MIP* = RE : Putting Everything Together

Zhengfeng Ji (UTS:QSI)

Quantum Protocols: Testing & Quantum PCPs, Simons Institute, 1 April 2020

$MIP^* = RE$

arXiv:2001.04383, 14 Jan 2020

Background and Definitions

Multi-prover Interactive Proofs

- MIP: What can two provers prove to a verifier?
 - Completeness and Soundness
 - Known: MIP = NEXP [Babai, Fortnow and Lund '90]
- The power of an extra prover
- Example: Magic Square game G_{\boxplus}

Nine variables and six constraints

- Randomly sample a constraint and a variable in the constraint
- Alice's view: the variable, x_6
- Bob's view: the constraint,
 $x_3 \oplus x_6 \oplus x_9 = 1$

 $\operatorname{val}(G_{\boxplus}) = rac{17}{18} < 1$

Question distribution

Quantum Multi-prover Interactive Proofs

Entanglement among provers
 MIP*: Entanglement vs. shared randomness

[Cleve, Høyer, Toner and Watrous '04]

• Connects multi-prover interactive proofs to Bell inequalities!

 $\langle A_0 B_0 + A_0 B_1 + A_1 B_0 - A_1 B_1
angle \leq 2$

- Soundness problem of entanglement
- The development and applications of the quantum analogues of many powerful ideas in interactive proofs
 - Low-degree tests, parallel repetitions, PCPs

Nonlocal Games

- Definition of nonlocal games
 - Finite question sets ${\mathcal X}$ and ${\mathcal Y}$ and answer sets ${\mathcal A}$ and ${\mathcal B}$
 - Question distribution μ over $\mathcal{X} imes \mathcal{Y}$
 - Decider $\mathcal{D}: \mathcal{X} imes \mathcal{Y} imes \mathcal{A} imes B o \{0,1\}$
- ullet Family of games defined by verifier $\mathcal{V}=(\mathcal{S},\mathcal{D})$ $(L^{ ext{A}}(z),L^{ ext{B}}(z))$
 - Turing machine S takes input (n, \ldots)
 - Turing machine ${\mathcal D}$ takes input (n,x,y,a,b)
 - The n-th game \mathcal{V}_n defined by \mathcal{S}_n and \mathcal{D}_n

Entangled Strategy and Value

- Entangled strategy $\mathscr{S}=(|\psi
 angle,A,B)$
 - Share quantum state $\ket{\psi}$ in $\mathcal{H}_A\otimes\mathcal{H}_B$

- Measure $A = \{A_a^x\}$ and $B = \{B_b^y\}$ for questions x, y respectively
- Entangled value

$$\mathrm{val}^* = \sup_{\mathscr{S}} \mathop{\mathbb{E}}_{(x,y)\sim\mu} \sum_{a,b ext{ accepted by } \mathcal{D}} \langle \psi | A^x_a \otimes B^y_b | \psi
angle$$

- Entangled value of the Magic Square game $\mathrm{val}^*(G_\boxplus)=1$
- MIP* corresponds to the approximation of val^{\ast}

Commuting Operator Strategy and Value

- Commuting operator strategy $\mathscr{S} = (|\psi
 angle, A, B)$
 - lacksquare Single Hilbert space $\mathcal H$, state $\ket{\psi}\in\mathcal H$
 - A^x_a commutes with B^y_b for all a, b, x, y
- Commuting operator value

$$\mathrm{val^{co}} = \sup_{\mathscr{S}} \mathop{\mathbb{E}}_{(x,y)\sim\mu} \sum_{a,b ext{ accepted by } \mathcal{D}} \langle \psi | A^x_a B^y_b | \psi
angle \, .$$

- Tsirelson's problem: Is val^* equal to val^{co} for all games?
- Two values coincide for finite-dimensional Hilbert spaces

Two Algorithms

- Algorithm 1: Exhaustively search for better tensor-product strategies of increasing Hilbert space dimensions and approximation precision
 A sequence of values approaching val* from below
- Algorithm 2: The non-commutative sum-of-squares SDP hierarchy [Navascués, Pironio, and Acín '08], [Doherty, Liang, Toner, and Wehner '08]
 A sequence of values approaching val^{co} from above

Algorithm 1 $ightarrow ext{val}^* \leq ext{val}^{ ext{co}} \leftarrow ext{Algorithm 2}$

- Algorithm 1 establishes that $MIP^* \subseteq RE$
- If Tsirelson's problem has a positive answer, we have an algorithm to approximate val^* (MIP* is in R = RE \cap coRE)

Main Result

- MIP* = RE: no algorithm that can approximate val* because it is as hard as the Halting problem
- A complete characterization of MIP*
 - "Spooky action at a distance Einstein"
 - Spooky complexity at a distance
- Optimal violations to Bell inequalities are not computable A computability-theoretic Bell inequality

Consequences in Physics and Mathematics

- A negative answer to Tsirelson's problem Infinite quantum systems cannot be approximated by finite ones
- A refutation of Connes' embedding conjecture, a 44-year-old problem in operator algebra, via its known equivalence to Tsirelson's problem

[Connes '76]

[Fritz '12], [Junge, Navascués, and Palazuelos et al. '11], [Ozawa '13]

Review of Key Ideas and Techniques

Distance Measures

• State-dependent distance:

Two collections of POVMs $\{M^x_a\}$ and $\{N^x_a\}$ acting on the same space are δ -close on state $|\psi
angle$ under distribution μ if

$$\mathop{\mathbb{E}}_{x\sim\mu}\sum_{a} \left\| (M^x_a - N^x_a) |\psi
angle
ight\|^2 \leq \delta.$$

• Consistency:

Two collections of POVMs $\{A^x_a\}$ and $\{B^x_a\}$ are δ -consistent on $|\psi\rangle$ under distribution μ if

$$\mathop{\mathbb{E}}_{x\sim\mu}\sum_{a
eq b}\langle\psi|A^x_a\otimes B^x_b|\psi
angle\leq\delta.$$

 $A^x_a \otimes I_{
m B} \simeq_{\delta} I_{
m A} \otimes B^x_a$

Cauchy-Schwarz

Entanglement Resistant Techniques

- The soundness problem of entanglement
- Confusion check: query Alice for the assignments to variables $\{x,y\}$, query Bob for x to ensure $R^x R^y pprox_\delta R^y R^x$

- A third player (using monogamy of entanglement)
- Entangled games are NP-hard

[Kempe, Kobayashi, Matsumoto, Toner and Vidick '08] [Ito, Kobayashi and Matsumoto '09], [J. '13]

- Quantum soundness of the linearity test, multilinearity test, and lowdegree test
- $MIP = NEXP \subseteq MIP^*$

[Ito and Vidick '12]

Rigidity and Self-testing

• The players have to measure the honest measurement to achieve a near-optimal value

[Summers and Werner '85], [Mayers and Yao '98], [Reichardt, Unger and Vazirani '12]

- Magic Square game: all about commutativity and anticommutativity [Wu, Bancal, McKague and Scarani '16]
- Where is the qubit? Find an anticommuting pair!

Let R_0 , R_1 be two reflections, if $R_0R_1pprox_\delta-R_1R_0$, then there is a local isomorphism ϕ such that up to the isomorphism

$$R_0pprox_\delta \,\sigma^X\otimes I, \quad R_1pprox_\delta \,\sigma^Z\otimes I.$$

Go Beyond NP Hardness

• Classical verification of QMA

[Fitzsimons and Vidick '15], [J. '15]

- Encode each qubit in the QMA witness state with a quantum error detecting code
- Use rigidity to ensure that the provers measure Pauli X/Z's and use logical operator measurement to check the energy of the encoded state
- The initial idea emerged from discussions at a Simons Institute workshop in 2014

Pauli Basis Game

• A wrapper around the quantum low-degree test

[Natarajan and Vidick '18], [Natarajan and Wright '19]

Rigidity Theorem. For any strategy that uses measurement $\hat{A}^{\operatorname{Pauli},W}$ for the question (Pauli, W) and has value at least $1 - \varepsilon$, there is a local isomorphism $\phi = \phi_A \otimes \phi_B$ such that $A_z^{\operatorname{Pauli},W} \otimes I_B \approx_{\delta(\varepsilon)} \sigma_z^W \otimes I_B,$ where $A_z^{\operatorname{Pauli},W} = \phi_A \hat{A}^{\operatorname{Pauli},W} \phi_A^*.$

- An efficient self-test for Pauli X/Z measurements on EPRs For self-testing of n EPRs, the questions have length $\mathrm{polylog}(n)$
- (Pauli, W) primitive

Question Distribution of the Pauli Basis Game

• Random seed $\overline{z} = (u_X, u_Z, v_1, v_2, \overline{r_X, r_Z}) \in (\mathbb{F}^m)^4 imes \mathbb{F}^2$

Туре	u_X	u_Z	v_1	v_2	r_X	r_Z
Point, X	u_X	0	0	0	0	0
Plane, X	$L^{\mathrm{Pl}}_{v_1,v_2}(u_X)$	0	v_1	v_2	0	0
Point, Z	0	u_Z	0	0	0	0
Plane, Z	0	$L^{\mathrm{Pl}}_{v_1,v_2}(u_Z)$	0	v_1	v_2	0
Pair	u_X	u_Z	0	0	r_X	r_Z
Pair, W	u_X	u_Z	0	0	r_X	r_Z
$\operatorname{Constraint}_c$	u_X	u_Z	0	0	r_X	r_Z
$\operatorname{Variable}_v$	u_X	u_Z	0	0	r_X	r_Z
Pauli, W	0	0	0	0	0	0

• All questions have the form (type, content) for type from a discrete set of labels and content from \mathbb{F}^{4m+2}

Compression

- Why compression?
- Go beyond QMA hardness
 - More sophisticated relations from rigidity: beyond anticommutativity [Slofstra '17]

Conjugacy relation xyx = z

- QIP = QMAM is not that far from QMA [Marriott and Watrou '05]
- Propagation checking (circuit-to-Hamiltonian construction) for MIP*
- Compression of MIP*

[J. '16], [Fitzsimons, J., Vidick and Yuen '18]

• A comparison between quantum and classical

	MIP	Classical Games	MIP*	Entangled Games
Msg size	poly	log	poly	log
Hardness	NEXP	NP	MIP*	MIP*
Gap	const	poly ^{—1} or const	const	$poly^{-1}$

 $P_1 P_2 P_3 P_4$ $P_1 P_2 P_3 P_4$

- Gap amplification (or social distancing for the completeness and soundness)?
- Throw in some PCPs?

Introspection

• Let the players sample from the question distribution themselves!

[Natarajan and Wright '19]

• Utilize the Heisenberg Uncertainty Principle to design what to reveal and what to hide

- Let $L^{\rm A}$ and $L^{\rm B}$ be functions such that $(L^{\rm A}(z),L^{\rm B}(z))$ is the desired question distribution μ for uniformly random z
- The \mathbf{Intro} primitive

The player receiving (Intro, v) replies (y, a) where for $v \in \{A, B\}$ 1. the introspectively sampled question y is supposedly $L^v(z)$ and, 2. a is the answer in the original game of player v for question y.

Putting Everything Together

Four Steps of Compression

1. Introspection

Question reduction

2. Oracularisation

Preprocessing for PCP

3. PCP

Answer reduction

4. Parallel repetition

Gap recovery

Recursive Gap-preserving Compression of Normal-form Games What is missing from $Compress^{NW}$?

- What normal form?
- Two problems are important

 $ig(L^{
m A}(z),L^{
m B}(z)ig)$

- 1. What kind of distributions/functions can be introspectively sampled
- 2. What is the distribution of the compressed game
- Match the two?

Conditionally Linear Functions

- Choose a register subspace V_1 of \mathbb{F}^n
- Apply a linear function $L_1:V_1 o V_1$ and get $y_1=L_1(z^{V_1})\in V_1$
- Conditioned on y_1 , choose another subspace $V_{2,\,y_1}$ that has trivial intersection with V_1
- Apply linear function $L_{2,\,y_1}(z^{V_{2,\,y_1}})$ to get $y_2 \in V_{2,\,y_1}$
- Repeat the above ℓ times (levels) to get y_1, y_2, \ldots, y_ℓ
- Define the output of the function to be $y=y_1+y_2+\dots+y_\ell$
- Such a function $L:z\mapsto y$ is call conditionally linear

• Linear functions

Revealing and hiding linear information is easy

• Linear functions aren't enough

Туре	u_X	u_Z	v_1	v_2	r_X	r_Z
Plane, X	$L^{\mathrm{Pl}}_{v_1,v_2}(u_X)$	0	v_1	v_2	0	0
Plane, Z	0	$L^{\mathrm{Pl}}_{v_1,v_2}(u_Z)$	0	v_1	v_2	0

- CL functions work as they can model all question distributions we use and have nice closure properties
 - Most importantly, the question distribution of Pauli Basis game is CL for fixed types

	R_1	H_{1}	R_2	H_2	aux	answer format
Intro , A	Z		Z		yes	(y,a)
Sample, A	Ζ	Ζ	Ζ	Ζ	yes	(z,a)
Read, A	Ζ	Х	Z	Х	yes	(y,y^{\perp},a)
Hide_2	Ζ	Х	I	Х	no	(y,y^{\perp},x)
Hide_1	I	Х	Х	Х	no	(y,y^{\perp},x)
Pauli, X	Х	Х	Х	Х	no	x
Pauli, Z	Z	Z	Z	Z	no	z

1. Use Sample and Read types to perform data hiding for Intro

2. Cross check between ${
m Sample}$ and ${
m Pauli}, Z$ to ensure honest Z measurements

	R_1	H_1	R_2	H_2	aux	answer format
Intro , A	Ζ	Ι	Z	Ι	yes	(y,a)
Sample, A	Ζ	Z	Z	Ζ	yes	(z,a)
Read, A	Ζ	Х	Ζ	Х	yes	(y,y^{\perp},a)
Hide_2	Ζ	Х		Х	no	(y,y^{\perp},x)
Hide_1	I	Х	Х	Х	no	(y,y^{\perp},x)
Pauli, X	Х	Х	Х	Х	no	x
Pauli, Z	Z	Z	Z	Z	no	z

 $L^{\mathrm{A}}(\overline{z}) = \overline{y}$

1. Use \mathbf{Sample} and \mathbf{Read} types to perform data hiding for \mathbf{Intro}

2. Cross check between Sample and Pauli, Z to ensure honest Z measurements

	R_1	H_1	R_2	H_2	aux	answer format
Intro , A	Z	Ι	Z	Ι	yes	(y,a)
$\mathbf{Sample}, \mathbf{A}$	Z	Z	Z	Z	yes	(z,a)
Read , A	Ζ	Х	Ζ	Х	yes	(y,y^{\perp},a)
Hide_2	Ζ	Х	I	Х	no	(y,y^{\perp},x)
Hide_1	I	Х	Х	Х	no	(y,y^{\perp},x)
Pauli, X	Х	Х	Х	Х	no	x
Pauli, Z	Z	Z	Z	Z	no	z

1. Use Sample and Read types to perform data hiding for Intro

2. Cross check between Sample and Pauli, Z to ensure honest Z measurements

	R_1	H_1	R_2	H_2	aux	answer format
Intro , A	Z	Ι	Z	I	yes	(y,a)
Sample, A	Z	Z	Z	Z	yes	(z,a)
Read , A	Ζ	Х	Ζ	Х	yes	(y,y^{\perp},a)
Hide_2	Z	Х		Х	no	(y,y^{\perp},x)
Hide_1		Х	Х	Х	no	(y,y^{\perp},x)
Pauli, X	Х	Х	Х	Х	no	x
Pauli, Z	Z	Z	Z	Z	no	z

1. Use Sample and Read types to perform data hiding for Intro

2. Cross check between Sample and Pauli, Z to ensure honest Z measurements

	R_1	H_1	R_2	H_2	aux	answer format
Intro , A	Z	I	Z	I	yes	(y,a)
Sample, A	Z	Z	Z	Z	yes	(z,a)
Read , A	Ζ	Х	Z	Х	yes	(y,y^{\perp},a)
Hide_2	Z	Х		Х	no	(y,y^{\perp},x)
Hide_1	I	Х	Х	Х	no	(y,y^{\perp},x)
Pauli, X	Х	Х	Х	Х	no	x
Pauli, Z	Z	Z	Z	Z	no	z

1. Use Sample and Read types to perform data hiding for Intro

2. Cross check between Sample and Pauli, Z to ensure honest Z measurements

	R_1	H_1	R_2	H_2	aux	answer format
Intro , A	Z	Ι	Z	I	yes	(y,a)
$\mathbf{Sample}, \mathbf{A}$	Z	Ζ	Z	Z	yes	(z,a)
Read , A	Ζ	Х	Ζ	Х	yes	(y,y^{\perp},a)
Hide_2	Z	Х		Х	no	(y,y^{\perp},x)
Hide_1	I	Х	Х	Х	no	(y,y^{\perp},x)
Pauli, X	Х	Х	Х	Х	no	x
Pauli, Z	Z	Z	Z	Z	no	z

1. Use Sample and Read types to perform data hiding for Intro

2. Cross check between Sample and Pauli, Z to ensure honest Z measurements

	R_1	H_1	R_2	H_2	aux	answer format
Intro , A	Z	Ι	Z	Ι	yes	(y,a)
Sample, A	Ζ	Z	Z	Ζ	yes	(z,a)
Read , A	Z	Х	Ζ	Х	yes	(y,y^{\perp},a)
Hide_2	Ζ	Х	I	Х	no	(y,y^{\perp},x)
Hide_1		Х	Х	Х	no	(y,y^{\perp},x)
Pauli, X	Х	Х	Х	Х	no	x
Pauli, Z	Z	Z	Z	Z	no	z

1. Use Sample and Read types to perform data hiding for Intro

2. Cross check between Sample and Pauli, Z to ensure honest Z measurements

Introspection Game Review

• The standard way a normal-form game \mathcal{V}_n is played

1. The verifier samples $z\in \mathbb{F}^n$, calls \mathcal{S}_n to compute questions $x=L^{ ext{A}}(z)$ and $y=L^{ ext{B}}(z)$,

2. Receives answers a, b and decides using \mathcal{D}_n .

• The introspective way a normal-form game \mathcal{V}_n is played

- 1. The verifier runs Pauli Basis game over EPRs of dimension $|\mathbb{F}|^n$, or,
- 2. Runs the remaining parts of the Introspection game to ensure provers respect the Intro primitives, or,
- 3. Sends (Intro, A) to Alice and (Intro, B) to Bob, receives (x, a), (y, b), and decides using \mathcal{D}_n .

Question Distribution of the Introspection Game

• Random seed $z=(u_X,u_Z,v_1,v_2,r_X,r_Z)\in (\mathbb{F}^m)^4 imes \mathbb{F}^2$

Туре	u_X	u_Z	v_1	v_2	r_X	r_Z
Pauli Basis Types	-	-	-	-	-	-
Intro, v	0	0	0	0	0	0
Sample, v	0	0	0	0	0	0
Read, v	0	0	0	0	0	0
Hide_i, v	0	0	0	0	0	0

- For each type, the functions are CL
- CL distributions can simulate constant-size type distributions
- Constant (eight) levels of conditioning suffice for our purpose

Question Distribution of the Introspection Game

ullet Random seed $\overline{z}=(u_X,u_Z,v_1,v_2,r_X,r_Z)\in (\mathbb{F}^m)^4 imes \mathbb{F}^2$

Туре	u_X	u_Z	v_1	v_2	r_X	r_Z
Pauli Basis Types	-	-	-	-	-	-
Intro, v	0	0	0	0	0	0
Sample, v	0	0	0	0	0	0
Read, v	0	0	0	0	0	0
Hide_i, v	0	0	0	0	0	0

- For each type, the functions are CL
- CL distributions can simulate constant-size type distributions
- Constant (eight) levels of conditioning suffice for our purpose

		01 77	v_1	v_2
Туре	$u_{X_{\text{lane}}}$	$\begin{array}{c} \mathbf{H}_{2} \\ \mathbf{H}_{2} \\ \mathbf{H}_{1} \\ \mathbf{H}_{1} \\ \mathbf{H}_{2} \\ \mathbf{H}_{2} \end{array}$. b ℓ, A	0
Point, X	u_X		v_1	v_2
Plane, X	$\underline{L_{v_1,v_2}^{r_1}(u)}$	X)t, X	l _e , 0	0
Point, Z	Q	$\frac{u_Z}{I_{w_1,w_2}^{\text{Pl}}(u_Z)}$	0	v_1
Plane, Z		$\mathbf{L}_{v_1,v_2} \left(\begin{array}{c} \mathbf{L} \end{array} \right)$	r, þ	0
Pair	u_X	oint, Z	-0	0
Pair, W	u_X	017	0	0
Constraint	$_c$ $^{_{T}}u_X$ ne, 2	Z Pauli, Z ^{az} , A L A	- R, A 0	0
$Variable_v$	u_X	<u></u>	0	0
Pauli, W	⁵ 0	0		

Question Distribution of the Introspection Game

• Random seed $z=(u_X,u_Z,v_1,v_2,r_X,r_Z)\in (\mathbb{F}^m)^4 imes \mathbb{F}^2$

Туре	u_X	u_Z	v_1	v_2	r_X	r_Z
Pauli Basis Types	-	-	-	-	-	-
Intro, v	0	0	0	0	0	0
Sample, v	0	0	0	0	0	0
Read, v	0	0	0	0	0	0
Hide_i, v	0	0	0	0	0	0

- For each type, the functions are CL
- CL distributions can simulate constant-size type distributions
- Constant (eight) levels of conditioning suffice for our purpose

Oracularisation and Commuting Strategy

- For the PCP techniques to work in answer reduction, one of the provers must compute a PCP proof that depends on x, y, a, b
- This is achieved by the oracularization and requires that, in the completeness strategies, Alice and Bob always measure commuting observables (as operators on the same space)
- Special care required in the design of the game Multiple Hide types in the Introspection game

Oracularisation and Commuting Strategy

- For the PCP techniques to work in answer reduction on of the provers must compute a PCP R_1 H_1 R_2 H_2 aux answer format
- ves • This is act Intro, A ∉ oracula (z,a)yes requires the Sample, ACZ nplZt (y,y^{\perp},a) JIES yes Alice and E Read, Avs nZeas Xre (y,y^{\perp},x) В no observableshapperat (y,y^{\perp},x) no

PCPs and Parallel Repetitions

- The use of PCPs for answer reduction is similar to Natarajan-Wright
- The distribution remains CL
- Anchored parallel repetition for better entanglement bound

[Bavarian, Vidick, and Yuen '17]

• Gap-preserving compression of normal-form games

Compression Theorem. There is an algorithm $\overline{
m Compress}$ that on input ${\cal V}^{\sharp}$ outputs ${\cal V}^{\sharp}=({\cal S}^{\sharp},{\cal D}^{\sharp})$ such that for all $n\geq n_0$

1. (Completeness). If $\operatorname{val}^*(\mathcal{V}_{2^n}) = 1$ then $\operatorname{val}^*(\mathcal{V}_n^{\sharp}) = 1$. 2. (Soundness). If $\operatorname{val}^*(\mathcal{V}_{2^n}) \leq \frac{1}{2}$ then $\operatorname{val}^*(\mathcal{V}_n^{\sharp}) \leq \frac{1}{2}$. 3. (Entanglement). $\mathcal{E}(\mathcal{V}_n^{\sharp}) \geq \max\{\mathcal{E}(\mathcal{V}_{2^n}), 2^n\}$.

Kleene's Recursion Theorem

- For all Turing machine \mathcal{M} , consider verifier $\mathcal{V}^{\mathrm{Halt}}$

Turing machine $\mathcal{D}^{\mathrm{Halt}}$:

1. Simulate \mathcal{M} for n steps. If \mathcal{M} halts, accept. 2. Compute $(\mathcal{S}^{\sharp}, \mathcal{D}^{\sharp}) = \mathrm{Compress}(\mathcal{S}^{\sharp}, \mathcal{D}^{\mathrm{Halt}}).$ 3. Accept iff $\mathcal{D}^{\sharp}(n, x, y, a, b)$ accepts.

 ${\cal S}^{\sharp}$ is universal

- Kleene's recursion theorem: \mathcal{D}^{Halt} above is well-defined
- For all Turing machine ${\cal M}$

1. If \mathcal{M} halts, $\mathrm{val}^*(\mathcal{V}_{n_0}^{\mathrm{Halt}})=1$

If the Turing machine \mathcal{M} halts in T steps and $n < T \leq 2^n$, then $\operatorname{val}^*(\mathcal{V}_n^{\operatorname{Halt}}) = \operatorname{val}^*(\mathcal{V}_n^{\sharp}) = \operatorname{val}^*(\mathcal{V}_{2^n}^{\operatorname{Halt}}) = 1.$ 2. If \mathcal{M} does not halt, $\operatorname{val}^*(\mathcal{V}_{n_0}^{\operatorname{Halt}}) \leq \frac{1}{2}$

Explicit Separation Between \mathbf{val}^* and $\mathbf{val}^{\mathrm{co}}$

- ullet Consider verifier $\mathcal{V}^{ ext{Sep}} = (\mathcal{S}^{\sharp}, \mathcal{D}^{ ext{Sep}})$
 - Turing machine $\mathcal{D}^{ ext{Sep}}$:

1. Compute a description of game $\mathcal{V}_{n_0}^{ ext{Sep}}$. 2. Run NPA on $\mathcal{V}_{n_0}^{ ext{Sep}}$ for n steps. If NPA halts, then accept.

3. Compute $(\mathcal{S}^{\sharp}, \mathcal{D}^{\sharp}) = ext{Compress}(\mathcal{S}^{\sharp}, \mathcal{D}^{ ext{Sep}}).$ 4. Accept iff $\mathcal{D}^{\sharp}(n, x, y, a, b)$ accepts.

- Claim: $\mathrm{val}^*(\mathcal{V}^{\mathrm{Sep}}_{n_0}) \leq rac{1}{2}$ and $\mathrm{val}^{\mathrm{co}}(\mathcal{V}^{\mathrm{Sep}}_{n_0}) = 1$
- If $\mathrm{val^{co}}(\mathcal{V}^{\mathrm{Sep}}_{n_0}) < 1$, then $\mathrm{val^*}(\mathcal{V}^{\mathrm{Sep}}_{n_0}) = 1$, a contradiction

Conclusions

- Recursive gap-preserving compression of normal-form two-prover oneround protocols
- Compression Lemma + Kleene's recursion theorem proves $RE \subseteq MIP^*$
- $MIP^* = RE$ follows as $MIP^* \subseteq RE$
- Negative answers to both Tsirelson's problem and CEP
- Open problems:
 - 1. Simpler proofs?
 - 2. Does MIP^{co} = coRE?
 - 3. Explicit counter-examples to CEP

- 1935 EPR paradox, entanglement
- 1964 Bell inequality
- 1990's Tsirelson's problem

Computer Science

- 1936 Turing's Halting problem
- 1970's Complexity theory
- 1990's PCP theorem

- 1930 von Neumann algebra
- 1976 Connes
- 1993 Kirchberg

