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Leakage Resilient Cryptography

• General Question: What if the secret key of a scheme was accidentally 
chosen from a not fully random distribution or additional side-information 
about the secret key was later leaked?

𝒜

pk ℒ(sk) 𝖤𝗇𝖼(pk, b)
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Overview

• Entropic LWE: LWE with weak secrets


• What was known


• Our Approach


• Lower Bounds



Learning with Errors [Reg05]
Search Version:
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Learning with Errors [Reg05]
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Decisional Version:

As before
Uniformly random in ℤm

q



Worst-Case Hardness of LWE

• For gaussian error distributions , LWE enjoys 
worst-case hardness


• Quantum Reduction from (wc) SIVP to LWE 
[Reg05], classical reduction from (wc) GapSVP to 
LWE [Pei09,BLPRS13]


• Approxiation factor of worst-case problem relates 
to the modulus-to-noise ratio 

Dσ

α = q/σ



LWE-based Crypto

• Public Key Encryption


• Oblivious Transfer/Mutliparty Computation


• Fully Homomorphic Encryption (only under LWE)


• Attribute-based Encryption for all Circuits (only under LWE)


• Non-Interactive Zero-Knowledge



Leakage Resilience on Assumption Level

• For many schemes the LWE secret  constitutes the secret key


• A leakage resilient version of LWE we can generically add leakage resilience to many of 
these schemes, e.g. Regev encryption


• Tuesday Session: Version of LWE with (very strong) leakage can be used to build iO


• Given the importance of LWE, this can even be considered a self-supporting goal

s



Entropic LWE
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sA + e

Search Version:

Given: find s

uniform in ℤn×m
q

uniform in ℤn
q gaussian with parameter  σ

Distribution  is adversarially 
chosen from a class of 

distributions
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chosen from a min-entropy distribution 𝒮
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Entropic LWE

A A≈c
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Decisional Version:

chosen from a min-entropy distribution 𝒮



Hardness LWE with Entropic Secrets

• [GKPV10]: For super-polynomial , 
reduction from LWE to eLWE for entropic 
secrets supported on short vectors


• [BLPRS13]: Hardness of LWE with binary 
secrets which preserves  exactly


• [AKPW13]: More refined version of the 
[GKPV10] argument,  degrades 
polynomially in the number of samples , 
but also limited to short secrets
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Recap: The Lossiness 
Technique [GKPV10]



The Lossiness Technique

A

B C F+

≈ Under standard LWE

uniform in ℤn×k
q Discrete gaussian (Dℤ,σ)n×m

uniform in 

or


Discrete gaussian 

ℤn×k
q

(Dℤ,σ)n×k

uniform in ℤn×m
q

• Common proof strategy: Replace uniformly chosen matrix  with a pseudorandom matrix which 
has unusually many short vectors in its (row-)span


• Now use that  loses information about 

A

A, sA + e s



The Lossiness Technique [GKPV10]

A, sA + e

BC + F, s(BC + F) + e
≈LWE

BC + F, sBC + sF + e
=

BC + F, sBC + e′ ≈s ≈LHL BC + F, tC + e′ 

≈LWE

A, u

BC + F, u
≈LWE

Chosen from a min-entropy 
distribution  supported on 𝒮 {0,1}n

0 0



The Lossiness Technique

• This proof fundamentally relies on the fact that  is short


• Otherwise the term  cannot be “drowned” by 


• Furthermore: modulus-to-noise ratio deteriorates drastically (overcome by 
[AKPW13])


• Natural Question: Is the requirement of  being short fundamental or 
rather a limitation of the proof technique?
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Entropic LWE on General Min-
Entropy Distributions 

via Gentle Flooding at the Source



Our Approach

• We also pursue lossiness approach, but with a twist


• Change of Perspective: Instead of analyzing the interference of the secret 
with the noise term, we analyze what effect the noise has on the secret 
directly


• We relate this to a new quantity we call noise-lossiness of the secret s



Noise-Lossiness
• Fix a distribution of secrets  supported on  


• ,  is a gaussian with parameter 


• Measures the information lost about  after 
passing it through a gaussian channel


• Different Perspective: How bad is  as an error 
correcting code?

𝒮 ℤn
q

s ← 𝒮 e σ

s

𝒮

νσ(𝒮) = H̃∞(s |s + e)
= − log(Pr

s,e
[𝒜*(s + e) = s])

 is maximum likelihood decoder for 𝒜* 𝒮



Decomposing Gaussians
• Well known: Sum of two continuous and 

independent gaussians is again a gaussian


• Reverse Perspective: Express a given gaussian 
as the sum of two independent gaussians


• For a given matrix  we want to decompose a 
spherical gaussian  with parameter  into  




•  is a spherical gaussian with parameter 


• Such a decomposition exists if 


• For a discrete gaussian  with 
parameter , we can bound 

F
e σ

e = e1F + e2

e1 σ1

σ ≥ ∥F∥ ⋅ σ1

F ∈ ℤn×m

γ ∥F∥ ≤ O(γ m)

+

=



From Noise-Lossiness to Hardness of Entropic 
LWE

A, sA + e

BC + F, s(BC + F) + e
≈LWE

BC + F, sBC + sF + e
=

=
BC + F, sBC + sF + e1F + e2

=
BC + F, sBC + (s + e1)F + e2

 small∥F∥



From Noise-Lossiness to Hardness of Entropic 
LWE

A, sA + e

BC + F, s(BC + F) + e

BC + F, sBC + sF + e

≈LWE

=

=
BC + F, sBC + sF + e1F + e2

=
BC + F, sBC + (s + e1)F + e2

Search Version:

H̃∞(s |BC + F, sBC + (s + e1)F + e2)

= H̃∞(s |sB, s + e1)

= H̃∞(s |s + e1) − k log(q)

= νσ1
(𝒮) − k log(q)

Hard if  νσ1
(𝒮) ≥ k log(q) + ω(log(λ))

Can be improved if both  
and  are short

s
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From Noise-Lossiness to Hardness of Entropic 
LWE

A, sA + e

BC + F, s(BC + F) + e

BC + F, sBC + sF + e

≈

=

=
BC + F, sBC + sF + e1F + e2

=
BC + F, sBC + (s + e1)F + e2

Decisional Version: Need that  extractable via LHL𝒮

≈LHL BC + F, tC + (s + e1)F + e2 BC + F, tC + sF + e=

≈LWE

BC + F, u

≈LWE

A, u



Parameters

• We need to assume LWE with parameter 


• We get hardness of entropic LWE with parameter 


• I.e. Modulus-to-noise ratio deteriorates by a factor 

σ

σ1 ⋅ σ ⋅ m

σ1 ⋅ m



Computing the Noise 
Lossiness



Noise Lossiness: General Distributions

ℤn
q

νσ(𝒮) ≥ H∞(s) − n ⋅ log(q/σ) − 1



Noise Lossiness: Short Distributions

ℤn
q

νσ(𝒮) ≥ H∞(s) − 2r n /σ

r



Main Result

• Putting everything together, assuming  is hard:


• For general (non-short) min-entropy distributions  we get that 
 is hard given that  




• For -bounded distributions  we need  

LWE(k, q, γ)

𝒮
eLWE(𝒮, n, q, m, σ)
H∞(s) ≳ k ⋅ log(q) + n ⋅ log(qγ m /σ)

r 𝒮 H∞(s) ≳ k log(γr) + 2r nmγ/σ



Lower Bounds

• For the general case, min-entropy of  must close to  or  of the 
same order as 


• Can we do better for general entropic distributions?


• Specific Moduli: No!

𝒮 n log(q) σ
q



Counterexample
q = p ⋅ q′ 

Let  be the uniform distribution on 𝒮 p ⋅ ℤn
q

 is supported on sA p ⋅ ℤm
q

sA
⇒ sA + e mod p = e

∥e∥∞ < p/2



Lower Bounds

• What if  does not have a sub-structure?


• Meta-Reduction Framework: Show that BB-reduction can be used to 
break the underlying assumption without using an adversary


• Simulatable Adversaries [Wichs13]: From the view of a BB-reduction, an 
unbounded adversary can be simulated efficiently


• Main Idea: Simulator knows all the samples that were given to the 
adversary

ℤq



BB-Lower Bound
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Unbounded Adversary

Support of  is chosen uniformly random of size  where 
 

𝒮 2k

k ≲ n log(q/B)

sA + e



BB-Lower Bound

𝖲𝗂𝗆ℛ
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Efficient Simulator

Support of  is chosen uniformly random of size  where 
 

𝒮 2k

k ≲ n log(q/B)

sA + e



Take Away and Open Problems
Conclusions 

• Standard LWE (non-short secrets) can tolerate a small amount of leakage, 


• This has inherent reasons, either attacks or BB-impossibility


• LWE with short/binary secret tolerates a much higher leakage rate, but in general this comes at the cost of large public keys 
(factor )


Open Problems 

• What about more specific classes of distributions/leakage functions?


• Leakage that includes the noise?


• Techniques do translate to Learning-with-Rounding, but not “nicely”


• Does the BB-impossibility extend e.g. to quantum reductions?


• Structured LWE, e.g. Ring-LWE?

≈ log(q)

Thanks!


