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Randomness helps...

Communication complexity
Query complexity
Cryptography

Non-local games
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in all cases?

@ Under believable assumptions, randomness does not increase
computational power
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in all cases?

@ Under believable assumptions, randomness does not increase
computational power

> If pseudo-random number generators exist, then probabilistic
algorithms are as powerful as deterministic ones

@ It should be true, but it is an open problem for decades!
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A glimpse of its hardness

Polynomial identity testing problem

Input: Polynomial p : Fg — Fy of degree d(n)
Output: Decide if Vxi, ..., x, € Fg, p(x1,....,.X) =0

@ Simple randomized algorithm

» Pick x1, ..., x, uniformly at random from Fg
» If p#£0, Prip(x1,....;xn) =0] < %
@ How to find such a “witness” deterministically?
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MA vs. NP
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MA vs. NP

Problem L € NP

x — — 0/1
y_ —

for x € Lyes,

Jy D(x,y) =1
for x € Lo,

Vy D(x,y) =0
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MA vs. NP

Problem L € NP Problem L € MA
x — — 0/1 T — — 0/1
D / R /
Y — — Y — —
for x € Lyes, for x € Lyes,
Jy D(x,y) =1 Jy PriR(x,y)=1] > %
for x € Lpo, for x € Lpo,
Vy D(x,y) =0 Vy Pr[R(x,y) =0] > 2
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MA vs. NP

Problem L € NP Problem L € MA
D / R /
Y — — Y — —
for x € Lyes, for x € Lyes,
Jy D(x,y) =1 Jy PrlR(x,y)=1] =1
for x € Lpo, for x € Lpo,
Yy D(x,y) =0 Vy PriR(x,y) = 0] > 3

Our result (informal)

Quantum PCP? conjecture is true iff MA = NP. J
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Hamiltonian complexity

@ Physical systems are described by Hamiltonians
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Physical systems are described by Hamiltonians
Find configurations that minimize energy of a system
Groundstates of Hamiltonians

Interactions are local

Look this problem through lens of TCS

Local Hamiltonian problem (k-LH, 3)

Input: Local Hamiltonians Hj, ... Hp,, each acting on k out of a n-qubit
system; H =), H;

yes-instance: (¢| H |¢)) < aom for some [¢))

no-instance: (| H [¢) > Sm for all |¢)
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Hamiltonian complexity

Physical systems are described by Hamiltonians
Find configurations that minimize energy of a system
Groundstates of Hamiltonians

@ Interactions are local =
@ Look this problem thro A - e o @ !'-Ii @l
P Ai = AL IR < 1
Local Hamiltonian problem (k-LH,
Input: Local Hamiltonians Hi, ..Z Hp,, each acting on k out of a n-qubit
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Hamiltonian complexity

Physical systems are described by Hamiltonians
Find configurations that minimize energy of a system
Groundstates of Hamiltonians

@ Interactions are local =
@ Look this problem thro A - e o @ !'-Ii @l
P Ai = AL IR < 1
Local Hamiltonian problem (k-LH,
Input: Local Hamiltonians Hi, ..Z Hp,, each acting on k out of a n-qubit

system; H =), H;
yes-instance: (¢| H |¢)) < aom for some [¢))
no-instance: (| H [¢) > Bm for all |¢)

Smallest eigenvalue
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Hamiltonian complexity

Physical systems are described by Hamiltonians
Find configurations that minimize energy of a system
Groundstates of Hamiltonians

Interactions are local
Look this problem through lens of TCS

Local Hamiltonian problem (k-LH, 3)

Input: Local Hamiltonians Hj, ... Hp,, each acting on k out of a n-qubit
system; H =), H;

yes-instance: (¢| H |¢)) < aom for some [¢))

no-instance: (| H [¢) > Sm for all |¢)

How hard is this problem?
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Quantum proofs

Problem L € NP Problem L € MA
r — — 0/1 r — — 0/1
D R
Y — — v—
for x € Lyes, for x € Lyes,
Jy D(x,y) =1 Jy PrlR(x,y)=1]=1
for x € Lo, for x € Lo,
Vy D(x,y) =0 Yy Pr[R(x,y) =0] > 3
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Quantum proofs

Problem L € NP Problem L € MA Problem L € QMA
— — 0/1 — — 0/1 — — 0/1
T D / T R / T 0 /
v+ v -+
for x € Lyes, for x € Lyes, for x € Lyes,
Jy D(x,y) =1 Jy PrlR(x,y)=1] =1 I|y) PriQ(x,[¢) =1] > 3
for x € Lo, for x € Lo, for x € Lo,
Vy D(x,y) =0 Vy PrlR(x,y) =0] > 3 V) PriQ(x, ) = 0] > 3
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Local Hamiltonian problem

Local Hamiltonian problem (k-LH, 3)

Input: Local Hamiltonians Hy, ... Hy,, each acting on k out of a n-qubit
system; H=>", H;
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Local Hamiltonian problem

Local Hamiltonian problem (k-LH, 3)

Input: Local Hamiltonians Hy, ... Hy,, each acting on k out of a n-qubit
system; H=>", H;

yes-instance: (| H |¢)) < aom for some [))

no-instance: (| H [¢) > Sm for all |¢)

e for some f —a > m: QMA-complete (Kitaev'99)

e for 8 — «v is a constant: open problem
» Quantum PCP conjecture: it is also QMA-hard
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Restrictions on the Hamiltonians

@ Local Hamiltonian H = ), H; is called stoquastic if the off-diagonal
elements of each H; are non-positive
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Restrictions on the Hamiltonians

@ Local Hamiltonian H = ), H; is called stoquastic if the off-diagonal
elements of each H; are non-positive

This definition is basis dependent.
Model of first D-Wave machines

@ Projector P; onto the groundspace of H;
> Pi= 30 16i) (9l
» Orthogonal |¢; ;) with real non-negative amplitudes.
» Groundstate [1)) = > ay|x), a, € RT

@ This talk
> 16is) = |Ti), where Tiy € {0,1}* and A= 3%, ., 1)
iJ -

» Groundstate [1)) = is > oxes 1X)
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Stoquastic Hamiltonian problem

Uniform stoquastic local Hamiltonian problem

Input: Uniform stoquastic local Hamiltonians Hy, ... H,, each acting on k
out of a n-qubit system; H =", H;

yes-instance: (¢| H|y) =0

no-instance: (| H [¢) > Sm for all |¢)
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Stoquastic Hamiltonian problem

Uniform stoquastic local Hamiltonian problem

Input: Uniform stoquastic local Hamiltonians Hy, ... H,, each acting on k
out of a n-qubit system; H =", H;

yes-instance: (¢| H|y) =0

no-instance: (| H [¢) > Sm for all |¢)

it is MA-complete (Bravyi-Terhal '08)

o for some /8 = m,

Quantum PCPs meet derandomization 10 / 26



Stoquastic Hamiltonian problem

Uniform stoquastic local Hamiltonian problem

Input: Uniform stoquastic local Hamiltonians Hy, ... H,, each acting on k
out of a n-qubit system; H =", H;

yes-instance: (¢| H|y) =0

no-instance: (| H [¢) > Sm for all |¢)

o for some = —~—, it is MA-complete (Bravyi-Terhal 08
poly(n)

@ Our work: if £ is constant, it is in NP
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Outline

@ Connection between Hamiltonian complexity and derandomization
© MA and stoquastic Hamiltonians
© Proof sketch

@ Open problems
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Back to NP vs. MA

Theorem (BT '08)

Deciding if Unif. Stoq. LH is has groundenergy 0 or inverse polynomial is
MA-complete.

Theorem (This work)

Deciding if Unif. Stoq. LH is has ground energy 0 or constant is
NP-complete.
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Corollary
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Back to NP vs. MA

Corollary
Suppose a deterministic polynomial-time map ¢(H) = H' such that

© H' is a uniform stoquastic Hamiltonian with constant locality and
degree;

@ if H has groundenergy 0, H' has groundenergy 0;

@ if H is at least inverse polynomial frustrated, then H' is constantly
frustrated.

Then MA = NP.
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Back to NP vs. MA

Corollary
Suppose a deterministic polynomial-time map ¢(H) = H' such that

© H' is a uniform stoquastic Hamiltonian with constant locality and
degree;

@ if H has groundenergy 0, H' has groundenergy 0;

@ if H is at least inverse polynomial frustrated, then H' is constantly
frustrated.

Then MA = NP.

Proof.
Problem in MA—— StoqLH_ 1 — StoqgLH.——— Problem in NP [
BT'08 AG'19

poly(n)

v
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Why should a map like this exist?
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Why should a map like this exist?

@ PCP theorem: such a map exists for classical Hamiltonians

@ Stoquastic PCP conjecture: such a map exists for stoq
Hamiltonians

@ Quantum PCP conjecture: such a map exists for general Hamiltonians

Corollary
Stoquastic PCP conjecture is equivalent to MA = NP J

quantum PCPs are hard

advance on MA vs. NP
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Stoquastic Hamiltonians in MA (BT '08)
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e (Implicit) Graph G(V,E)
> V={0,1}"
» {x,y} € Eiff Ji (x| P;ly) >0

Example
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Stoquastic Hamiltonians in MA (BT '08)

e (Implicit) Graph G(V,E)
> V={0,1}"
» {x,y} € Eiff Ji (x| P;ly) >0

Example

@ 3-qubit system
Pry = Py = [WH(WH|+ |[o+) (@] [®F)(OF| = J5(100) +[11))
P13 = [00)(00] 4 [01)(01] + [10)(10]  |W*)(W*| = Z5(|01) + [10))
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Stoquastic Hamiltonians in MA (BT '08)

e (Implicit) Graph G(V,E)
>V ={0,1}"
» {x,y} € Eiff Ji (x| P;ly) >0
Example

@ 3-qubit system
Pip = Ppz = [WH)(WH| 4 [oH) (@t  [®7)(®T| = J5(100) + 1))
P13 =]00)(00| + |01)(01| + |10)(10] |\Il+><\ll+] = f(|01) -+ |10))

@ o
CATRCAT

0 ()
<L T2
@ @
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Stoquastic Hamiltonians in MA (BT '08)

e (Implicit) Graph G(V,E) e Bad string x
» V={0,1}" » Ji such that (x| P;|x) =0
» {x,y} € Eiff Ji (x| P;ly) >0

Example
@ 3-qubit system

Prp =Py = [WH(WH| + |[o+) (@] [®F)(e*| = J5(]00) +[11))
P173 = |OO)(OO| +- |01)<01| + |10)<10| |\Il+><\ll+] = %(|01) -+ |10))

® @
CACROAD
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Stoquastic Hamiltonians in MA (BT '08)

e (Implicit) Graph G(V,E) e Bad string x
» V={0,1}" » Ji such that (x| P;|x) =0
» {x,y} € Eiff Ji (x| P;ly) >0

Example
@ 3-qubit system

Prp =Py = [WH(WH| + |[o+) (@] [®F)(e*| = J5(]00) +[11))
P173 = |OO)(OO| +- |01)<01| + |10)<10| |\Il+><\ll+] = %(|01) -+ |10))

® @
CRCRCAD
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Stoquastic Hamiltonians in MA (BT '08)

o MA-verification:
@ Given a initial string xo
@ Perform a random walk for poly(n) steps.
@ If a bad string is encountered, reject.

Example

Quantum PCPs meet derandomization 16 / 26



Stoquastic Hamiltonians in MA (BT '08)
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@ Given a initial string xg
@ Perform a random walk for poly(n) steps.
© If a bad string is encountered, reject.

Example
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Stoquastic Hamiltonians in MA (BT '08)

@ MA-verification:
@ Given a initial string xg
@ Perform a random walk for poly(n) steps.
© If a bad string is encountered, reject.

Example

@ ® @@
5O &Fe

000
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Stoquastic Hamiltonians in MA (BT '08)

@ MA-verification:
@ Given a initial string xg
@ Perform a random walk for poly(n) steps.
© If a bad string is encountered, reject.

Example

@ ® @@
5O &Fe

000 222
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Stoquastic Hamiltonians in MA (BT '08)

@ MA-verification:
@ Given a initial string xg
@ Perform a random walk for poly(n) steps.
© If a bad string is encountered, reject.

000 222, 110

Example
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Stoquastic Hamiltonians in MA (BT '08)
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@ Perform a random walk for poly(n) steps.
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Example
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Stoquastic Hamiltonians in MA (BT '08)

@ MA-verification:
@ Given a initial string xg
@ Perform a random walk for poly(n) steps.
© If a bad string is encountered, reject.

000 222, 110 222 101

Example
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Stoquastic Hamiltonians in MA (BT '08)

@ MA-verification:
@ Given a initial string xg
@ Perform a random walk for poly(n) steps.
© If a bad string is encountered, reject.

000 222, 110 2% 101

Example
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Stoquastic Hamiltonians in MA (BT '08)

Theorem

If H has groundenergy 0 and xq is in some groundstate of H, then the
verifier never reaches a bad string.

If H has groundenergy 1/poly(n), then the random-walk rejects with
constant probability for any xg.

Quantum PCPs meet derandomization
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Very frustrated case

Theorem

If H is em frustrated for some constant €, then from every initial string
there is a constant-size path that leads to a bad string.
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Theorem
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there is a constant-size path that leads to a bad string.

Corollary
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Very frustrated case

Theorem

If H is em frustrated for some constant €, then from every initial string
there is a constant-size path that leads to a bad string.

Corollary
Gapped Uniform Stoquastic LH problem is in NP.

Proof.
Check if any of the constant-size paths reaches a bad string.
@ For yes-instances, this is never the case (BT’ 08).

e For no-instances, this is always the case (previous theorem).
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Structure of the proof

© There is a constant-depth “circuit” of non-overlapping projectors
that achieves state with a bad string

@ Construct circuit layer by layer: either there is a bad string, or we can
add a new layer that brings us closer to a bad string

@ From the constant-depth circuit, we can use a lightcone-argument to
retrieve a constant-size path.

Quantum PCPs meet derandomization 19 / 26



States with a bad string

|S1) = |x1) 1 string
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States with a bad string

| |S2) | (1+ %)2257'; strings

| [S1) = x1) | 1 string
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States with a bad string

| |S3) | (1+ %)32573‘ strings
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States with a bad string

|Ss5)

|Sa)

[S3)

|S2)

| IS1) = ba)

Finding a bad string

Pick L = 2m,
S1) = 1)

1+ %)52% strings
1+ %)4257'; strings
(1+ %)3257’3 strings
1+ %)2257'; strings

1 string

the frustration is at least % there is a constant T such that
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States with a bad string

|Ss5)

|Sa)

[S3)

|S2)

| IS1) = ba)

Finding a bad string

Pick L= £,

|ST) = |+)®" = there is a bad string in |ST).

1+ %)52% strings
1+ %)4257'; strings
(1+ %)3257’3 strings
1+ %)2257'; strings

1 string

the frustration is at least % there is a constant T such that

Quantum PCPs meet derandomization
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One term expansion

Lemma

Assume
@ |S) be a subset state

@ P be a k-local stoquastic projector
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One term expansion

Lemma

Assume
@ |S) be a subset state
@ P be a k-local stoquastic projector
@ |S) does not contain bad strings for P
° [PIS)|P<1-4.
Then supp(P|S)) > (1 + 3)|S|.
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One term expansion

Lemma

Assume

@ |S) be a subset state

@ P be a k-local stoquastic projector

@ |S) does not contain bad strings for P
IPIS)I> <1~6.
Then supp(P|S)) > (1 + 3)|S|.

Intuition of the proof

If P does not contain a bad string, the frustration must come from missed
strings and P |S) will “add” such strings.
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Non-overlapping expansion

Lemma
Assume
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Lemma
Assume
@ Subset state |S)

@ Sequence of non-overlapping k-local stoquastic projectors {P1, ..., P/}
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Non-overlapping expansion

Lemma
Assume
Subset state |S)

Sequence of non-overlapping k-local stoquastic projectors {P1, ..., P/}

P;...P1|S) does not contain bad string for P; 1
[Piy1 (Pi.PLIS) <1-6
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Non-overlapping expansion

Lemma
Assume
@ Subset state |S)
@ Sequence of non-overlapping k-local stoquastic projectors {P1, ..., P/}
@ P;...P1|S) does not contain bad string for P;i1
@ ||Piy1 (P PLIS)|I<1-9
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Non-overlapping expansion

Lemma
Assume
@ Subset state |S)
@ Sequence of non-overlapping k-local stoquastic projectors {P1, ..., P/}
@ P;...P1|S) does not contain bad string for P;i1
@ ||Piy1 (P PLIS)|I<1-9
Then supp(P;...P1|S)) > (1 + 3)/|S].

Proof.

Apply one-term expansion lemma / times. []
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From shallow non-overlapping transitions to short paths

Lemma

If a bad string is reached after a constant number of non-overlapping
projections, then there is a constant-size path to a bad string.
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Related results

o Extension to tiny frustration vs. large frustration
> In the tiny frustration case, there is a string far from all bad strings
@ “Classical” definition of the problem

> SetCSP: extension of CSPs for sets of strings
» Gap amplification for SetCSP < MA = NP
> Details in arxiv:2003.13065
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Open problems

e Prove/disprove Stoquastic PCP conjecture
» Smaller promise gap in NP
» Completeness parameter far from 0

@ Non-uniform case
» There are highly frustrated Hamiltonians with no bad strings
» Frustration comes from incompatibility of amplitudes
V1—¢l]0) + v |1) vs. v/2]0) + 1 —¢]1)
» Add more tests
BT has a consistency test, but not clear that it is “local”

@ Advances in adiabatic evolution of stoquastic Hamiltonians
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Thank you for your attention!
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