The algebraic side of $MIP^* = RE$

William Slofstra

IQC, University of Waterloo

April 1st, 2020

∃ → < ∃</p>

William Slofstra

elliptic.space/slides/simons2020.pdf

Connes embedding problem: does every separable finite von Neumann algebra embeds in R^{U} ?

William Slofstra

Connes embedding problem: does every separable finite von Neumann algebra embeds in R^{U} ?

Theorem (Ji-Natarajan-Vidick-Wright-Yuen)

 $MIP^* = RE$

elliptic.space/slides/simons2020.pdf

Connes embedding problem: does every separable finite von Neumann algebra embeds in R^{U} ?

William Slofstra

Theorem (Ji-Natarajan-Vidick-Wright-Yuen)

 $MIP^* = RE$

Corollary

Connes embedding is false.

elliptic.space/slides/simons2020.pdf

Connes embedding problem: does every separable finite von Neumann algebra embeds in R^{U} ?

Theorem (Ji-Natarajan-Vidick-Wright-Yuen)

 $MIP^* = RE$

Corollary

Connes embedding is false.

Aim of this (expository) talk: try to bring the worlds of von Neumann algebras and nonlocal games together

Algebras

Defn. Algebra. Vector space A with a bilinear multiplication

 $\mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A} : (a, b) \mapsto a \cdot b.$

An algebra is

- associative if $(a \cdot b) \cdot c = a \cdot (b \cdot c)$, and
- *unital* if there is an element $1 \in A$ with $1 \cdot a = a \cdot 1 = a$.

Examples:

- $M_n(\mathbb{C})$: $n \times n$ matrices
- B(H): bounded linear operators on a Hilbert space H

Algebras ct'd

Examples:

- $M_n(\mathbb{C})$: $n \times n$ matrices
- B(H): bounded linear operators on a Hilbert space H

Both of these examples have another operation $x \mapsto x^*$ (where x^* is the adjoint)

An algebra with an antilinear multiplication-reversing operation

$$\mathcal{A}
ightarrow \mathcal{A} : x \mapsto x^*$$

is called a *-algebra.

In this talk, algebra = unital associative *-algebra

Homomorphisms

Defn. Homomorphism. A linear function $\phi : \mathcal{A} \to \mathcal{B}$ between two algebras \mathcal{A} and \mathcal{B} such that all the operations of the algebra are preserved:

- $\phi(ab) = \phi(a)\phi(b)$ for all $a, b \in \mathcal{A}$,
- $\phi(a^*) = \phi(a)^*$ for all $a \in \mathcal{A}$, and
- $\phi(1_{\mathcal{A}}) = 1_{\mathcal{B}}.$

Example

$$M_n(\mathbb{C}) \to M_n(\mathbb{C}) \otimes M_k(\mathbb{C}) : x \mapsto x \otimes 1$$

is an algebra homomorphism.

Quotients

Defn. Ideal. A subspace \mathcal{I} of an algebra \mathcal{A} such that

if $x \in \mathcal{I}$, $a \in \mathcal{A}$ then $ax, xa, x^* \in \mathcal{I}$.

If \mathcal{I} is an ideal of \mathcal{A} , then quotient space \mathcal{A}/\mathcal{I} is also an algebra.

The **ideal generated by** $x_1, \ldots, x_n \in A$ is the smallest ideal in A containing x_1, \ldots, x_n . (This could be A itself).

Given $x_1, \ldots, x_n, y_1, \ldots, y_n \in \mathcal{A}$, can make new algebra where $x_i = y_i$ by taking quotient

$$\mathcal{A}/(x_1-y_1,x_2-y_2,\ldots,x_n-y_n)$$

Finitely presented algebras

Another familiar algebra: polynomials $\mathbb{C}[x_1, \ldots, x_n]$

Noncommutative polynomials $\mathbb{C}\langle x_1, \ldots, x_n \rangle$:

like polynomials, but $x_i x_j \neq x_j x_i$

There's also a *-algebra version:

 $\mathbb{C}^*\langle x_1,\ldots,x_n\rangle = \mathbb{C}\langle x_1,\ldots,x_n,x_1^*,\ldots,x_n^*\rangle$

Can get lots of new examples of algebras by taking quotients: if $f_1, \ldots, f_m, g_1, \ldots, g_m \in \mathbb{C}^* \langle x_1, \ldots, x_n \rangle$, then $\mathbb{C}^* \langle x_1, \ldots, x_n : f_1 = g_1, \ldots, f_m = g_n \rangle :=$ $\mathbb{C}^* \langle x_1, \ldots, x_n \rangle / (f_1 - g_1, \ldots, f_m - g_m)$

An algebra of this form is called a finitely presented algebra.

Finitely presented algebras ct'd

Finitely presented algebra. Algebra of the form

$$\mathbb{C}^* \langle x_1, \ldots, x_n : f_1 = g_1, \ldots, f_m = g_n \rangle := \\ \mathbb{C}^* \langle x_1, \ldots, x_n \rangle / (f_1 - g_1, \ldots, f_m - g_m)$$

Examples:

- Algebra of a unitary: $\mathbb{C}^* \langle u : u^* u = uu^* = 1 \rangle$.
- Algebra of a self-adjoint projection: $\mathbb{C}^* \langle p : p^* = p = p^2 \rangle$.
- Clifford algebra of rank *n*: $\mathbb{C}^*\langle x_1, \ldots, x_n : x_i^* = x_i, x_i^2 = 1, x_i x_j = -x_j x_i \text{ if } i \neq j \rangle.$

Representations of finitely presented algebras

Homomorphisms $\mathcal{A} \to M_n(\mathbb{C})$ are called **representations** of \mathcal{A}

Let
$$\mathcal{A} = \mathbb{C}^* \langle x_1, \dots, x_n : f_1 = g_1, \dots, f_m = g_m \rangle$$
.

Nice fact about finitely presented algebras:

Homomorphisms $\mathcal{A} \to \mathcal{B}$ correspond to tuples $(b_1, \ldots, b_k) \in \mathcal{B}$ such that $f_i(b_1, \ldots, b_k) = g_i(b_1, \ldots, b_k)$, $i = 1, \ldots, m$.

Example

$$\mathcal{A} = \mathbb{C}^* \langle p : p^* = p = p^2 \rangle.$$

$$\mathcal{B} = M_n(\mathbb{C}).$$

A homomorphism $\mathcal{A} \to \mathcal{B}$ is an element $P \in M_n(\mathbb{C})$ such that $P^* = P = P^2$, i.e. a projection

Finite-dimensional algebras

If $\phi : \mathcal{A} \to \mathcal{B}$ is injective, can think of \mathcal{A} as a subset of \mathcal{B} Say \mathcal{A} embeds in \mathcal{B}

Matrices are nice algebras... what algebras \mathcal{A} embed in $M_n(\mathbb{C})$?

These are called matrix algebras

 ${\cal A}$ is a matrix algebra if and only if ${\cal A}$ is finite-dimensional

Is every algebra a matrix algebra?

No, easy to find non-finite-dimensional algebras

Can't use matrices to understand algebras in general.

RFD algebras

Can't use matrices to understand algebras in general... or can we?

Can only work with finitely many elements of A at a given time, so:

Definition

Algebra A is residually finite-dimensional (RFD) if for every finite subset F of A, there is a homomorphism

$$\phi: \mathcal{A} \to M_n(\mathbb{C}),$$

for some $n \ge 1$, such that $\phi(x) \ne \phi(y)$ for all $x \ne y \in F$.

RFD algebras

Can't use matrices to understand algebras in general... or can we?

Can only work with finitely many elements of A at a given time, so:

Definition

Algebra A is residually finite-dimensional (RFD) if for every finite subset F of A, there is a homomorphism

$$\phi: \mathcal{A} \to M_n(\mathbb{C}),$$

for some $n \ge 1$, such that $\phi(x) \ne \phi(y)$ for all $x \ne y \in F$.

Unfortunately, there are non-RFD algebras as well

Can't use matrices to understand algebras in general... or can we?

Maybe we are willing to tolerate some noise in our representation:

Definition

Let
$$\mathcal{A} = \mathbb{C}^* \langle x_1, \ldots, x_n : f_1 = g_1, \ldots, f_m = g_m \rangle$$
.

An ϵ -representation of \mathcal{A} in $M_n(\mathbb{C})$ is a tuple $(b_1, \ldots, b_n) \in M_n(\mathbb{C})$ such that

$$\|f_i(b_1,\ldots,b_n)-g_i(b_1,\ldots,b_n)\|_{hs}\leq \epsilon$$

for all $i = 1, \ldots, k$.

$$\|A\|_{hs} = \sqrt{\frac{\operatorname{tr}(A^*A)}{n}}, \text{ the little Hilbert-Schmidt norm}$$

Interruption: approx rep'ns and nonlocal games

Non-local game given by:

input and output sets $\mathcal{I}_A = \mathcal{I}_B = I$, $\mathcal{O}_A = \mathcal{O}_B = O$, and winning predicate $V : \mathcal{O}_A \times \mathcal{O}_B \times \mathcal{I}_A \times \mathcal{I}_B \rightarrow \{Win, Lose\}.$

A nonlocal game \mathcal{G} is **synchronous** if whenever Alice and Bob receive the same inputs, they win if and only if their outputs are the same

Synchronous algebra $\mathcal{A}(\mathcal{G})$ of \mathcal{G} is

$$\mathcal{A}(\mathcal{G}) := \mathbb{C}^* \langle m_a^x, x \in I, a \in O : \sum_{a \in O} m_a^x = 1 \text{ for all} x$$
$$(m_a^x)^* = m_a^x = (m_a^x)^2 \text{ for all } x, a$$
$$m_a^x m_b^y = 0 \text{ if } V(a, b|x, y) = Lose \rangle$$

Interruption: approx rep'ns and nonlocal games ct'd

 ${\mathcal G}$ synchronous nonlocal game:

$$\mathcal{A}(\mathcal{G}) := \mathbb{C}^* \langle m_a^x, x \in I, a \in O : \sum_{a \in O} m_a^x = 1 \text{ for all} x$$
$$(m_a^x)^* = m_a^x = (m_a^x)^2 \text{ for all } x, a$$
$$m_a^x m_b^y = 0 \text{ if } V(a, b|x, y) = Lose \rangle$$

Theorem (Helton-Meyer-Paulsen-Satriano)

Perfect finite-dimensional strategies for \mathcal{G} correspond to finite-dimensional representations $\mathcal{A}(\mathcal{G}) \to M_n(\mathbb{C})$

 ϵ -rep'ns of $\mathcal{A}(\mathcal{G}) \equiv O(\text{poly}(\epsilon))$ -perfect strategies for \mathcal{G} (conjecture based on S.-Vidick)

Can't use matrices to understand algebras in general... or can we?

Maybe we are willing to tolerate some noise in our representation:

Definition

Let
$$\mathcal{A} = \mathbb{C}^* \langle x_1, \ldots, x_n : f_1 = g_1, \ldots, f_m = g_m \rangle$$
.

An ϵ -representation of \mathcal{A} in $M_n(\mathbb{C})$ is a tuple $(b_1, \ldots, b_n) \in M_n(\mathbb{C})$ such that

$$\|f_i(b_1,\ldots,b_n)-g_i(b_1,\ldots,b_n)\|_{hs}\leq \epsilon$$

for all $i = 1, \ldots, k$.

$$\|A\|_{hs} = \sqrt{\frac{\operatorname{tr}(A^*A)}{n}}, \text{ the little Hilbert-Schmidt norm}$$

Definition (Wrong!)

Let
$$\mathcal{A} = \mathbb{C}^* \langle x_1, \dots, x_n : f_1 = g_1, \dots, f_m = g_m \rangle$$
.

A is **approximable by matrix algebras** if for every finite subset F of A, there is an ϵ -representation (b_1, \ldots, b_n) of A such that

$$f(b_1,\ldots,b_n) \neq g(b_1,\ldots,b_n)$$

for all $f \neq g \in F$

Problem: what should we set ϵ to?

Definition (Wrong!)

Let
$$\mathcal{A} = \mathbb{C}^* \langle x_1, \ldots, x_n : f_1 = g_1, \ldots, f_m = g_m \rangle$$
.

 \mathcal{A} is approximable by matrix algebras if for every $\epsilon > 0$ and finite subset F of \mathcal{A} , there is an ϵ -representation (b_1, \ldots, b_n) of \mathcal{A} such that

$$f(b_1,\ldots,b_n) \neq g(b_1,\ldots,b_n)$$

for all $f \neq g \in F$

Problem: $f(b_1, \ldots, b_n)$ doesn't make sense for elements $f \in A$ since, i.e., can have $f_1(b_1, \ldots, b_n) \neq g_1(b_1, \ldots, b_n)$

Definition (Wrong!)

Let
$$\mathcal{A} = \mathbb{C}^* \langle x_1, \ldots, x_n : f_1 = g_1, \ldots, f_m = g_m \rangle$$
.

 \mathcal{A} is approximable by matrix algebras if for every $\epsilon > 0$ and finite subset F of $\mathbb{C}^* \langle x_1, \ldots, x_n \rangle$, there is an ϵ -representation (b_1, \ldots, b_n) of \mathcal{A} such that

$$f(b_1,\ldots,b_n) \neq g(b_1,\ldots,b_n)$$

for all $f, g \in F$ with $f \neq g$ in A

Problem: If $||f(b_1, ..., b_n) - g(b_1, ..., b_n)|| \le O(\epsilon)$, this isn't very meaningful

Definition (Correct)

Let
$$\mathcal{A} = \mathbb{C}^* \langle x_1, \dots, x_n : f_1 = g_1, \dots, f_m = g_m \rangle$$
.

 $\begin{array}{l} \mathcal{A} \text{ is approximable by matrix algebras if} \\ \text{there is a function } \delta : \mathcal{A} \to \mathbb{R}_{\geq 0} \text{ such that} \\ \text{(a) } \delta(a) = 0 \text{ if and only if } a = 0, \text{ and} \\ \text{(b) for every } \epsilon > 0 \text{ and finite subset } F \text{ of } \mathbb{C}^* \langle x_1, \ldots, x_n \rangle, \\ \text{ there is an } \epsilon \text{-representation } (b_1, \ldots, b_n) \text{ of } \mathcal{A} \text{ such that} \end{array}$

$$\|f(b_1,\ldots,b_n)-g(b_1,\ldots,b_n)\|_{hs} \geq \delta(f-g)$$

for all $f, g \in F$.

Technical note: this still may not be a very good definition if the b_i 's are not bounded in ϵ -representations

Embedding problems

 $\mathcal A$ is a matrix algebra if and only if $\mathcal A$ embeds in $M_n(\mathbb C)$

 \implies snappy definition

Residual finite-dimensionality, approximable by matrix algebras \implies not so snappy

The product $\prod_{i \in I} A_i$ of a collection of algebras $\{A_i : i \in I\}$ is also an algebra with operations applied componentwise.

 \mathcal{A} is RFD if and only if \mathcal{A} embeds in a product $\prod_{i \in I} M_{n_i}(\mathbb{C})$

 ${\mathcal A}$ is approximable by matrix algebras iff ${\mathcal A}$ embeds in $\ref{eq: embeds}$

Embedding problems ct'd

 ${\mathcal A}$ is approximable by matrix algebras if and only if ${\mathcal A}$ embeds in

$$\prod_{i=1}^{\infty} M_{n_i}(\mathbb{C}) / \left((a_i)_{i=1}^{\infty} : \lim_{i \to +\infty} \|a_i\|_{hs} = 0 \right)$$

for some sequence n_1, n_2, \ldots

Idea: Choose some sequence of finite sets

$$F_1, F_2, \ldots \subset \mathbb{C}^* \langle x_1, \ldots, x_n \rangle$$

such that $\bigcup F_k$ is dense in $\mathbb{C}^*\langle x_1, \ldots, x_n \rangle$

For each k, choose (1/k)-representation (b_{1k}, \ldots, b_{nk}) for F_n Send $x_i \mapsto (b_{ik})_{k=1}^{\infty}$

Direct limits of matrix algebras

 ${\mathcal A}$ is approximable by matrix algebras if and only if ${\mathcal A}$ embeds in

$$\prod_{i=1}^{\infty} M_{n_i}(\mathbb{C}) / \left((a_i)_{i=1}^{\infty} : \lim_{i \to +\infty} \|a_i\|_{hs} = 0 \right)$$

for some sequence n_1, n_2, \ldots

Annoying that we have this unknown dimension sequence

What if we replace $M_{n_i}(\mathbb{C})$ with $M_{\infty}(\mathbb{C}) = \bigcup_{n \ge 1} M_n(\mathbb{C})$?

Problem: $\|\cdot\|_{hs}$ doesn't make sense on $M_{\infty}(\mathbb{C})$

Direct limits of matrix algebras ct'd

Need a version of $M_{\infty}(\mathbb{C})$ where $\|\cdot\|_{hs}$ makes sense

Note $||x||_{hs}^2 = \tau_n(x^*x)$, where

 $au_n: M_n(\mathbb{C}) o \mathbb{C}: x \mapsto \operatorname{tr}(x)/n$ is the normalized trace

$$\tau_{2n}(x\otimes 1) = \tau_{2n}\begin{pmatrix} x & 0\\ 0 & x \end{pmatrix} = \tau_n(x)$$

Thus we get a chain of embeddings

$$M_2(\mathbb{C}) \hookrightarrow M_4(\mathbb{C}) \hookrightarrow \cdots \hookrightarrow M_{2^k}(\mathbb{C}) \hookrightarrow \cdots$$

where each map preserves the normalized trace (and hence preserves $\|\cdot\|_{hs}$)

Direct limits of matrix algebras ct'd

Get a chain of embeddings

$$M_2(\mathbb{C}) \hookrightarrow M_4(\mathbb{C}) \hookrightarrow \cdots \hookrightarrow M_{2^k}(\mathbb{C}) \hookrightarrow \cdots$$

where each map preserves the normalized trace (and hence preserves $\|\cdot\|_{hs}$)

Let $R_0 = \bigcup_{k>1} M_{2^k}(\mathbb{C}).$

Can talk about trace τ and norm $\|\cdot\|_{hs}$ on R_0 .

 ${\mathcal A}$ is approximable by matrix algebras iff ${\mathcal A}$ embeds in

$$R_0^{\mathbb{N}} / \left((a_i)_{i=1}^{\infty} : \lim_{i \to +\infty} \|a_i\|_{hs} = 0 \right).$$

Embeddings in B(H)

We've looked at matrix algebras

What algebras embed in B(H)?

If $\mathcal{A} \subseteq B(H)$, then operator norm $\|\cdot\|_{op}$ on B(H) restricts to \mathcal{A}

 $\mathcal{A} \subseteq B(H)$ iff \mathcal{A} has a norm $\|\cdot\|$ satisfying certain conditions (pre- C^* -algebra)

This isn't a very practical criterion... a bit better:

Theorem (GNS theorem)

A state f on A can be used to construct a homomorphism $\phi : A \to B(H)$ called the GNS representation

The GNS theorem

Theorem (GNS theorem)

A state f on A can be used to construct a homomorphism $\phi : A \to B(H)$ called the **GNS representation**

A state f on an algebra \mathcal{A} is a linear functional $\mathcal{A} \to \mathbb{C}$ satisfying certain conditions (positivity, f(1) = 1, boundedness)

Sometimes it's easier to construct a state on ${\mathcal A}$ than a norm

If GNS rep'n ϕ is an embedding, then f is **faithful**

A state f is **tracial** if f(ab) = f(ba)

C^* -algebras and von Neumann algebras

If working with $\mathcal{A} \subseteq B(H)$, might like \mathcal{A} to be closed under limits

If $\mathcal{A} \subseteq B(\mathcal{H})$ is closed, then \mathcal{A} is called a C^* -algebra

Given $\mathcal{A} \subseteq B(H)$, the closure $\overline{\mathcal{A}}$ is C^* -algebra containing \mathcal{A}

 $\overline{\mathcal{A}}$ is called the *C**-enveloping algebra of \mathcal{A}

Sometimes $\overline{\mathcal{A}}$ is still too small:

Suppose $W_1 \subsetneq W_2 \subseteq \cdots \subsetneq H$. Let P_i be orthogonal projection onto W_i , P be orthogonal projection onto $W := \bigcup W_i$. Then $P_i \not\rightarrow P$ as $i \rightarrow +\infty$, even though $\langle v, P_i w \rangle \rightarrow \langle v, P w \rangle$ for all $v, w \in H$. Possible to have C^* -algebra \mathcal{A} with $P_i \in \mathcal{A}$ for all $i, P \notin \mathcal{A}$. von Neumann algebras ct'd

Suppose $W_1 \subsetneq W_2 \subseteq \cdots \subsetneq H$. Let P_i be orthogonal projection onto W_i , P be orthogonal projection onto $W := \bigcup W_i$. Then $P_i \not\rightarrow P$ as $i \rightarrow +\infty$, even though $\langle v, P_i w \rangle \rightarrow \langle v, P w \rangle$ for all $v, w \in H$. Possible to have C^* -algebra \mathcal{A} with $P_i \in \mathcal{A}$ for all $i, P \notin \mathcal{A}$.

If $\mathcal{A} \subseteq B(H)$ contains these and other limits (technically, closed in weak operator topology) then \mathcal{A} is a **von Neumann algebra**

Given $\mathcal{A} \subseteq B(H)$, von Neumann enveloping algebra is $\overline{\mathcal{A}}^{WOT}$, the closure in the weak operator topology

Universal property: if \mathcal{B} is von Neumann algebra, any homomorphism $\mathcal{A} \to \mathcal{B}$ extends to homomorphism $\overline{\mathcal{A}}^{WOT} \to \mathcal{B}$.

Algebras we've seen so far

$$R_0 = \bigcup_{k\geq 1} M_{2^k}(\mathbb{C})$$
:

Normalized trace τ on R_0 is a faithful state \implies GNS representation gives embedding $R_0 \subseteq B(H)$ $R := \overline{R_0}^{WOT}$ is the **(unique) hyperfinite** II_1 factor

What about

$$\mathcal{A}=R_0^{\mathbb{N}} / \left((a_i)_{i=1}^{\infty} : \lim_{i \to +\infty} \|a_i\|_{hs} = 0 \right).$$

Does \mathcal{A} have a faithful tracial state?

Ultralimits and ultrapowers

Fun to think about the algebra

$$\mathcal{A} = \mathcal{R}_0^{\mathbb{N}} / \left((a_i)_{i=1}^{\infty} : \lim_{i \to +\infty} \|a_i\|_{hs} = 0 \right).$$

Does \mathcal{A} have a faithful tracial state?

Possible definition:

$$\tilde{\tau}((a_i)_{i=1}^{+\infty}) = \lim_{i \to +\infty} \tau(a_i)$$

Problem: limit might not exist (could even be $+\infty$) Let's try to fix this:

$$R_0^{\mathbb{N},bdd} = \{(a_i)_{i=1}^\infty \in R_0^{\mathbb{N}} : \sup_i \|a_i\|_{op} < +\infty\}.$$

Ultralimits and ultrapowers ct'd

$$R_0^{\mathbb{N},bdd} = \{(a_i)_{i=1}^\infty \in R_0^{\mathbb{N}} : \sup_i \|a_i\|_{op} < +\infty\}.$$

Now $(\tau(a_i))_{i=1}^{\infty}$ is bounded, has a convergent subsequence Fix an ultrafilter \mathcal{U} on \mathbb{N} (these exist by axiom of choice) Ultralimit $\lim_{U} x_i$ exists for any bounded sequence $(x_i)_{i=1}^{\infty}$ The **ultrapower**

$$R_0^{\mathcal{U}} := R_0^{\mathbb{N}, bdd} / \left((a_i)_{i=1}^\infty : \lim_{\mathcal{U}} \|a_i\|_{hs} = 0 \right).$$

has faithful tracial state

$$\widetilde{\tau}\left((a_i)_{i=1}^{\infty}\right) = \lim_{\mathcal{U}} \tau(a_i)$$

and enveloping von Neumann algebra is $R^{\mathcal{U}}$.

Suppose A is finitely presented algebra such that ϵ -representations are bounded for $\epsilon \leq 1$.

 \mathcal{A} approximable by matrix algebras iff \mathcal{A} embeds in $\mathcal{R}^{\mathcal{U}}$

Which algebras embed in $R^{\mathcal{U}}$?

 $R^{\mathcal{U}}$ has faithful tracial state

 \implies if $\mathcal A$ embeds in $R^{\mathcal U}$, $\mathcal A$ has faithful tracial state

If \mathcal{A} embeds in $R^{\mathcal{U}}$, then $\overline{\mathcal{A}}^{WOT}$ embeds in $R^{\mathcal{U}}$

 \implies We might as well assume that \mathcal{A} is von Neumann algebra Defn. von Neumann algebra is **finite** if it has a faithful tracial state

Connes embedding problem: Does every separable finite von Neumann algebra embed in $R^{\mathcal{U}}$?

Connes embedding ct'd

Theorem (Helton-Meyer-Paulsen-Satriano, Kim-Paulsen-Schafhauser)

- ${\mathcal G}$ synchronous game
 - \mathcal{G} has a perfect C_{qc} -strategy iff $\mathcal{A}(\mathcal{G})$ has a tracial state.
 - \mathcal{G} has a perfect C_{qa} -strategy iff there is a homomorphism $\mathcal{A}(\mathcal{G}) \to \mathcal{R}^{\mathcal{U}}$.

Theorem (Ji-Natarajan-Vidick-Wright-Yuen)

There is a synchronous nonlocal game G with a perfect C_{qc} -strategy but no perfect C_{qa} -strategy.

So $\mathcal{A}(\mathcal{G})$ has a tracial state, but no homomorphisms to $\mathcal{R}^{\mathcal{U}}$

Connes embedding problem: Does every separable finite von Neumann algebra embed in $R^{\mathcal{U}}$?

 $\mathsf{JNWVY} \implies$ synchronous game \mathcal{G} such that $\mathcal{A}(\mathcal{G})$ has a tracial state, but no homomorphisms to $R^{\mathcal{U}}$

Is
$$\mathcal{A}(G)$$
 a von Neumann algebra?
No, but let τ be tracial state on $\mathcal{A}(G)$
let $\phi : \mathcal{A}(G) \to B(H)$ be GNS representation
let $\mathcal{A}_1 = \overline{\phi(\mathcal{A}(G))}^{WOT}$

 \mathcal{A}_1 is a separable finite von Neumann algebra with no homomorphisms to $\mathcal{R}^{\mathcal{U}} \implies$ strong counterexample to CEP

Computability of embeddings

Word problem for groups undecidable:

 \implies "fin.-pres. algebra \mathcal{A} has tracial state?" is coRE-hard Kharlampovich: " \mathcal{A} has homomorphism to $R^{\mathcal{U}}$ " is coRE-hard S.: coRE-hard to tell if $\mathcal{A}(\mathcal{G})$ has tracial state or morphism to $R^{\mathcal{U}}$ JNWVY: RE-hard to tell if $\mathcal{A}(\mathcal{G})$ has homomorphism to $R^{\mathcal{U}}$

Theorem

Mousavi-Nezhadi-Yuen Π_2^0 -complete to tell if three-player nonlocal game has perfect C_{qa} -strategy

Conjecture: it is Π_2^0 -complete to tell if $\mathcal{A}(\mathcal{G})$ has morphism to $\mathcal{R}^{\mathcal{U}}$

Hyperlinear groups

Let G be a group (set with multiplication, inverses)

Group algebra $\mathbb{C}G$ has faithful tracial state

Definition

A group is hyperlinear if $\mathbb{C}G$ embeds in $R^{\mathcal{U}}$

Hyperlinearity can also be defined concretely in terms of ϵ -rep'ns If $G = \langle S : R \rangle$ is finitely presented, then $\mathbb{C}G$ is finitely presented

Connes embedding for groups: is every group hyperlinear?

Still seems open.

Why should we care?

Binary constraint system games

Binary constraint system (BCS): Given by variables x_1, \ldots, x_n and constraints $(V_i, f_i), i = 1, \ldots, m$ where $V_i \subset \{x_1, \ldots, x_n\},$ $f_i : \{-1, 1\}^{V_i} \to \{0, 1\}$ are multilinear polynomials

Given BCS, can write down synchronous nonlocal game $\ensuremath{\mathcal{G}}$ and algebra

$$\mathcal{A}(\mathcal{G}) = \mathbb{C}^* \langle x_1, \dots, x_n : x_i^* = x_i, x_i^2 = 1$$

 $x_j x_k = x_k x_j ext{ if } j, k \in V_i ext{ for some } i$
 $p_i = 0
angle.$

Mermin-Peres magic square game is example of BCS game where constraint system is linear

BCS-MIP*: one-round proof systems with perfect completeness where protocol is based on BCS game

Surmise: JNWVY \implies BCS-MIP* = RE

We often talk about different classes of BCSs: linear systems, 3SAT, 2SAT, HORN-SAT

It also makes sense to talk about different subclasses of BCS-MIP* Classically, 2SAT-MIP, HORN-MIP, LIN-MIP, etc. are all easy Atserias-Kolaitis-Severini: 2SAT-MIP*, HORN-MIP*, etc. are easy, except perhaps LIN-MIP*

If LIN-MIP* = RE, then it would imply analogue of Schaefer's dichotomy theorem for subclasses of BCS-MIP*

Hyperlinear groups ct'd

If BCS is linear, $\mathcal{A}(\mathcal{G})$ is (central quotient of a) group algebra

S.: if G finitely presented, $\mathbb{C}G$ embeds in $\mathcal{A}(\mathcal{G})$ for some linear system game \mathcal{G}

There is a non-hyperlinear group iff

there is a linear system game G such that A(G) has tracial state, but no homomorphism to R^U

If LIN-MIP* = RE, then there is a non-hyperlinear group

Hyperlinear groups ct'd

If BCS is linear, $\mathcal{A}(\mathcal{G})$ is (central quotient of a) group algebra

S.: if G finitely presented, $\mathbb{C}G$ embeds in $\mathcal{A}(\mathcal{G})$ for some linear system game \mathcal{G}

There is a non-hyperlinear group iff

there is a linear system game G such that A(G) has tracial state, but no homomorphism to R^U

If LIN-MIP* = RE, then there is a non-hyperlinear group

The end!