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Randomness helps...

Communication complexity

Query complexity

Cryptography

Non-local games
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... in all cases?

Under believable assumptions, randomness does not increase
computational power

I If pseudo-random number generators exist, then probabilistic
algorithms are as powerful as deterministic ones

It should be true, but it is an open problem for decades!
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A glimpse of its hardness

Polynomial identity testing problem

Input: Polynomial p : Fn
q → Fq of degree d(n)

Output: Decide if ∀x1, ..., xn ∈ Fq, p(x1, ..., xn) = 0

Simple randomized algorithm
I Pick x1, ..., xn uniformly at random from Fn

q

I If p 6= 0, Pr [p(x1, ..., xn) = 0] ≤ d
q

How to find such a “witness” deterministically?
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MA vs. NP

Problem L ∈ NP Problem L ∈ MA

x
D

0/1

y

x
R

0/1

y

for x ∈ Lyes ,
∃y D(x , y) = 1

for x ∈ Lno ,
∀y D(x , y) = 0

for x ∈ Lyes ,
∃y Pr [R(x , y) = 1]

for x ∈ Lno ,
∀y Pr [R(x , y) = 0] ≥ 2

3

Our result (informal)

Quantum PCP1 conjecture is true iff MA = NP.
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Hamiltonian complexity

Physical systems are described by Hamiltonians

Find configurations that minimize energy of a system

Groundstates of Hamiltonians

Interactions are local

Look this problem through lens of TCS

Local Hamiltonian problem (k-LHα,β)

Input: Local Hamiltonians H1, ... Hm, each acting on k out of a n-qubit
system; H =

∑
i Hi

yes-instance: 〈ψ|H |ψ〉 ≤ αm for some |ψ〉
no-instance: 〈ψ|H |ψ〉 ≥ βm for all |ψ〉

Hi = I ⊗ ... ⊗ H̃i ⊗ ... ⊗ I
H̃i = H̃†i , ||H̃i || ≤ 1

Smallest eigenvalue

How hard is this problem?
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Quantum proofs

Problem L ∈ NP Problem L ∈ MA

Problem L ∈ QMA

x
D

0/1

y

x
R

0/1

y

x
Q

0/1

|ψ〉

for x ∈ Lyes ,
∃y D(x , y) = 1

for x ∈ Lno ,
∀y D(x , y) = 0

for x ∈ Lyes ,
∃y Pr [R(x , y) = 1] = 1

for x ∈ Lno ,
∀y Pr [R(x , y) = 0] ≥ 2

3

for x ∈ Lyes ,
∃ |ψ〉 Pr [Q(x , |ψ〉) = 1] ≥ 2

3

for x ∈ Lno ,
∀ |ψ〉 Pr [Q(x , |ψ〉) = 0] ≥ 2

3
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Local Hamiltonian problem

Local Hamiltonian problem (k-LHα,β)

Input: Local Hamiltonians H1, ... Hm, each acting on k out of a n-qubit
system; H =

∑
i Hi

yes-instance: 〈ψ|H |ψ〉 ≤ αm for some |ψ〉
no-instance: 〈ψ|H |ψ〉 ≥ βm for all |ψ〉

for some β − α ≥ 1
poly(n) : QMA-complete (Kitaev’99)

for β − α is a constant: open problem

I Quantum PCP conjecture: it is also QMA-hard
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Restrictions on the Hamiltonians

Local Hamiltonian H =
∑

i Hi is called stoquastic if the off-diagonal
elements of each Hi are non-positive

This definition is basis dependent.
Model of first D-Wave machines

Projector Pi onto the groundspace of Hi

I Pi =
∑

j |φi,j〉〈φi,j |
I Orthogonal |φi,j〉 with real non-negative amplitudes.
I Groundstate |ψ〉 =

∑
x αx |x〉, αx ∈ R+

This talk

I |φi,j〉 = |Ti,j〉, where Ti,j ⊆ {0, 1}k and 1√
Ti,j

∑
x∈Ti,j

|x〉
I Groundstate |ψ〉 = 1√

S

∑
x∈S |x〉
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Stoquastic Hamiltonian problem

Uniform stoquastic local Hamiltonian problem

Input: Uniform stoquastic local Hamiltonians H1, ... Hm, each acting on k
out of a n-qubit system; H =

∑
i Hi

yes-instance: 〈ψ|H |ψ〉 = 0
no-instance: 〈ψ|H |ψ〉 ≥ βm for all |ψ〉

for some β = 1
poly(n) , it is MA-complete (Bravyi-Terhal ’08)

Our work: if β is constant, it is in NP
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Outline

1 Connection between Hamiltonian complexity and derandomization

2 MA and stoquastic Hamiltonians

3 Proof sketch

4 Open problems
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Back to NP vs. MA

Theorem (BT ’08)

Deciding if Unif. Stoq. LH is has groundenergy 0 or inverse polynomial is
MA-complete.

Theorem (This work)

Deciding if Unif. Stoq. LH is has ground energy 0 or constant is
NP-complete.

Quantum PCPs meet derandomization 12 / 26



Back to NP vs. MA

Corollary

Suppose a deterministic polynomial-time map φ(H) = H ′ such that

1 H ′ is a uniform stoquastic Hamiltonian with constant locality and
degree;

2 if H has groundenergy 0, H ′ has groundenergy 0;

3 if H is at least inverse polynomial frustrated, then H ′ is constantly
frustrated.

Then MA = NP.

Proof.

Problem in MA−−−→
BT’08

StoqLH 1
poly(n)

−→
φ

StoqLHε−−−→
AG’19

Problem in NP
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Why should a map like this exist?

PCP theorem: such a map exists for classical Hamiltonians

Quantum PCP conjecture: such a map exists for general Hamiltonians

Corollary

Stoquastic PCP conjecture is equivalent to MA = NP

advance on MA vs. NP

quantum PCPs are hard
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Stoquastic Hamiltonians in MA (BT ’08)

(Implicit) Graph G (V ,E )
I V = {0, 1}n
I {x , y} ∈ E iff ∃i 〈x |Pi |y〉 > 0

Bad string x

I ∃i such that 〈x |Pi |x〉 = 0

Example

3-qubit system
I P1,2 = P2,3 = |Ψ+〉〈Ψ+|+ |Φ+〉〈Φ+|
I P1,3 = |00〉〈00|+ |01〉〈01|+ |10〉〈10|

∣∣Φ+
〉〈

Φ+
∣∣ = 1√

2
(|00〉+ |11〉)∣∣Ψ+

〉〈
Ψ+

∣∣ = 1√
2
(|01〉+ |10〉)
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Stoquastic Hamiltonians in MA (BT ’08)

MA-verification:
1 Given a initial string x0
2 Perform a random walk for poly(n) steps.
3 If a bad string is encountered, reject.

Example

000 101 111 010

110 011 100 001

000
P1,2−−→ 110

P2,3−−→ 101
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Stoquastic Hamiltonians in MA (BT ’08)

Theorem

If H has groundenergy 0 and x0 is in some groundstate of H, then the
verifier never reaches a bad string.

If H has groundenergy 1/poly(n), then the random-walk rejects with
constant probability for any x0.

Quantum PCPs meet derandomization 17 / 26



Very frustrated case

Theorem

If H is εm frustrated for some constant ε, then from every initial string
there is a constant-size path that leads to a bad string.

Corollary

Gapped Uniform Stoquastic LH problem is in NP.

Proof.

Check if any of the constant-size paths reaches a bad string.

For yes-instances, this is never the case (BT’ 08).

For no-instances, this is always the case (previous theorem).
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Structure of the proof

1 There is a constant-depth “circuit” of non-overlapping projectors
that achieves state with a bad string

1 Construct circuit layer by layer: either there is a bad string, or we can
add a new layer that brings us closer to a bad string

2 From the constant-depth circuit, we can use a lightcone-argument to
retrieve a constant-size path.
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States with a bad string

|S1〉 = |x1〉 1 string

. . .

|S2〉 (1 + ε
4)

2εm
2kd strings

. . .

|S3〉 (1 + ε
4)

3εm
2kd strings

. . .

|S4〉 (1 + ε
4)

4εm
2kd strings

. . .

|S5〉 (1 + ε
4)

5εm
2kd strings

...

Finding a bad string

Pick L = εm
2kd , the frustration is at least ε

2 , there is a constant T such that

|ST 〉 = |+〉⊗n

⇒ there is a bad string in |ST 〉.
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One term expansion

Lemma

Assume

|S〉 be a subset state

P be a k-local stoquastic projector

|S〉 does not contain bad strings for P

‖P |S〉‖2 ≤ 1− δ.

Then supp(P |S〉) ≥ (1 + δ
2)|S |.

Intuition of the proof

If P does not contain a bad string, the frustration must come from missed
strings and P |S〉 will “add” such strings.
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Non-overlapping expansion

Lemma

Assume

Subset state |S〉
Sequence of non-overlapping k-local stoquastic projectors {P1, ...,Pl}
Pi ...P1 |S〉 does not contain bad string for Pi+1

‖Pi+1 (Pi ...P1 |S〉)‖ ≤ 1− δ
Then supp(Pl ...P1 |S〉) ≥ (1 + δ

2)l |S |.

Proof.

Apply one-term expansion lemma l times.
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From shallow non-overlapping transitions to short paths

Lemma

If a bad string is reached after a constant number of non-overlapping
projections, then there is a constant-size path to a bad string.

x
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Related results

Extension to tiny frustration vs. large frustration
I In the tiny frustration case, there is a string far from all bad strings

“Classical” definition of the problem
I SetCSP: extension of CSPs for sets of strings
I Gap amplification for SetCSP ⇔ MA = NP
I Details in arxiv:2003.13065
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Open problems

Prove/disprove Stoquastic PCP conjecture
I Smaller promise gap in NP
I Completeness parameter far from 0

Non-uniform case
I There are highly frustrated Hamiltonians with no bad strings
I Frustration comes from incompatibility of amplitudes√

1− ε |0〉+
√
ε |1〉 vs.

√
ε |0〉+

√
1− ε |1〉

I Add more tests
BT has a consistency test, but not clear that it is “local”

Advances in adiabatic evolution of stoquastic Hamiltonians
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Thank you for your attention!
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