nearest-neighbor gates on a planar graph.
Can we pick a good partition of  qubits makingΨ" and Ψ# less entangled ?

Ψ" Ψ#



Theorem. Suppose 𝐺 = (𝑉, 𝐸) is a planar graph. There exists a partition 𝑉 = 𝑉"𝑉#
such that the subgraphs of  𝐺 induced by 𝑉" and 𝑉# have treewidth at most 2.  
Such partition can be efficiently computed.

DeVos et al, “Excluding any graph as a minor allows a low tree-width 2-coloring” (2004)
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Subgraph induced by 𝑉" Two-qubit gates touching a qubit in 𝑉# disappear.
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Subgraph induced by 𝑉"

𝑉D

𝑉?

|⟩ +
|⟩ +

|⟩ +

|⟩ +

| ⟩0

| ⟩1

| ⟩1
| ⟩0

Ψ!

Amplitudes of  Ψ" are defined by a tensor
network on the subgraph induces by 𝑉".

Two-qubit gates touching a qubit in 𝑉# disappear.

Low-treewidth tensor networks are easy to contract.
[Markov and Shi 2004]



Recap: we obtained a polynomial-time classical algorithm for approximating

for level-2 QAOA states with the Ising-like cost function on any planar graph.

QMV = 𝜓(𝛽, 𝛾) 𝑍7𝑍9 𝜓(𝛽, 𝛾)



Recap: we obtained a polynomial-time classical algorithm for approximating

for level-2 QAOA states with the Ising-like cost function on any planar graph.

QMV = 𝜓(𝛽, 𝛾) 𝑍7𝑍9 𝜓(𝛽, 𝛾)

Bonus feature: RQAOA preserves planarity

variable elimination

𝑧'
𝑧2

𝑧'



Recap: we obtained a polynomial-time classical algorithm for approximating

for level-2 QAOA states with the Ising-like cost function on any planar graph.

QMV = 𝜓(𝛽, 𝛾) 𝑍7𝑍9 𝜓(𝛽, 𝛾)

Bonus feature: RQAOA preserves planarity

variable elimination

𝑧'
𝑧2

𝑧'

Corollary: level-2 RQAOA on planar graphs can be simulated classically in 
polynomial time.



Summary
• Variational quantum algorithms based on constant-depth geometrically 

local circuits in 2D can be simulated classically in linear time.

• Large-scale classical simulation of  level-1 RQAOA is reported.
Classical simulation of  level-2 RQAOA is a work in progress.

Open problems

• Establish classical hardnes of  approximating quantum mean values for
low-depth circuits or low-level QAOA

• Rigorous bounds on the performance of  RQAOA. More general variable
elimination methods. 


