MPC with Silent Preprocessing
via Pseudorandom Correlation Generators

Lisa Kohl

—~—~

Based on joint works with Elette Boyle, Geoffroy Couteau, Niv Gilboa,
Yuval Ishai, Peter Rindal, and Peter Scholl

Secure multi-party computation (MPC)
[Ya086; GMW87; BGWSS; CCD8S]

\ALLLLEALAS
- public function f :?(

a b

Goal: Parties learn f(a, b) and nothing more

Secure MPC with preprocessing
[Beaver9l]

2\\\\\\\\\\

T Correlated randomness [T

-+ Fast online phase, security against dishonest majority
— Preprocessing expensive (communication & storage)

Pseudorandom correlation generator (PCG)

[BCGI18; BCGIKS19]
:\\\\\\\\\\
L \K

Short correlated seeds
Correlated randomness

Pseudorandom correlation generator (PCG)
[BCGI18; BCGIKS19]

:\\\\\\\\\\

<<<<<<<<<<<<<<<<<<<<<<<< Gen(®) |
Ry < Expand(ko) Ry < Expand(k;)

e e

Correctness: Ry ~ R;

Pseudorandom correlation generator (PCG)
[BCGI18; BCGIKS19]

:\\\\\\\\\\

<<<<<<<<<<<<<<<<<<<<<<<< Gen(®) |
Ry < Expand(ko) Ry < Expand(k;)

e e

Security: (ko, R1) =~ (ko, [R1 | Ro ~ Ri])

Secure MPC with silent preprocessing
[BCGIKS19]

\ALLTALAS
@ malicious security %{E&)\\(
. at little extra cost _
Setup with sublinear
communication & storage

SILENT

Generic construction of PCGs
[BCGIKS19]

General additive correlations:
TR BRI R+ R =f(X)

Feasibility: PRG + Homomorphic secret sharing

»»»»»»»»»»»»»»»»»»»»»»»» Share(sy)
Ro < Evalfopra(ko) Ry < Evalropra (k1)

e e

Landscape of PCGs

“Gentryland”
“Cryptomania”

“Lapland”

“Minicrypt”

LWE-+:

DDH + PRG*:
LWE + PRG™:

LPN:

Ring-LPN:
OWEF:

*low-degree

General additive [BCGIKS19]
Log-space [BCGIO17]

Bounded depth* [BCGIKS19]
Vector OLE [BCGI18]

OT, Constant-degree [BCGIKS19]
OLE [BCGIKS20]

Linear [GI99; CDI05]

Truth tables [BCGIKS19]
*concretely efficient

Learning with errors vs. learning parity with noise

WE:

p>2 p =2 (here: p > 2)
s over Zp, s over Zp,
|lel|oo small HW(e) small

Cryptography from LWE vs. LPN

Additive HE

FHE
NIKE
CRH

low noise

LWE LPN

Cryptography from LWE vs. LPN

Additive HE

FHE
NIKE

PCG for OT
CRH PCG for OLE

low noise

LWE LPN

A simple PRG from LPN

LPN: Dual-LPN:

generator matrix G parity check matrix H
‘I B I

limited to quadratic stretch arbitrary polynomial stretch

10

Why LPN is a perfect match for PCGs

~
~

» Sparse vector can be distributed via compressed secret shares
» LPN assumption is linear ~~ homomorphic properties

11

How to distribute a sparse vector efficiently
(GI14] -
Point Function: F*: {1,... N} — Fp, F¥(x) = y ,ifx=a
0 ,else

Distributed Point Function:

ko ki
A+&—
la N

» Efficient constructions from OWFs [GI14; BGI16]
» Efficient distributed setup [Ds17]

12

Part |: PCG for oblivious transfer from LPN

13

Oblivious transfer (OT)

[Rab81; EGLS5]

\RLLALTALES
O b h, n
.. - oT L
rp

Security: Alice learns only r,, Bob doesn’t learn b

GMW Protocol: Secure MPC with 2 OTs per AND-Gate

Problem: OT is expensive (“public-key primitive”)

14

OT extension

Few
OTs

N

\ 2\\\\ i
L i

7~

N7

2 N\

/

~

Many (random) OTs

OT extension: Few base OTs + “cheap crypto” [Bea96; IKNPO3|
Silent OT extension: Local expansion [BCGIKS19; BCGIKRS19]

15

Comparison of OT extension protocols
128-bit security

Reference Rounds Comm. per Silent Active Based on
random OT

[Bea9o] 2 poly X X OWF

[IKNP03; ALSZ13; KOS15] 3* 128 X crh

[KK13] (short strings) 3 ~ 78 X X crh

[BCGIKS19] log N 0—3 X LPN, crh**

[BCGIKRS19] 2* 0.1 LPN, crh**

*Fiat-Shamir for active security, **correlated-input secure hash function

[GMMM18]: RO = 2-round OT extension

16

Comparison of OT extension protocols
128-bit security

Reference Rounds Comm. per Silent Active Based on
random OT

[Bea9o] 2 poly X X OWF

[IKNP03; ALSZ13; KOS15] 3* 128 X crh

[KK13] (short strings) 3 ~ 78 X X crh

[BCGIKS19] log N 0—3 X LPN, crh**

[BCGIKRS19] 2* 0.1 LPN, crh**

*Fiat-Shamir for active security, **correlated-input secure hash function
» Semi-honest 2-PC w/ 4.2 bits per AND, 30x less than [DKSSZZ17]
» Improves PSI, malicious MPC

» Useful for non-interactive secure comp. [IKOPS11; AMPR14; MR17]

16

Correlated OT

el € [Foa

- -' ri _|_ A Iy
QY
RS

Correlated OT + correlation robust hash function = OT [IKNPO3]

As vectors: = Subfield vector oblivious linear evaluation
A - B = [eFATs | + e

17

Overview: PCG for correlated OT

[BCGIKS19]
Idea:

1. Via distributed point functions:

L.

2. Via addition:

3. Via LPN:
[

BTN + N - (A AE
]

18

la. Towards 2-round setup
[SGRR19; BCGIKRS19]

Problem: DPF require log N rounds for distributed setup!

Observation:
» Receiver knows b
~ Receiver knows the point o, where PF # 0
~~ Puncturable pseudorandom functions sufficient!

19

1b. Puncturable pseudorandom function
[BGI13; BW13; KPTZ13]
Via GGM:

Puncturable PRF (PPRF):
Fk: {1,...,N}—>F2>\

> ~ Fi(x) for all x
> ~ Fi(x) for all x # o

k| = A, |k*| = Aog N
20

1c. PCG for unit vector via PPRF

[SGRR19; BCGIKRS19]

:\\\\\\l\\\

o [[F@) A [k, A

How to set up k*, k?

21

1d. 2-Round setup for unit vector
[SGRR19; BCGIKRS19]

Strategy: (based on [Ds17])

» Sender chooses

» Receiver receives via chosen OTs:

—path ot
—

» Note: OTs can be executed in parallel!

22

2. From unit to sparse vectors
[BCGI18; BCGIKS19]

Repeat t times:

(] I
+ + +
[1 B B | [
T + +
+ + +
C W] e [

Alternative: Concatenation + LPN with regular noise
23

3. From sparse to pseudorandom vectors

[BCGI18; BCGIKS19]

Main challenge: Parity check matrix is big!

» use quasi-cyclic codes ~~ multiplication in O(N)
Security
» Similar to PQ cryptosystems BIKE, HQC [AAB+19; ABB+19]

24

PCG for correlated OT from LPN - Recap

[BCGIKS19]

|

25

From correlated OT to chosen OT

1. Break correlations:
» Locally apply crh [IKNPO3]

~» MPC with 2-round silent preprocessing

2. Derandomization:
» Depends only on b
» Can be sent along with first message

~ 2-round OT extension

26

Runtimes (ms) for 10 million random OTs
[BCGIKRS19]

128854

100000 o e
13728
10000 47x
3373 : I I : :

LAN (10 Gbps) WAN (100 MBps) WAN (10 MBps)

[IKNPO3] vs 2-round silent vs 3-round hybrid

» Total communication: 160 MB vs 145 kB vs 127 kB

Part |I: PCGs for OLE from LPN and ring-LPN

28

Oblivious linear evaluation (OLE)

d=ab+c

» Generalization of OT to F,

OLE

b ’ . E Fp |\\\\\\\\\\K
QL;

» 2 OLEs can be locally transformed into a multiplication triple

a < | b

29

Towards PCG for OLE from LPN

[BCGIKS19,BCGIKS20]
Idea: Rewrite a * b and use linearity of LPN

| =

Via LPN:

30

PCG for OLE via LPN

[BCGIKS19,BCGIKS20]
Via DPF: EEE

S

Problem: Dimension (~~ computational cost) quadratic in N

A different perspective
[BCGIKS20]

__________f

Observations:

» Generalizes to more dimensions
» Better efficiency via choosing H such that H x H compressible

32

More efficient PCG for OLE from ring-LPN

[BCGIKS20]

public sparse

l
- 0 -+ [~ [over Zo[X1/(X)

If (X) (of degree N) fully splits over Z,[X]:

Y
NC

33

More efficient PCG for OLE from ring-LPN

[BCGIKS20]

public sparse

l
- 0 -+ [~ [over Zo[X1/(X)

If (X) (of degree N) fully splits over Z,[X]:

Y
NC

~» N OLEs over Z, in O(N) computation time

33

Efficiency of our PCG construction for OLE
[BCGIKS20]

To generate 1 Mio OLEs over Z, (g composite of 62-bit primes):

Reference Amount Seed size Communication OLEs/second
[KPR18] 32 MB 32 MB >1GB 30K
[BCGIKS19] 17 GB 3GB 6 GB 6 K*
[BCGIKS20] 32MB 1.25 MB 7 MB 100 K*

“expansion only, estimated costs

» Setup with malicious security

» Generalizes to authenticated multiplication triples at ~ x2 cost!

34

Conclusion

PCGs for OT from LPN [BCGIKS19; BCGIKRS19]
» Random OT: practical, almost zero communication
» 2-Round OT extension (malicious security, implementation)

PCGs for OLE [BCGIKS20]
» More efficient instantiation based on fully splittable ring-LPN

Open problems/ Ongoing work:
» Optimize OT: Better codes
» Efficient PCGs for more correlations
» Better understanding of LPN-flavored assumptions

Thank youl! .

