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Connes embedding problem

Connes embedding problem: does every separable finite
von Neumann algebra embeds in RU?

Theorem (Ji-Natarajan-Vidick-Wright-Yuen)

MIP* = RE

Corollary

Connes embedding is false.

Aim of this (expository) talk: try to bring the worlds of von
Neumann algebras and nonlocal games together
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Algebras

Defn. Algebra. Vector space A with a bilinear multiplication

A×A → A : (a, b) 7→ a · b.

An algebra is

• associative if (a · b) · c = a · (b · c), and

• unital if there is an element 1 ∈ A with 1 · a = a · 1 = a.

Examples:

• Mn(C) : n × n matrices

• B(H) : bounded linear operators on a Hilbert space H
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Algebras ct’d

Examples:

• Mn(C) : n × n matrices

• B(H) : bounded linear operators on a Hilbert space H

Both of these examples have another operation x 7→ x∗

(where x∗ is the adjoint)

An algebra with an antilinear multiplication-reversing operation

A → A : x 7→ x∗

is called a ∗-algebra.

In this talk, algebra = unital associative ∗-algebra
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Homomorphisms

Defn. Homomorphism. A linear function φ : A → B between two
algebras A and B such that all the operations of the algebra are
preserved:

• φ(ab) = φ(a)φ(b) for all a, b ∈ A,

• φ(a∗) = φ(a)∗ for all a ∈ A, and

• φ(1A) = 1B.

Example

Mn(C)→ Mn(C)⊗Mk(C) : x 7→ x ⊗ 1

is an algebra homomorphism.
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Quotients

Defn. Ideal. A subspace I of an algebra A such that

if x ∈ I, a ∈ A then ax , xa, x∗ ∈ I.

If I is an ideal of A, then quotient space A/I is also an algebra.

The ideal generated by x1, . . . , xn ∈ A is the smallest ideal in A
containing x1, . . . , xn. (This could be A itself).

Given x1, . . . , xn, y1, . . . , yn ∈ A, can make new algebra where
xi = yi by taking quotient

A/(x1 − y1, x2 − y2, . . . , xn − yn)
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Finitely presented algebras

Another familiar algebra: polynomials C[x1, . . . , xn]

Noncommutative polynomials C〈x1, . . . , xn〉:
like polynomials, but xixj 6= xjxi

There’s also a ∗-algebra version:

C∗〈x1, . . . , xn〉 = C〈x1, . . . , xn, x∗1 , . . . , x∗n 〉

Can get lots of new examples of algebras by taking quotients:

if f1, . . . , fm, g1, . . . , gm ∈ C∗〈x1, . . . , xn〉, then

C∗〈x1, . . . , xn : f1 = g1, . . . , fm = gn〉 :=

C∗〈x1, . . . , xn〉/(f1 − g1, . . . , fm − gm)

An algebra of this form is called a finitely presented algebra.
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Finitely presented algebras ct’d

Finitely presented algebra. Algebra of the form

C∗〈x1, . . . , xn : f1 = g1, . . . , fm = gn〉 :=

C∗〈x1, . . . , xn〉/(f1 − g1, . . . , fm − gm)

Examples:

• Algebra of a unitary: C∗〈u : u∗u = uu∗ = 1〉.
• Algebra of a self-adjoint projection: C∗〈p : p∗ = p = p2〉.
• Algebra of a k-outcome projective measurement:
C∗〈p1, . . . , pk : p∗i = pi = p2i , pipj = 0 if i 6= j ,

∑
i pi = 1〉.

• Clifford algebra of rank n:
C∗〈x1, . . . , xn : x∗i = xi , x

2
i = 1, xixj = −xjxi if i 6= j〉.
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Representations of finitely presented algebras

Homomorphisms A → Mn(C) are called representations of A

Let A = C∗〈x1, . . . , xn : f1 = g1, . . . , fm = gm〉.

Nice fact about finitely presented algebras:

Homomorphisms A → B correspond to tuples (b1, . . . , bk) ∈ B
such that fi (b1, . . . , bk) = gi (b1, . . . , bk), i = 1, . . . ,m.

Example

A = C∗〈p : p∗ = p = p2〉.

B = Mn(C).

A homomorphism A → B is an element P ∈ Mn(C) such that
P∗ = P = P2, i.e. a projection
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Finite-dimensional algebras

If φ : A → B is injective, can think of A as a subset of B

Say A embeds in B

Matrices are nice algebras... what algebras A embed in Mn(C)?

These are called matrix algebras

A is a matrix algebra if and only if A is finite-dimensional

Is every algebra a matrix algebra?

No, easy to find non-finite-dimensional algebras

Can’t use matrices to understand algebras in general.
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RFD algebras

Can’t use matrices to understand algebras in general... or can we?

Can only work with finitely many elements of A at a given time, so:

Definition

Algebra A is residually finite-dimensional (RFD) if for every
finite subset F of A, there is a homomorphism

φ : A → Mn(C),

for some n ≥ 1, such that φ(x) 6= φ(y) for all x 6= y ∈ F .

Unfortunately, there are non-RFD algebras as well
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Approximate representations

Can’t use matrices to understand algebras in general... or can we?

Maybe we are willing to tolerate some noise in our representation:

Definition

Let A = C∗〈x1, . . . , xn : f1 = g1, . . . , fm = gm〉.

An ε-representation of A in Mn(C) is a tuple
(b1, . . . , bn) ∈ Mn(C) such that

‖fi (b1, . . . , bn)− gi (b1, . . . , bn)‖hs ≤ ε

for all i = 1, . . . , k.

‖A‖hs =

√
tr(A∗A)

n
, the little Hilbert-Schmidt norm
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Interruption: approx rep’ns and nonlocal games

Non-local game given by:

input and output sets IA = IB = I , OA = OB = O, and

winning predicate V : OA ×OB × IA × IB → {Win, Lose}.

A nonlocal game G is synchronous if whenever Alice and Bob
receive the same inputs, they win if and only if their outputs are
the same

Synchronous algebra A(G) of G is

A(G) := C∗〈mx
a , x ∈ I , a ∈ O :

∑
a∈O

mx
a = 1 for allx

(mx
a)∗ = mx

a = (mx
a)2 for all x , a

mx
am

y
b = 0 if V (a, b|x , y) = Lose〉
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Interruption: approx rep’ns and nonlocal games ct’d

G synchronous nonlocal game:

A(G) := C∗〈mx
a , x ∈ I , a ∈ O :

∑
a∈O

mx
a = 1 for allx

(mx
a)∗ = mx

a = (mx
a)2 for all x , a

mx
am

y
b = 0 if V (a, b|x , y) = Lose〉

Theorem (Helton-Meyer-Paulsen-Satriano)

Perfect finite-dimensional strategies for G correspond to
finite-dimensional representations A(G)→ Mn(C)

ε-rep’ns of A(G) ≡ O(poly(ε))-perfect strategies for G
(conjecture based on S.-Vidick)
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Approximate representations

Can’t use matrices to understand algebras in general... or can we?

Maybe we are willing to tolerate some noise in our representation:

Definition

Let A = C∗〈x1, . . . , xn : f1 = g1, . . . , fm = gm〉.

An ε-representation of A in Mn(C) is a tuple
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Approximate representations ct’d

Definition (Wrong!)

Let A = C∗〈x1, . . . , xn : f1 = g1, . . . , fm = gm〉.

A is approximable by matrix algebras if

for every finite subset F of A,

there is an ε-representation (b1, . . . , bn) of A such that

f (b1, . . . , bn) 6= g(b1, . . . , bn)

for all f 6= g ∈ F

Problem: what should we set ε to?
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Approximate representations ct’d

Definition (Wrong!)

Let A = C∗〈x1, . . . , xn : f1 = g1, . . . , fm = gm〉.

A is approximable by matrix algebras if

for every ε > 0 and finite subset F of A,

there is an ε-representation (b1, . . . , bn) of A such that

f (b1, . . . , bn) 6= g(b1, . . . , bn)

for all f 6= g ∈ F

Problem: f (b1, . . . , bn) doesn’t make sense for elements f ∈ A
since, i.e., can have f1(b1, . . . , bn) 6= g1(b1, . . . , bn)
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Approximate representations ct’d

Definition (Wrong!)

Let A = C∗〈x1, . . . , xn : f1 = g1, . . . , fm = gm〉.

A is approximable by matrix algebras if

for every ε > 0 and finite subset F of C∗〈x1, . . . , xn〉,
there is an ε-representation (b1, . . . , bn) of A such that

f (b1, . . . , bn) 6= g(b1, . . . , bn)

for all f , g ∈ F with f 6= g in A

Problem: If ‖f (b1, . . . , bn)− g(b1, . . . , bn)‖ ≤ O(ε), this isn’t very
meaningful
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Approximate representations ct’d

Definition (Correct)

Let A = C∗〈x1, . . . , xn : f1 = g1, . . . , fm = gm〉.

A is approximable by matrix algebras if

there is a function δ : A → R≥0 such that

(a) δ(a) = 0 if and only if a = 0, and

(b) for every ε > 0 and finite subset F of C∗〈x1, . . . , xn〉,
there is an ε-representation (b1, . . . , bn) of A such that

‖f (b1, . . . , bn)− g(b1, . . . , bn)‖hs ≥ δ(f − g)

for all f , g ∈ F .

Technical note: this still may not be a very good definition if the
bi ’s are not bounded in ε-representations
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Embedding problems

A is a matrix algebra if and only if A embeds in Mn(C)

=⇒ snappy definition

Residual finite-dimensionality, approximable by matrix algebras

=⇒ not so snappy

The product
∏

i∈I Ai of a collection of algebras {Ai : i ∈ I} is also
an algebra with operations applied componentwise.

A is RFD if and only if A embeds in a product
∏

i∈I Mni (C)

A is approximable by matrix algebras iff A embeds in ???

elliptic.space/slides/simons2020.pdf William Slofstra



Embedding problems ct’d

A is approximable by matrix algebras if and only if A embeds in

∞∏
i=1

Mni (C) /

(
(ai )

∞
i=1 : lim

i→+∞
‖ai‖hs = 0

)
for some sequence n1, n2, . . .

Idea: Choose some sequence of finite sets

F1,F2, . . . ⊂ C∗〈x1, . . . , xn〉

such that
⋃
Fk is dense in C∗〈x1, . . . , xn〉

For each k, choose (1/k)-representation (b1k , . . . , bnk) for Fn

Send xi 7→ (bik)∞k=1
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Direct limits of matrix algebras

A is approximable by matrix algebras if and only if A embeds in

∞∏
i=1

Mni (C) /

(
(ai )

∞
i=1 : lim

i→+∞
‖ai‖hs = 0

)
for some sequence n1, n2, . . .

Annoying that we have this unknown dimension sequence

What if we replace Mni (C) with M∞(C) =
⋃

n≥1Mn(C)?

Problem: ‖ · ‖hs doesn’t make sense on M∞(C)
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Direct limits of matrix algebras ct’d

Need a version of M∞(C) where ‖ · ‖hs makes sense

Note ‖x‖2hs = τn(x∗x), where

τn : Mn(C)→ C : x 7→ tr(x)/n is the normalized trace

τ2n(x ⊗ 1) = τ2n

(
x 0
0 x

)
= τn(x)

Thus we get a chain of embeddings

M2(C) ↪→ M4(C) ↪→ · · · ↪→ M2k (C) ↪→ · · ·

where each map preserves the normalized trace (and hence
preserves ‖ · ‖hs)
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Direct limits of matrix algebras ct’d

Get a chain of embeddings

M2(C) ↪→ M4(C) ↪→ · · · ↪→ M2k (C) ↪→ · · ·

where each map preserves the normalized trace (and hence
preserves ‖ · ‖hs)

Let R0 =
⋃

k≥1M2k (C).

Can talk about trace τ and norm ‖ · ‖hs on R0.

A is approximable by matrix algebras iff A embeds in

RN
0 /

(
(ai )

∞
i=1 : lim

i→+∞
‖ai‖hs = 0

)
.
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Embeddings in B(H)

We’ve looked at matrix algebras

What algebras embed in B(H)?

If A ⊆ B(H), then operator norm ‖ · ‖op on B(H) restricts to A

A ⊆ B(H) iff A has a norm ‖ · ‖ satisfying certain conditions

(pre-C ∗-algebra)

This isn’t a very practical criterion... a bit better:

Theorem (GNS theorem)

A state f on A can be used to construct a homomorphism
φ : A → B(H) called the GNS representation
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The GNS theorem

Theorem (GNS theorem)

A state f on A can be used to construct a homomorphism
φ : A → B(H) called the GNS representation

A state f on an algebra A is a linear functional A → C satisfying
certain conditions (positivity, f (1) = 1, boundedness)

Sometimes it’s easier to construct a state on A than a norm

If GNS rep’n φ is an embedding, then f is faithful

A state f is tracial if f (ab) = f (ba)
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C ∗-algebras and von Neumann algebras

If working with A ⊆ B(H), might like A to be closed under limits

If A ⊆ B(H) is closed, then A is called a C ∗-algebra

Given A ⊆ B(H), the closure A is C ∗-algebra containing A

A is called the C ∗-enveloping algebra of A

Sometimes A is still too small:

Suppose W1 ( W2 ⊆ · · · ( H.

Let Pi be orthogonal projection onto Wi ,

P be orthogonal projection onto W :=
⋃
Wi .

Then Pi 6→ P as i → +∞,

even though 〈v ,Piw〉 → 〈v ,Pw〉 for all v ,w ∈ H.

Possible to have C ∗-algebra A with Pi ∈ A for all i , P 6∈ A.
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von Neumann algebras ct’d

Suppose W1 ( W2 ⊆ · · · ( H.

Let Pi be orthogonal projection onto Wi ,

P be orthogonal projection onto W :=
⋃
Wi .

Then Pi 6→ P as i → +∞,

even though 〈v ,Piw〉 → 〈v ,Pw〉 for all v ,w ∈ H.

Possible to have C ∗-algebra A with Pi ∈ A for all i , P 6∈ A.

If A ⊆ B(H) contains these and other limits (technically, closed in
weak operator topology) then A is a von Neumann algebra

Given A ⊆ B(H), von Neumann enveloping algebra is AWOT
,

the closure in the weak operator topology

Universal property: if B is von Neumann algebra, any

homomorphism A → B extends to homomorphism AWOT → B.
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Algebras we’ve seen so far

R0 =
⋃

k≥1M2k (C):

Normalized trace τ on R0 is a faithful state

=⇒ GNS representation gives embedding R0 ⊆ B(H)

R := R0
WOT

is the (unique) hyperfinite II1 factor

What about

A = RN
0 /

(
(ai )

∞
i=1 : lim

i→+∞
‖ai‖hs = 0

)
.

Does A have a faithful tracial state?
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Ultralimits and ultrapowers

Fun to think about the algebra

A = RN
0 /

(
(ai )

∞
i=1 : lim

i→+∞
‖ai‖hs = 0

)
.

Does A have a faithful tracial state?

Possible definition:

τ̃((ai )
+∞
i=1 ) = lim

i→+∞
τ(ai )

Problem: limit might not exist (could even be +∞)

Let’s try to fix this:

RN,bdd
0 = {(ai )∞i=1 ∈ RN

0 : sup
i
‖ai‖op < +∞}.

elliptic.space/slides/simons2020.pdf William Slofstra



Ultralimits and ultrapowers ct’d

RN,bdd
0 = {(ai )∞i=1 ∈ RN

0 : sup
i
‖ai‖op < +∞}.

Now (τ(ai ))∞i=1 is bounded, has a convergent subsequence

Fix an ultrafilter U on N (these exist by axiom of choice)

Ultralimit limU xi exists for any bounded sequence (xi )
∞
i=1

The ultrapower

RU0 := RN,bdd
0 /

(
(ai )

∞
i=1 : lim

U
‖ai‖hs = 0

)
.

has faithful tracial state

τ̃ ((ai )
∞
i=1) = lim

U
τ(ai )

and enveloping von Neumann algebra is RU .
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Connes embedding problem

Suppose A is finitely presented algebra such that ε-representations
are bounded for ε ≤ 1.

A approximable by matrix algebras iff A embeds in RU

Which algebras embed in RU?

RU has faithful tracial state

=⇒ if A embeds in RU , A has faithful tracial state

If A embeds in RU , then AWOT
embeds in RU

=⇒ We might as well assume that A is von Neumann algebra

Defn. von Neumann algebra is finite if it has a faithful tracial state

Connes embedding problem: Does every separable finite von
Neumann algebra embed in RU?
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Connes embedding ct’d

Theorem (Helton-Meyer-Paulsen-Satriano,
Kim-Paulsen-Schafhauser)

G synchronous game

• G has a perfect Cqc -strategy iff A(G) has a tracial state.

• G has a perfect Cqa-strategy iff there is a homomorphism
A(G)→ RU .

Theorem (Ji-Natarajan-Vidick-Wright-Yuen)

There is a synchronous nonlocal game G with a perfect
Cqc -strategy but no perfect Cqa-strategy.

So A(G) has a tracial state, but no homomorphisms to RU
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Connes embedding problem

Connes embedding problem: Does every separable finite von
Neumann algebra embed in RU?

JNWVY =⇒ synchronous game G such that

A(G) has a tracial state, but no homomorphisms to RU

Is A(G ) a von Neumann algebra?

No, but let τ be tracial state on A(G)

let φ : A(G)→ B(H) be GNS representation

let A1 = φ(A(G))
WOT

A1 is a separable finite von Neumann algebra with no
homomorphisms to RU =⇒ strong counterexample to CEP
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Computability of embeddings

Word problem for groups undecidable:

=⇒ “fin.-pres. algebra A has tracial state?” is coRE-hard

Kharlampovich: “A has homomorphism to RU” is coRE-hard

S.: coRE-hard to tell if A(G) has tracial state or morphism to RU

JNWVY: RE-hard to tell if A(G) has homomorphism to RU

Theorem

Mousavi-Nezhadi-Yuen Π0
2-complete to tell if three-player nonlocal

game has perfect Cqa-strategy

Conjecture: it is Π0
2-complete to tell if A(G) has morphism to RU
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Hyperlinear groups

Let G be a group (set with multiplication, inverses)

Group algebra CG has faithful tracial state

Definition

A group is hyperlinear if CG embeds in RU

Hyperlinearity can also be defined concretely in terms of ε-rep’ns

If G = 〈S : R〉 is finitely presented, then CG is finitely presented

Connes embedding for groups: is every group hyperlinear?

Still seems open. Why should we care?
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Binary constraint system games

Binary constraint system (BCS):

Given by variables x1, . . . , xn

and constraints (Vi , fi ), i = 1, . . . ,m

where Vi ⊂ {x1, . . . , xn},
fi : {−1, 1}Vi → {0, 1} are multilinear polynomials

Given BCS, can write down synchronous nonlocal game G
and algebra

A(G) = C∗〈x1, . . . , xn :x∗i = xi , x
2
i = 1

xjxk = xkxj if j , k ∈ Vi for some i

pi = 0〉.

Mermin-Peres magic square game is example of BCS game where
constraint system is linear
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BCS-MIP*: one-round proof systems with perfect completeness
where protocol is based on BCS game

Surmise: JNWVY =⇒ BCS-MIP* = RE

We often talk about different classes of BCSs:

linear systems, 3SAT, 2SAT, HORN-SAT

It also makes sense to talk about different subclasses of BCS-MIP*

Classically, 2SAT-MIP, HORN-MIP, LIN-MIP, etc. are all easy

Atserias-Kolaitis-Severini: 2SAT-MIP*, HORN-MIP*, etc. are
easy, except perhaps LIN-MIP*

If LIN-MIP* = RE, then it would imply analogue of Schaefer’s
dichotomy theorem for subclasses of BCS-MIP*
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Hyperlinear groups ct’d

If BCS is linear, A(G) is (central quotient of a) group algebra

S.: if G finitely presented, CG embeds in A(G) for some linear
system game G

There is a non-hyperlinear group iff

there is a linear system game G such that A(G) has tracial state,
but no homomorphism to RU

If LIN-MIP* = RE, then there is a non-hyperlinear group

The end!
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