Quantum PCPs meet derandomization

Alex Bredariol Grilo

joint work with Dorit Aharonov

Randomness helps...

- Communication complexity
- Query complexity
- Cryptography
- Non-local games

... in all cases?

• Under believable assumptions, randomness does not increase computational power

- Under believable assumptions, randomness does not increase computational power
 - If pseudo-random number generators exist, then probabilistic algorithms are as powerful as deterministic ones

- Under believable assumptions, randomness does not increase computational power
 - If pseudo-random number generators exist, then probabilistic algorithms are as powerful as deterministic ones
- It should be true, but it is an open problem for decades!

A glimpse of its hardness

Polynomial identity testing problem

Input: Polynomial $p : \mathbb{F}_q^n \to \mathbb{F}_q$ of degree d(n)**Output:** Decide if $\forall x_1, ..., x_n \in \mathbb{F}_q, p(x_1, ..., x_n) = 0$

- Simple randomized algorithm
 - Pick $x_1, ..., x_n$ uniformly at random from \mathbb{F}_q^n

• If
$$p \neq 0$$
, $Pr[p(x_1, ..., x_n) = 0] \leq \frac{d}{q}$

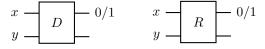
• How to find such a "witness" deterministically?

Problem $L \in NP$

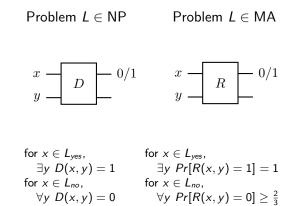
$$\begin{array}{c} x \\ y \end{array} D D D$$

$$\begin{aligned} & \text{for } x \in \mathcal{L}_{yes}, \\ & \exists y \ D(x,y) = 1 \\ & \text{for } x \in \mathcal{L}_{no}, \\ & \forall y \ D(x,y) = 0 \end{aligned}$$

$$\begin{array}{ll} \text{for } x \in L_{yes}, & \text{for } x \in L_{yes}, \\ \exists y \ D(x,y) = 1 & \exists y \ Pr[R(x,y) = 1] \geq \frac{2}{3} \\ \text{for } x \in L_{no}, & \text{for } x \in L_{no}, \\ \forall y \ D(x,y) = 0 & \forall y \ Pr[R(x,y) = 0] \geq \frac{2}{3} \end{array}$$



$$\begin{array}{ll} \text{for } x \in L_{yes}, & \text{for } x \in L_{yes}, \\ \exists y \ D(x,y) = 1 & \exists y \ Pr[R(x,y) = 1] = 1 \\ \text{for } x \in L_{no}, & \text{for } x \in L_{no}, \\ \forall y \ D(x,y) = 0 & \forall y \ Pr[R(x,y) = 0] \geq \frac{2}{3} \end{array}$$



Our result (informal)

Quantum PCP^1 conjecture is true iff MA = NP.

• Physical systems are described by Hamiltonians

- Physical systems are described by Hamiltonians
- Find configurations that minimize energy of a system Groundstates of Hamiltonians

- Physical systems are described by Hamiltonians
- Find configurations that minimize energy of a system Groundstates of Hamiltonians
- Interactions are local

- Physical systems are described by Hamiltonians
- Find configurations that minimize energy of a system Groundstates of Hamiltonians
- Interactions are local
- Look this problem through lens of TCS

- Physical systems are described by Hamiltonians
- Find configurations that minimize energy of a system Groundstates of Hamiltonians
- Interactions are local
- Look this problem through lens of TCS

Local Hamiltonian problem $(k-LH_{\alpha,\beta})$

Input: Local Hamiltonians H_1 , ... H_m , each acting on k out of a n-qubit system; $H = \sum_i H_i$ yes-instance: $\langle \psi | H | \psi \rangle \leq \alpha m$ for some $| \psi \rangle$ no-instance: $\langle \psi | H | \psi \rangle \geq \beta m$ for all $| \psi \rangle$

- Physical systems are described by Hamiltonians
- Find configurations that minimize energy of a system Groundstates of Hamiltonians
- Interactions are local • Look this problem thron $\begin{array}{rcl}
 H_i &=& I \otimes \dots \otimes \tilde{H}_i \otimes \dots \otimes I \\
 \tilde{H}_i &=& \tilde{H}_i^{\dagger}, ||\tilde{H}_i|| &\leq& 1
 \end{array}$

Local Hamiltonian problem $(k-LH_{s})$

Input: Local Hamiltonians H_1 , ... H_m , each acting on k out of a n-qubit system; $H = \sum_i H_i$ yes-instance: $\langle \psi | H | \psi \rangle \leq \alpha m$ for some $| \psi \rangle$ no-instance: $\langle \psi | H | \psi \rangle \geq \beta m$ for all $| \psi \rangle$

- Physical systems are described by Hamiltonians
- Find configurations that minimize energy of a system Groundstates of Hamiltonians
- Interactions are local • Look this problem thro $\begin{array}{rcl}
 H_i &=& I \otimes \dots \otimes \tilde{H}_i \otimes \dots \otimes I \\
 \tilde{H}_i &=& \tilde{H}_i^{\dagger}, ||\tilde{H}_i|| &\leq& 1
 \end{array}$

Local Hamiltonian problem $(k-LH_{\beta})$

Input: Local Hamiltonians H_1 , ... H_m , each acting on k out of a n-qubit system; $H = \sum_i H_i$ yes-instance: $\langle \psi | H | \psi \rangle \leq \alpha m$ for some $| \psi \rangle$ no-instance: $\langle \psi | H | \psi \rangle \geq \beta m$ for all $| \psi \rangle$

Smallest eigenvalue

- Physical systems are described by Hamiltonians
- Find configurations that minimize energy of a system Groundstates of Hamiltonians
- Interactions are local
- Look this problem through lens of TCS

Local Hamiltonian problem $(k-LH_{\alpha,\beta})$

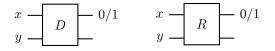
Input: Local Hamiltonians H_1 , ... H_m , each acting on k out of a n-qubit system; $H = \sum_i H_i$ yes-instance: $\langle \psi | H | \psi \rangle \leq \alpha m$ for some $| \psi \rangle$ no-instance: $\langle \psi | H | \psi \rangle \geq \beta m$ for all $| \psi \rangle$

How hard is this problem?

Quantum proofs

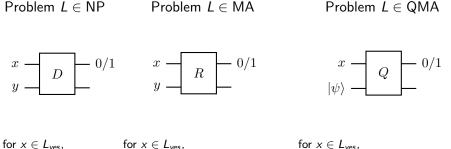
Problem $L \in \mathsf{NP}$

Problem $L \in MA$



$$\begin{array}{ll} \text{for } x \in L_{\text{yes}}, & \text{for } x \in L_{\text{yes}}, \\ \exists y \ D(x,y) = 1 & \exists y \ Pr[R(x,y) = 1] = 1 \\ \text{for } x \in L_{no}, & \text{for } x \in L_{no}, \\ \forall y \ D(x,y) = 0 & \forall y \ Pr[R(x,y) = 0] \geq \frac{2}{3} \end{array}$$

Quantum proofs



- $\begin{array}{ll} \text{for } x \in L_{yes}, & \text{for } x \\ \exists y \ D(x,y) = 1 & \exists y \\ \text{for } x \in L_{no}, & \text{for } x \\ \forall y \ D(x,y) = 0 & \forall y \end{array}$
- for $x \in L_{yes}$, $\exists y \ Pr[R(x, y) = 1] = 1$ for $x \in L_{no}$, $\forall y \ Pr[R(x, y) = 0] \ge \frac{2}{3}$
- $\begin{array}{l} \text{for } x \in L_{yes}, \\ \exists \left|\psi\right\rangle \ Pr[Q(x, \left|\psi\right\rangle) = 1] \geq \frac{2}{3} \\ \text{for } x \in L_{no}, \\ \forall \left|\psi\right\rangle \ Pr[Q(x, \left|\psi\right\rangle) = 0] \geq \frac{2}{3} \end{array}$

Local Hamiltonian problem

Local Hamiltonian problem $(k-LH_{\alpha,\beta})$ Input: Local Hamiltonians H_1, \dots, H_m , each acting on k out of a n-qubit system; $H = \sum_i H_i$ yes-instance: $\langle \psi | H | \psi \rangle \leq \alpha m$ for some $| \psi \rangle$ no-instance: $\langle \psi | H | \psi \rangle \geq \beta m$ for all $| \psi \rangle$

Local Hamiltonian problem

Local Hamiltonian problem $(k-LH_{\alpha,\beta})$ Input: Local Hamiltonians H_1, \dots, H_m , each acting on k out of a n-qubit system; $H = \sum_i H_i$ yes-instance: $\langle \psi | H | \psi \rangle \leq \alpha m$ for some $| \psi \rangle$ no-instance: $\langle \psi | H | \psi \rangle \geq \beta m$ for all $| \psi \rangle$

• for some $\beta - \alpha \geq \frac{1}{\operatorname{poly}(n)}$: QMA-complete (Kitaev'99)

Local Hamiltonian problem

Local Hamiltonian problem $(k-LH_{\alpha,\beta})$ Input: Local Hamiltonians H_1, \dots, H_m , each acting on k out of a n-qubit system; $H = \sum_i H_i$ yes-instance: $\langle \psi | H | \psi \rangle \leq \alpha m$ for some $| \psi \rangle$ no-instance: $\langle \psi | H | \psi \rangle \geq \beta m$ for all $| \psi \rangle$

- for some $\beta \alpha \geq \frac{1}{poly(n)}$: QMA-complete (Kitaev'99)
- for $\beta \alpha$ is a constant: open problem
 - Quantum PCP conjecture: it is also QMA-hard

• Local Hamiltonian $H = \sum_{i} H_{i}$ is called stoquastic if the off-diagonal elements of each H_{i} are non-positive

• Local Hamiltonian $H = \sum_{i} H_{i}$ is called stoquastic if the off-diagonal elements of each H_{i} are non-positive

This definition is basis dependent.

• Local Hamiltonian $H = \sum_{i} H_{i}$ is called stoquastic if the off-diagonal elements of each H_{i} are non-positive

This definition is basis dependent. Model of first D-Wave machines

• Local Hamiltonian $H = \sum_{i} H_i$ is called stoquastic if the off-diagonal elements of each H_i are non-positive

This definition is basis dependent. Model of first D-Wave machines

• Projector P_i onto the groundspace of H_i

•
$$P_i = \sum_j |\phi_{i,j}\rangle\langle\phi_{i,j}|$$

• Orthogonal $|\phi_{i,j}\rangle$ with real non-negative amplitudes.

• Local Hamiltonian $H = \sum_{i} H_i$ is called stoquastic if the off-diagonal elements of each H_i are non-positive

This definition is basis dependent. Model of first D-Wave machines

• Projector P_i onto the groundspace of H_i

•
$$P_i = \sum_j |\phi_{i,j}\rangle \langle \phi_{i,j}|$$

- Orthogonal $|\phi_{i,j}\rangle$ with real non-negative amplitudes.
- Groundstate $|\psi\rangle = \sum_{x} \alpha_{x} |x\rangle$, $\alpha_{x} \in \mathbb{R}^{+}$

• Local Hamiltonian $H = \sum_{i} H_i$ is called stoquastic if the off-diagonal elements of each H_i are non-positive

This definition is basis dependent. Model of first D-Wave machines

• Projector P_i onto the groundspace of H_i

•
$$P_i = \sum_j |\phi_{i,j}\rangle \langle \phi_{i,j}|$$

- Orthogonal $|\phi_{i,j}\rangle$ with real non-negative amplitudes.
- Groundstate $|\psi\rangle = \sum_{x} \alpha_{x} |x\rangle$, $\alpha_{x} \in \mathbb{R}^{+}$
- This talk
 - ► $|\phi_{i,j}\rangle = |T_{i,j}\rangle$, where $T_{i,j} \subseteq \{0,1\}^k$ and $\frac{1}{\sqrt{T_{i,i}}} \sum_{x \in T_{i,j}} |x\rangle$

• Groundstate
$$|\psi\rangle = \frac{1}{\sqrt{s}} \sum_{x \in S} |x\rangle$$

Stoquastic Hamiltonian problem

Uniform stoquastic local Hamiltonian problem

Input: Uniform stoquastic local Hamiltonians H_1 , ... H_m , each acting on k out of a *n*-qubit system; $H = \sum_i H_i$ yes-instance: $\langle \psi | H | \psi \rangle = 0$ no-instance: $\langle \psi | H | \psi \rangle \ge \beta m$ for all $|\psi \rangle$

Stoquastic Hamiltonian problem

Uniform stoquastic local Hamiltonian problem

Input: Uniform stoquastic local Hamiltonians H_1 , ... H_m , each acting on k out of a *n*-qubit system; $H = \sum_i H_i$ yes-instance: $\langle \psi | H | \psi \rangle = 0$ no-instance: $\langle \psi | H | \psi \rangle \ge \beta m$ for all $|\psi \rangle$

• for some $\beta = \frac{1}{poly(n)}$, it is MA-complete (Bravyi-Terhal '08)

Stoquastic Hamiltonian problem

Uniform stoquastic local Hamiltonian problem

Input: Uniform stoquastic local Hamiltonians H_1 , ... H_m , each acting on k out of a *n*-qubit system; $H = \sum_i H_i$ yes-instance: $\langle \psi | H | \psi \rangle = 0$ no-instance: $\langle \psi | H | \psi \rangle \ge \beta m$ for all $|\psi \rangle$

for some β = 1/poly(n), it is MA-complete (Bravyi-Terhal '08)
Our work: if β is constant, it is in NP

Outline

- 2 MA and stoquastic Hamiltonians
- 3 Proof sketch

Back to NP vs. MA

Theorem (BT '08)

Deciding if Unif. Stoq. LH is has groundenergy 0 or inverse polynomial is MA-complete.

Theorem (This work)

Deciding if Unif. Stoq. LH is has ground energy 0 or constant is NP-complete.

Back to NP vs. MA

Corollary

Suppose a deterministic polynomial-time map $\phi(H) = H'$ such that

Corollary

Suppose a deterministic polynomial-time map $\phi(H) = H'$ such that

• H' is a uniform stoquastic Hamiltonian with constant locality and degree;

Corollary

Suppose a deterministic polynomial-time map $\phi(H) = H'$ such that

- H' is a uniform stoquastic Hamiltonian with constant locality and degree;
- (2) if H has groundenergy 0, H' has groundenergy 0;

Corollary

Suppose a deterministic polynomial-time map $\phi(H) = H'$ such that

- H' is a uniform stoquastic Hamiltonian with constant locality and degree;
- *if H* has groundenergy 0, *H*['] has groundenergy 0;
- if H is at least inverse polynomial frustrated, then H' is constantly frustrated.

Corollary

Suppose a deterministic polynomial-time map $\phi(H) = H'$ such that

- H' is a uniform stoquastic Hamiltonian with constant locality and degree;
- *if H* has groundenergy 0, *H*['] has groundenergy 0;
- if H is at least inverse polynomial frustrated, then H' is constantly frustrated.

Then MA = NP.

Corollary

Suppose a deterministic polynomial-time map $\phi(H) = H'$ such that

- H' is a uniform stoquastic Hamiltonian with constant locality and degree;
- *if H* has groundenergy 0, *H*['] has groundenergy 0;
- if H is at least inverse polynomial frustrated, then H' is constantly frustrated.

Then MA = NP.

Proof.

Problem in MA

Corollary

Suppose a deterministic polynomial-time map $\phi(H) = H'$ such that

- H' is a uniform stoquastic Hamiltonian with constant locality and degree;
- *if H* has groundenergy 0, *H*['] has groundenergy 0;
- if H is at least inverse polynomial frustrated, then H' is constantly frustrated.

Then MA = NP.

Proof.

Problem in MA
$$\xrightarrow[BT'08]{}$$
 StoqLH $_{\frac{1}{poly(n)}}$

Corollary

Suppose a deterministic polynomial-time map $\phi(H) = H'$ such that

- H' is a uniform stoquastic Hamiltonian with constant locality and degree;
- *if H* has groundenergy 0, *H*['] has groundenergy 0;
- if H is at least inverse polynomial frustrated, then H' is constantly frustrated.

Then MA = NP.

Proof.

$$\mathsf{Problem \ in \ }\mathsf{MA}_{\overrightarrow{\mathsf{BT'08}}} \xrightarrow{} \mathsf{StoqLH}_{\frac{1}{\rho oly(n)}} \xrightarrow{} \phi \mathsf{StoqLH}_{\varepsilon}$$

Corollary

Suppose a deterministic polynomial-time map $\phi(H) = H'$ such that

- H' is a uniform stoquastic Hamiltonian with constant locality and degree;
- *if H* has groundenergy 0, *H*['] has groundenergy 0;
- if H is at least inverse polynomial frustrated, then H' is constantly frustrated.

Then MA = NP.

Proof.

Problem in MA
$$\xrightarrow[BT'08]{}$$
 StoqLH $\xrightarrow[poly(n)]{}$ $\xrightarrow[\phi]{}$ StoqLH $\underset{e}{\xrightarrow[AG'19]{}}$ Problem in NP \square

- PCP theorem: such a map exists for classical Hamiltonians
- Quantum PCP conjecture: such a map exists for general Hamiltonians

- PCP theorem: such a map exists for classical Hamiltonians
- Stoquastic PCP conjecture: such a map exists for stoq Hamiltonians
- Quantum PCP conjecture: such a map exists for general Hamiltonians

Corollary

Stoquastic PCP conjecture is equivalent to MA = NP

- PCP theorem: such a map exists for classical Hamiltonians
- Stoquastic PCP conjecture: such a map exists for stoq Hamiltonians
- Quantum PCP conjecture: such a map exists for general Hamiltonians

Corollary

Stoquastic PCP conjecture is equivalent to MA = NP

- PCP theorem: such a map exists for classical Hamiltonians
- Stoquastic PCP conjecture: such a map exists for stoq Hamiltonians
- Quantum PCP conjecture: such a map exists for general Hamiltonians

Corollary

Stoquastic PCP conjecture is equivalent to MA = NP

advance on MA vs. NP

- PCP theorem: such a map exists for classical Hamiltonians
- Stoquastic PCP conjecture: such a map exists for stoq Hamiltonians
- Quantum PCP conjecture: such a map exists for general Hamiltonians

Corollary

Stoquastic PCP conjecture is equivalent to MA = NP

quantum PCPs are hard

advance on MA vs. NP

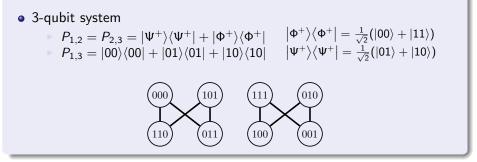
- (Implicit) Graph G(V, E)
 - $V = \{0, 1\}^n$
 - $\{x, y\} \in E \text{ iff } \exists i \langle x | P_i | y \rangle > 0$

- (Implicit) Graph G(V, E)
 - $V = \{0, 1\}^n$
 - $\{x, y\} \in E \text{ iff } \exists i \langle x | P_i | y \rangle > 0$

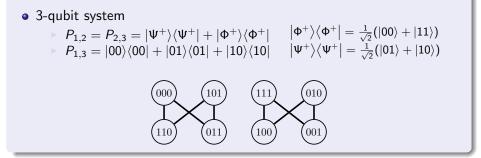
Example

• 3-qubit system $P_{1,2} = P_{2,3} = |\Psi^+\rangle\langle\Psi^+| + |\Phi^+\rangle\langle\Phi^+| \qquad |\Phi^+\rangle\langle\Phi^+| = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ $P_{1,3} = |00\rangle\langle00| + |01\rangle\langle01| + |10\rangle\langle10| \qquad |\Psi^+\rangle\langle\Psi^+| = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle)$

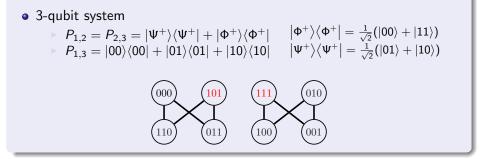
- (Implicit) Graph G(V, E)
 - $V = \{0, 1\}^n$
 - $\{x, y\} \in E \text{ iff } \exists i \langle x | P_i | y \rangle > 0$



- (Implicit) Graph G(V, E)
 - $V = \{0, 1\}^n$
 - $\{x, y\} \in E \text{ iff } \exists i \langle x | P_i | y \rangle > 0$
- Bad string x
 - $\exists i \text{ such that } \langle x | P_i | x \rangle = 0$



- (Implicit) Graph G(V, E)
 - $V = \{0, 1\}^n$
 - $\{x, y\} \in E$ iff $\exists i \langle x | P_i | y \rangle > 0$
- Bad string x
 - $\exists i \text{ such that } \langle x | P_i | x \rangle = 0$



• MA-verification:

- **1** Given a initial string x_0
- 2 Perform a random walk for poly(n) steps.
- If a bad string is encountered, reject.

- MA-verification:
 - **1** Given a initial string x_0
 - 2 Perform a random walk for poly(n) steps.
 - If a bad string is encountered, reject.

- MA-verification:
 - **1** Given a initial string x_0
 - 2 Perform a random walk for poly(n) steps.
 - If a bad string is encountered, reject.

Example 000 101 111 010 110 011 100 001 000

- MA-verification:
 - **1** Given a initial string x_0
 - 2 Perform a random walk for poly(n) steps.
 - If a bad string is encountered, reject.

Example $\begin{array}{c} 000 \\ 101 \\ 110 \\ 011 \end{array} \begin{array}{c} 111 \\ 100 \\ 001 \end{array}$

- MA-verification:
 - **1** Given a initial string x_0
 - 2 Perform a random walk for poly(n) steps.
 - If a bad string is encountered, reject.

Example $\begin{array}{c} 000 & 101 \\ 110 & 011 \\ 000 & 101 \\ 001 \\ 001 \\ 001 \end{array}$

- MA-verification:
 - **1** Given a initial string x_0
 - 2 Perform a random walk for poly(n) steps.
 - If a bad string is encountered, reject.

Example $\begin{array}{c} 000 \\ 101 \\ 110 \\ 011 \\ 000 \\ \hline P_{1,2} \\ 110 \\ \hline P_{2,3} \\ \end{array}$

- MA-verification:
 - **1** Given a initial string x_0
 - 2 Perform a random walk for poly(n) steps.
 - If a bad string is encountered, reject.

Example $\begin{array}{c} 000 \\ 101 \\ 110 \\ 011 \\ 000 \\ \hline P_{1,2} \\ 101 \\ \hline P_{2,3} \\ 101 \\ \hline \end{array}$

- MA-verification:
 - **1** Given a initial string x_0
 - 2 Perform a random walk for poly(n) steps.
 - If a bad string is encountered, reject.

Example 000 101 111 010 110 011 100 001 $000 \xrightarrow{P_{1,2}} 110 \xrightarrow{P_{2,3}} 101$

Theorem

If H has groundenergy 0 and x_0 is in some groundstate of H, then the verifier never reaches a bad string.

If H has groundenergy 1/poly(n), then the random-walk rejects with constant probability for any x_0 .

Theorem

If H is ε m frustrated for some constant ε , then from every initial string there is a constant-size path that leads to a bad string.

Theorem

If H is ε m frustrated for some constant ε , then from every initial string there is a constant-size path that leads to a bad string.

Corollary

Gapped Uniform Stoquastic LH problem is in NP.

Theorem

If H is εm frustrated for some constant ε , then from every initial string there is a constant-size path that leads to a bad string.

Corollary

Gapped Uniform Stoquastic LH problem is in NP.

Proof.

Check if any of the constant-size paths reaches a bad string.

Theorem

If H is εm frustrated for some constant ε , then from every initial string there is a constant-size path that leads to a bad string.

Corollary

Gapped Uniform Stoquastic LH problem is in NP.

Proof.

Check if any of the constant-size paths reaches a bad string.

• For yes-instances, this is never the case (BT' 08).

Theorem

If H is εm frustrated for some constant ε , then from every initial string there is a constant-size path that leads to a bad string.

Corollary

Gapped Uniform Stoquastic LH problem is in NP.

Proof.

Check if any of the constant-size paths reaches a bad string.

- For yes-instances, this is never the case (BT' 08).
- For no-instances, this is always the case (previous theorem).

Structure of the proof

Structure of the proof

There is a constant-depth "circuit" of non-overlapping projectors that achieves state with a bad string

Structure of the proof

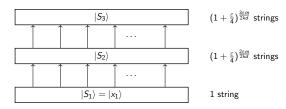
- There is a constant-depth "circuit" of non-overlapping projectors that achieves state with a bad string
 - Construct circuit layer by layer: either there is a bad string, or we can add a new layer that brings us closer to a bad string

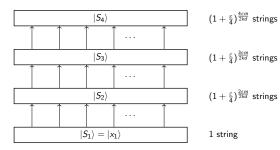
Structure of the proof

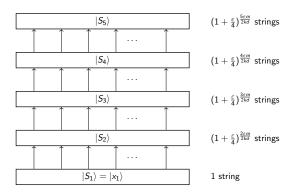
- There is a constant-depth "circuit" of non-overlapping projectors that achieves state with a bad string
 - Construct circuit layer by layer: either there is a bad string, or we can add a new layer that brings us closer to a bad string
- From the constant-depth circuit, we can use a lightcone-argument to retrieve a constant-size path.

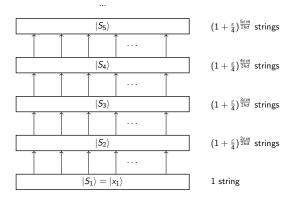
 $|S_1\rangle = |x_1\rangle$

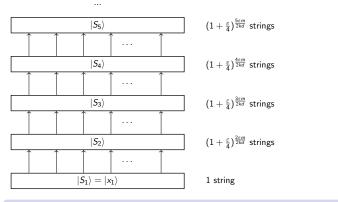
1 string





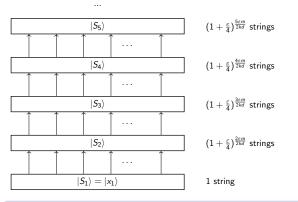






Finding a bad string

Pick $L = \frac{\varepsilon m}{2kd}$, the frustration is at least $\frac{\varepsilon}{2}$, there is a constant T such that $|S_T\rangle = |+\rangle^{\otimes n}$



Finding a bad string

Pick $L = \frac{\varepsilon m}{2kd}$, the frustration is at least $\frac{\varepsilon}{2}$, there is a constant T such that $|S_T\rangle = |+\rangle^{\otimes n} \Rightarrow$ there is a bad string in $|S_T\rangle$.

Lemma

- $|S\rangle$ be a subset state
- P be a k-local stoquastic projector

Lemma

- $|S\rangle$ be a subset state
- P be a k-local stoquastic projector
- $|S\rangle$ does not contain bad strings for P

Lemma

- $|S\rangle$ be a subset state
- P be a k-local stoquastic projector
- |S
 angle does not contain bad strings for P

•
$$\|P|S\rangle\|^2 \leq 1-\delta.$$

Lemma

Assume

- $|S\rangle$ be a subset state
- P be a k-local stoquastic projector
- $|S\rangle$ does not contain bad strings for P

•
$$\|P|S\rangle\|^2 \leq 1-\delta.$$

Then $supp(P|S\rangle) \ge (1 + \frac{\delta}{2})|S|$.

Lemma

Assume

- $|S\rangle$ be a subset state
- P be a k-local stoquastic projector
- |S
 angle does not contain bad strings for P
- $\|P|S\rangle\|^2 \leq 1-\delta$.

Then $supp(P|S\rangle) \ge (1 + \frac{\delta}{2})|S|$.

Intuition of the proof

If P does not contain a bad string, the frustration must come from missed strings and $P|S\rangle$ will "add" such strings.

Lemma

- Subset state $|S\rangle$
- Sequence of non-overlapping k-local stoquastic projectors {P₁,...,P_l}

Lemma

- Subset state $|S\rangle$
- Sequence of non-overlapping k-local stoquastic projectors {P₁,...,P_l}
- $P_{i}...P_{1}\left|S\right\rangle$ does not contain bad string for P_{i+1}

Lemma

- Subset state $|S\rangle$
- Sequence of non-overlapping k-local stoquastic projectors {P₁,...,P_l}
- $P_{i}...P_{1}\left|S\right\rangle$ does not contain bad string for P_{i+1}
- $\|P_{i+1}(P_i...P_1|S\rangle)\| \le 1 \delta$

Lemma

Assume

• Subset state $|S\rangle$

- Sequence of non-overlapping k-local stoquastic projectors $\{P_1, ..., P_l\}$
- $P_{i}...P_{1}\left|S\right\rangle$ does not contain bad string for P_{i+1}

•
$$\|P_{i+1}(P_i...P_1|S\rangle)\| \le 1-\delta$$

Then $supp(P_l...P_1|S\rangle) \ge (1+\frac{\delta}{2})^l|S|$.

Lemma

Assume

• Subset state $|S\rangle$

- Sequence of non-overlapping k-local stoquastic projectors {P₁,...,P_l}
- $P_i...P_1 |S\rangle$ does not contain bad string for P_{i+1}
- $\|P_{i+1}(P_i...P_1|S\rangle)\| \le 1 \delta$

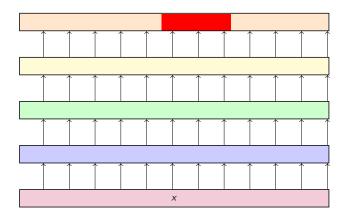
Then $supp(P_l...P_1|S\rangle) \ge (1+\frac{\delta}{2})^l|S|$.

Proof.

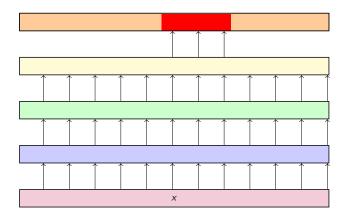
Apply one-term expansion lemma / times.

Lemma

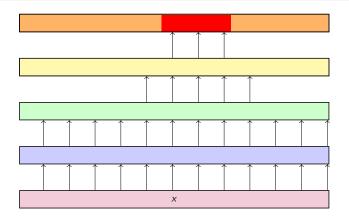
Lemma



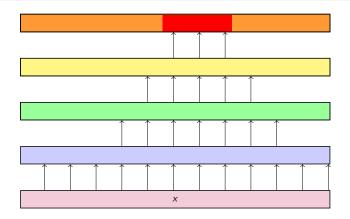
Lemma



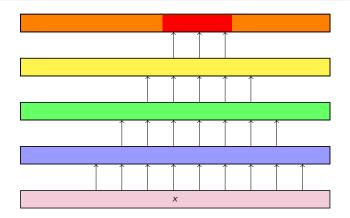
Lemma



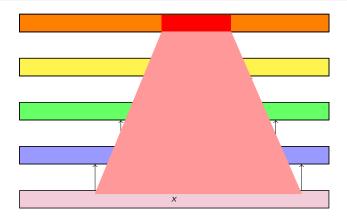
Lemma



Lemma



Lemma



- Extension to tiny frustration vs. large frustration
 - In the tiny frustration case, there is a string far from all bad strings
- "Classical" definition of the problem
 - SetCSP: extension of CSPs for sets of strings
 - Gap amplification for SetCSP \Leftrightarrow MA = NP
 - Details in arxiv:2003.13065

Open problems

• Prove/disprove Stoquastic PCP conjecture

- Smaller promise gap in NP
- Completeness parameter far from 0
- Non-uniform case
 - There are highly frustrated Hamiltonians with no bad strings
 - Frustration comes from incompatibility of amplitudes

 $\sqrt{1-\varepsilon}\left|\mathbf{0}\right\rangle+\sqrt{\varepsilon}\left|\mathbf{1}\right\rangle \text{ vs. } \sqrt{\varepsilon}\left|\mathbf{0}\right\rangle+\sqrt{1-\varepsilon}\left|\mathbf{1}\right\rangle$

Add more tests

BT has a consistency test, but not clear that it is "local"

• Advances in adiabatic evolution of stoquastic Hamiltonians

Thank you for your attention!