Phase transitions in the complexity of simulating random shallow quantum circuits

John Napp, Rolando La Placa, Alex Dalzell, Fernando Brandão, Aram Harrow Simons workshop May 6, 2020

Complexity from entanglement

Original motivation for quantum computing [Feynman '82]

Nature isn't classical, dammit, and if you want to make a simulation of Nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy.

N systems in product state \rightarrow O(N) degrees of freedom N entangled systems \rightarrow exp(N) degrees of freedom

Describes cost of simulating dynamics or even describing a state.

This talk: do typical quantum dynamics achieve this?

easier quantum simulations

- solve trivial special case (e.g. non-interacting theory)
- treat corrections to theory as perturbations

LIBERAL-ARTS MAJORS MAY BE ANNOYING SOMETIMES, BUT THERE'S NOTHING MORE OBNOXIOUS THAN A PHYSICIST FIRST ENCOUNTERING A NEW SUBJECT.

easier quantum simulation

Lightly entangling dynamics

product states + non-interacting gates are easy.

Cost grows exponentially with # of entangling gates.

Stabilizer circuits

Poly-time simulation of stabilizer circuits, growing exponentially with # of non-stabilizer gates.

Likewise for matchgates / non-interacting fermions.

Ground states of 1-D systems

Effort grows exponentially with correlation length.

quantum circuits

Classical simulation possible in time $O(T) \cdot exp(k)$, where

- k = treewidth [Markov-Shi '05]
- k = max # of gates crossing any single qubit [Yoran-Short '06, Jozsa '06]
- + Complexity interpolates between linear and exponential.
- Treating all gates as "potentially entangling" is too pessimistic.

noisy dynamics?

Time evolution of quantum systems

$$\frac{d\rho}{dt} = -i(H\rho - \rho H) + \text{noise terms that are linear in } \rho$$

conjectured to exhibit phase transition (possibly with intermediate phases)

phase transitions?

Complexity smoothly increases with

- -entanglement
- -correlation length
- -# of non-stabilizer gates

Complexity jumps discontinuously with -noise rate

Today: what about circuit depth?

Quantum supremacy using a programmable superconducting processor

Google AI Quantum and collaborators[†]

task chosen to favor quantum computers and clear comparison

quantum circuits

Stignb 2=N

Stignb 2=N

U₂

U₂

U₃

U₀

depth
$$T=7$$

$$p(z) = p(z_1, z_2, z_3, z_4, z_5) = |\langle z_1 z_2 z_3 z_4 z_5 | U_9 U_8 U_7 U_6 U_5 U_4 U_3 U_2 U_1 | 000000 \rangle|^2$$

Other parameters: connectivity, # of gates, fidelity.

random circuit sampling

Conjecture:
Output distribution
p(z) is hard to
sample from on
classical computer.

Google used N=53 qubits in 2D geometry with T=20.

Conjecture: $T \ge \sqrt{N} \rightarrow \text{classical simulation time exp(N)}$. [Aaronson, Bremner, Jozsa, Montanaro, Shepherd, ...]

low-depth circuits

Google proposal is $\sqrt{N} \times \sqrt{N}$ grid for depth $T \sim \sqrt{N}$.

How low can we make depth?

[Terhal-DiVincenzo '04] showed worst-case hardness of simulation as soon as T≥3. (T=2 is easy.)

Arry of qubis

The property of the property of

measurement-based quantum computing (MBQC)

- prepare L x W cluster state in O(1) depth
- single-qubit measurements simulate depth-W circuit on line of L qubits
- implies classical hardness is ≥ exp(min(L,W)).
- tensor contraction achieves this

tensor contraction

 $\langle z_1 z_2 z_3 z_4 z_5 | U_9 U_8 U_7 U_6 U_5 U_4 U_3 U_2 U_1 | 00000 \rangle =$

= tensor with 4 indices, each dim 2

tensor contraction in 1-D

intermediate $\langle z_1 |$ 10> tensors can be $\langle z_2|$ 10> N qubits Z $\langle z_N |$ 0 run time: depth T T exp(N) or N exp(T)

[Napp, La Placa, Dalzell, Brandão, Harrow, in preparation]

simulating 2-D circuits

can be simulated in time 2^{LW} or 2^{LT} or 2^{WT}

Depth T=O(1) circuit on $\sqrt{N} \times \sqrt{N}$ grid

Naively takes time $2^{O(\sqrt{N})}$ $\approx \sqrt{N}$ qubits on line for time \sqrt{N} .

But 1-D effective evolution is not unitary.

Entanglement has phase transition from area law -> volume law.

T=3 in area law phase →

N^{O(1)}-time classical simulation for

approximate sampling of random circuits.

Exact or worst-case is #P-hard.

cheaper tensor contraction

Approximate simulation

Entanglement across cut

Matrix product state

bond dimension exp(E)

Example:

Simulation algorithm:

- Do tensor contraction
- Truncate bonds to dim exp(O(E)).

Run-time is N2^{O(E)}.

Does the algorithm work?

"Beware of bugs in the above code; I have only proved it correct, not tried it." --Donald Knuth

1. Yes.

We tested it and simulated 400x400 grids on a laptop.

2. Probably.

We proved a phase transition in something like the effective entanglement.

3. Sometimes.

The extended brickwork architecture is #P-hard to simulate exactly but our algorithm is proven to work on it.

stat mech model

Qubits \rightarrow dim-q particles. E[tr[ρ_A^k]] = partition function

ordered volume law $E = O(\sqrt{N})$ $\gg 1 \sim \text{holography}$ $q_c = 3.249...$ disordered area law E = O(1)

random tensor networks

 $q = local dim, E[tr[\rho^k]]$

$$\sum_{\sigma,\tau\in S_h} \frac{\mathsf{G}}{\mathsf{G}} \mathsf{Wg}(\sigma,\tau) \frac{\mathsf{G}}{\mathsf{G}}$$

$$Wg^{-1}(\sigma,\tau)$$
= $G(\sigma,\tau)$
= $q^{-dist(\sigma,\tau)}$

- $E_{U \sim Haar}[U^{\otimes k} \otimes (U^*)^{\otimes k}] = \Sigma_{\sigma,\tau} Wg(\sigma,\tau) |\sigma\rangle\langle\tau|$
- $E_{G \sim GUE}[G \otimes k \otimes (G^*) \otimes k] = \Sigma_{\sigma} |\sigma\rangle\langle\sigma|$
- $\langle \sigma | \tau \rangle = G(\sigma, \tau)$
- $\| G I \|_{op}$, $\| Wg I \|_{op} \le k^2 / q$

Open questions

- Rigorously prove the location of the phase transition and the correctness of the algorithm.
- Random tensor networks with low bond dimension
- Universality classes in random circuits?
- (time-independent) Hamiltonian versions?
- Where exactly is the boundary between easy and hard?

Thanks!

Fernando Brandão

Alex Dalzell

Rolando La Placa

John Napp

arXiv:2001.00021