

Lattices, Post-Quantum Security,
and Fully Homomorphic Encryption

Daniele Micciancio
(UC San Diego)

April 2020

Encryption

● Secure communication over insecure channel

“Hi”

c=Encrypt(pk,“Hi”)

Decrypt(sk,c)=“Hi”
Alice says “Hi”.

 c = ???
Alice

Bob

Eve

pk
sk

sk

ciphertext

Modern Cryptography

● Hard mathematical Problem:
– Factoring: Given pq, find p and q

● Cryptographic Construction:
– Encryption scheme

● Proof of security:
If you can break

encryption
then you can

factor numbers

the encryption
is secure

If factoring
is hard

Factoring and
Quantum (In)Security

● Shor (1994):
– efficient quantum algorithm to factor numbers

● Assumption that factoring is hard does not hold
in a “post-quantum” world

● Same holds for most other mathematical
problems currently in use:
– discrete logarithm, elliptic curve, etc.

● Need for new mathematical problems that are
not solvable by quantum algorithms

 Subset-Sum Problem

● Given n integer numbers
– a₁,…,aₙ

and a target value
– b

● Goal:
– Find a subset that adds up to b

Σ {aᵢ | i ∈ S} = b

a1

a7

a6

a4

a10

a5

a8

a9

a3

a2

b=a2+a4+a5+a6+a8

weights

Subset-Sum / Knapsack
● Also known as the “Knapsack” problem

– Fill a knapsack of capacity b
– using a selection of items of size a₁,…,aₙ
– items can be used multiple times

image: CC BY-SA 2.5
wikipedia:Knapsack_problem

Try it out!

https://xkcd.com/licence.html

Hardness of Subset-Sum
● NP-complete: no efficient algorithm

unless P=NP (or NP ⊂ BQP)
● One of Karp 21 NP-complete problems

– [Karp 1972]

NP-hard problems:

 1. Set packing
 2. Vertex Cover
 …
 18. Knapsack
 …
 21. Max Cut

Lattice/Knapsack Cryptgraphy:
abridged (pre-)history

● Knapsack public key cryptosystem
– [Merkle, Hellman 1978]

● Cryptanalysis
– [Shamir 1984],[Lagarias,Odlyzko 1985]

● Several variants kept being suggested for almost two
decades, but invariably broken
– “The Rise and Fall of Knapsack Cryptosystems” [Odlyzko 1990]

● Turning point [Ajtai 1996]
– worst-case/average-case connection
– the “right” way to use knapsack/lattices for cryptography

 Subset-Sum vs
Lattice Problems

● Subset-sum over vectors aᵢ = ∈ Zⁿ

● Essentially the same as the knapsack
problem, just more convenient in
cryptography applications

b=2a2+a4-3a5+2a6-a8

a₉

a₈
a₇

a₆
a₄

a₅

a₃

a₂

a₁

1
4
..
5

4
1
6
2
3

8
1
7
3
3

12
2
13
5
6

linear combination with
small coefficients

b= a2+a4+ a5+ a6+a8

Geometry of Lattices

Set of all integer linear combinations of basis
vectors B = [b1,...,bn] ⊂ Rn

L(B)={Bx: x  Zn} ⊂ span(B)={Bx: x  Rn}

B
b1+3b2

b2

b1

Matrix-Vector multiplication

● A ∈ Zq
nxh, x∈Zq

h, b∈Zq
n

● fA(x) = Ax

● fA(x+y) = fA(x)+fA(y)

● Easy to compute and invert

A
…..

x

b=n

h

Linear functions

A,x A,b

matrix-vector multiplication

Gaussian elimination

● [Ajtai 1996] One-Way Function:
– fA(x) = Ax (mod q)

– A ∈ Zq
nxh, x∈{0,1}{0,1}h,b∈Zq

n

● Short Integer Solution Problem:
– Given [A,b] find a smallsmall x such that Ax=b
– More generally, ||x||<β

A

x

b=n

h

Short Integer Solution (SIS)

A,x A,b

f

Learning With Errors (LWE)

● LWE function family:
– Key: A ∈ Zq[nxh]

– LWEA (s,e)= As + e (mod q)

– Small |e|max< β = O(√n)
– q,m=poly(n)
– Injective version of Ajtai’s SIS function

● [Regev 2005] assuming quantum hard lattice problems
– LWEA is one-way: Hard to recover (s,e) from [A,b]

– b=LWEA(s,e) is pseudorandom (≈ uniform over Zq[h])

– [Peikert 2009], [BLPRS13] hard under classical reductions

A

s

e b=+h

n

Encrypting with LWE

● Idea: Use b=LWEA(s,e) as a one-time pad
● Private key encryption scheme:

– secret key: s ∈ Zq
n,

– message: m ∈ Z
– encryption randomness: [A,e]
– Encs(m; [A,e]) = [A,b+m]

● [BFKL93],[GRS08]
– Learning Parity with Noise (LPN): q=2
– If LWEA is one-way, then b=As+e is pseudo-random

● Regev LWE: q → poly(n)

A

s

e b=+h

n

Decryption

● Encs(m;[A,e]) = [A,b+m] where b = As+e

● Decryption:
– Decs([A,b+m]) = (b+m) - As = m+e mod q

– Low order bits of m are corrupted by e

● Fix: scale m, and round:

0 q +e

0 q/4 q/2 3q/4

q/4
q/8

(Fully) Homomorphic Encryption

● Encryption: used to protect data at rest or
in transit

● Fully Homomorphic Encryption: supports
arbitrary computations on encrypted data

Enc(m)

Enc(m)

Enc(m)

Enc(m)

Enc(F(m))

FHE Timeline

● Concept originally proposed by
[Rivest, Adleman, Dertouzos 1978]

● [Gentry 2009]
– First candidate solution
– Bootstrapping technique

● Much subsequent work (2010-2020 ...)
– Basing security on standard (lattice) assumptions

[BV11,B12,AP13,GSW13,BV14,...]

– Efficiency improvements
[GHS12,BGH13,AP13/14,DM15,CP16,CGGI16/17,CKKS17,BDF18,MS18,...]

– Implementations:
HElib, SEAL, PALISADE, FHEW, TFHE, HEAAN, Λoλ, NFLlib, …

Homomorphic Addition
 Encs(m₁) + Encs(m₂)

= [A1,A1s+e1+m1] + [A2,A2s+e2+m2]

= [(A1+A2),(A1+A2)s+(e1+e2)+ (m1+m2)]

Encs(m;β): encryption of m with error |e| < β

➢ Encs(m₁;β₁)+Encs(m₂;β₂) ⊂ Encs(m₁+m₂;β₁+β₂)
➢ c*Encs(m₁;β₁) ⊂ Encs(c*m₁;c*β₁)

Can take any linear comination of ciphertexts with small coefficients

Multiplication by any constant

● Enc’[m] = (Enc[m],Enc[2m],Enc[4m],…,Enc[2log(q)m])
● Multiplication by c ∈ Zq:

– Write c = Σi ci 2
i, where ci ∈ {0,1}

– Compute Σi ci Enc[2i m] = Enc[Σi ci 2
i m] = Enc[cm]

● c*Enc’[m] = Enc[cm]
● We can also compute Enc’[cm]:

c*Enc’[m]=(cEnc’[m], (2c)Enc’[m], .., (2log qc)Enc’[m])

 = (Enc[cm], Enc[(2c)m], .., Enc[(2log qc)m])

 = Enc’[cm]

Public Key Encryption

● Public Key:
[A1,b1] = Encs(0), …, [An,bn]=Encs(0)

● Encrypt(m): (Σi ri * [Ai,bi]) + (O,m)
– Encs(0)+...+Encs(0)+Encs(m;0) = Encs(m)

● Decrypt normally using secret key
● [Regev05] LWE Public Key Encryption
● [Rothblum11]: any linear homomorphic

encryption implies public key encryption

Homomorphic Multiplication?

● Is it possible to multiply two ciphertexts?
– Encs(m₁;β₁)*Encs(m₂;β₂)⊂Encs(m₁*m₂;B(β₁,β₂))

● Any computation can be expressed in terms of
addition and multiplication
– 0: False, 1: True
– 1-x = Not(x)
– x*y = x ∧ y
– x + y – x*y = x ∨ y

How to multiply two ciphertexts

● Linearity allows to multiply ciphertexts!
● Several multiplication methods:

1) Encryption Nesting [2008 …]

2) Ciphertext Tensoring [2011 …]

3) Homomorphic Decryption [2013 …]

4) Gate Bootstrapping [2015 …]

● Notes:
– Main difference between FHE schemes
– Only allows a bounded number of multiplication
– Basic Multiplication + Bootstrapping = FHE

(1) Homomorphic Multiplication by

Encryption Nesting

Multiplication by
Encryption Nesting

● C₀ = EncS0(m₀), C₁ = EncS1(m₁)
● Multiply C₀ homomorphically by C₁

– EncS0(m₀)*C₁ = EncS0(m₀*C₁)

– But m₀*C₁ = m₀*EncS1(m₁) = EncS1(m₀*m₁)

– So, end result is EncS0(EncS1(m₀*m₁))

● Decrypt by applying DecS0 and then DecS1

● (EncS0 . EncS1) is still linearly homomorphic
– Nested encryptions still support homomorphic addition

● Extends to more multiplications
(EncS0(EncS1(EncS2(m₀*m₁*m₂)))), etc.

Multiplication by
Encryption Nesting

● Omitted several important details:
– Can only multiply by “small” constant C₁
– Can only left-multply by constants
– Ciphertexts get bigger, requiring |S0|>|S1|

● [Aguilar Melchor, Gaborit, Herranz, 2010]

– Can only multiply ciphertexts in sequence
– Limited (sublinear) number of multiplications
– Not enough to support bootstrapping

(2) Multiplication by

Ciphertext Tensoring

Trivial (Symbolic) Multiplication

● Symbolic homomorphic product
– Enc(m₀)*Enc(m₁) = (“*”, Enc(m₀), Enc(m₁))

● Decryption(“*”,C₀,C₁)
– Decrypt C₀ → m₀
– Decrypt C₁ → m₁
– Compute m₀ * m₁

● Applies to arbitary operations
● Trivial, uninteresting

– Ciphertext and Decryption grow with computation
– Compactness: decryption of f(Enc(m)) should be sublinear in |f|

Trivial (Symbolic) Multiplication

● Symbolic homomorphic product
– Enc(m₀)*Enc(m₁) = (“*”, Enc(m₀), Enc(m₁))

● C = (“*”,C₀,C₁) allows to compute any
function of C₀ and C₁

● This seems unnecessary
– all we want to do is to decrypt C
– enough to compute decryption function on C
– what does the decryption function look like?

Decryption is linear

● Decs(A,b) =b – As = m+e

● Decryption is linear a linear function of
the ciphertext C=(A,b)

● Remark:
– Only approx. decryption is linear
– Exact decryption involves non-linear rounding

● Decs(C₀)*Decs(C₁) is bilinear in C₀, C₁

Multiplication by Tensoring

● Tensor product of C₀, C₁:
– {C₀[i]*C₁[j] : i,j = 1..n}
– allows to compute any bilinar function of C₀ and C₁
– still an additive group, so tensor ciphertexts can be

added homomorphically

● Several optimizations are possible:
– No need to compute arbitrary bilinear functions
– Only bilinear functions of the form

(C₀,C₁) → Dec(C₀) * Dec(C₁)

– Can use a low rank subspace of tensor product

Multiplication by Tensoring

● C₀ = EncS0(m₀), C₁ = EncS1(m₁)

● Product C = C₀*C₁ = C₀ x C₁ (tensor product)
● [Brakerski, Vaikuntanathan 2011]

– C is larger than C₀,C₁
– Only limited number of multiplications
– Also introduces a “key switching” technique that

allows to reduce the size of ciphertext
– Support “bootstrapping”, leading to a FHE

Tensoring and Key Switching

● Decryption: Decs(A,b) =b – As ≈ m
– Linear in the secret key s’=(-s,1)
– Decs’(A,b) = [A,b]s’ ≈ m

● Given two ciphertexts c₁ c₂:
– <c₁ , s’> ≈ m₁
– <c₂ , s’> ≈ m₂
– <c₁×c₂,s’×s’> = <c₁,s’><c₂,s’> ≈ m₁ m₂

● c₁×c₂ is an encryption of m₁m₂ w.r.t. s’×s’

Key Switching

● Key Switching: c=Encₛ(m) → c’=Encₜ(m)
● Linear decryption: Decₛ(c) = <c,s> ≈ m
● Linear Homomorphism:

– <c,Encₜ(s)> = Encₜ(<c,s>) ≈ Encₜ(m)

● Encₜ(s) allows to switch key: Encₛ(m) → Encₜ(m)
● Multiplication by tensoring:

– t = s (requires circular security assumption)
– <c₁×c₂,s×s> ≈ m₁m₂
– <c₁×c₂,Encₛ(s×s)> = Encₛ(m₁m₂)

(3) Multiplication by

Homomorphic Decryption

Decryption is linear

● Decs(A,b) =b – As = m+e

● Linear in the ciphertext (A,b)
● Linear in the secret key s’=(-s,1)

– Decs’(A,b) = [A,b]s’=m+e

– Deccs’(A,b) = [A,b](cs’)=cm+ce

● Remark:
– Only approx. decryption is linear
– Exact decryption involves non-linear rounding

Multiplication via
Homomorphic Decryption

● Idea:
– Encryption Enc(m) = (A,As+e+m) is linearly homomorphic
– Decryption Dec(A,b) = b – As = m+e is linear in s’=(-s,1)
– We can decrypt homomorphically using an encryption of s’

● Details
– Given: Enc(m)=(a,b) and Enc(s’)=(Enc(-s),Enc(1))
– Compute Enc(m)*Enc(s’) = a*Enc(-s)+b*Enc(1)=Enc(m)

● More interesting:
– Given Enc(m) and Enc(cs’)
– Compute Enc(m)*Enc(cs’) = Enc(cm)

Homomorphic
“decrypt and multiply”

● Enc’’(c) = Enc’(cs’) = Enc’(“E(m)→c*m”)
● Enc’’(c) = {Enc(αic)}i for some αi(s)

● Homomorphic Properties:
– Enc’’(m1) + Enc’’(m2) = Enc’’(m1+m2)

– Enc’’(m1)*Enc’’(m2)

={Enc(αim1)*Enc’’(m2)}i

={Enc(αim1*m2)}

= Enc’’(m1*m2)

Relation to GSW encryption
● [Gentry,Sahai,Waters’13]

– FHE based on “approximate eigenvectors” intuition

– C₁ = Encₛ(m₁), C₂ = Encₛ(m₂)
– C₁ * s ≈ m₁ * s, C₂ * s ≈ m₂ * s
– (C₁ * C₂) * s ≈ C₁ * (C₂ * s)

 ≈ C₁ * (m₂*s) ≈ m₂ * (C₁*s) ≈ (m₁m₂)*s

– C₁ * C₂ ≈ Encₛ(m₁m₂)

● GSW vs Enc’’(m)
– conceptually different
– technically equivalent:

perform essentially the same operations

(4) Homomorphic Multiplication by

Gate Bootstrapping

Bootstrapping and FHE

● Encryption scheme supporting
– Enc(m0)+Enc(m1) = Enc(m0+m1)

– Enc(m0)*Enc(m1) = Enc(m0*m1+e)

● Not quite a FHE yet:
– Enc can evaluate any arithmetic circuit
– But noise grows with computation

● Effectively:
– can only evaluate small circuits / branching programs

● Bootstrapping: technique to redude e by homomorphic
decryption
– [Gentry 2009] FHE(Dec) → FHE(PTIME)

Bootstrapping

● Refresh: Enc(s,m;q/8) → Enc(s,m;q/16)
● Consider the function fc(s)=Dec(s,c)

● Compute fc homomorphically on [s]=Enc(s,s ; e)
– c = Enc(s,m;q/8), [s] = Enc(s,s ; e)
– fc([s])= [fc(s)] = [Dec(s,c)] = [m] =Enc(s,m)

● [m]=Enc(s,m;e’) where e’ depends only on e and fc.
● Setting e’<q/16:

Enc(m₁;q/16) + Enc(m₂;q/16) = Enc(m₁+m₂;q/8)
 → Enc(m₁+m₂;q/16)

● Can perform any number of additions!

FHEW: gate bootstrapping

● Bootstrapping:
Enc(s,m;q/8) → Enc(s,m;q/16)

● [Ducas, Micciancio, 2015]
– Use arithmetics modulo 4
– Bootstrapping + Compute:

Enc(s,m;q/8) → Enc(s,floor(m/2);q/16)

● Enough to compute arbitrary circuits:
– m₁, m₂ ∈ {0,1} ⊂ Z₄ = {0,1,2,3}
– MUL(m₁,m₂) = floor((m₁+m₂)/2)
– NOT(m) = 1-m

● Cannot do this working directly mod 2
– All unary gates mod 2 (0,1,id,not) are linear!

m₁ m₂ m₁+m₂ sum/2

0 0 0 0

0 1 1 0

1 0 1 0

1 1 2 1

Many other FHE variants

● Optimizations: [GHS12],[BGV12],[B/FV12] ...
● TFHE,HEAAN [CGGI16,17], [CKKS17]
● Bootstrapping algorithms:

[AP13,BV14,AP14,GINX16,...]
● Libraries: HElib, SEAL, PALISADE, LoL, ...
● All share similar ideas, building blocks, techniques
● Complexity of bootstrapping still main efficiency

bottleneck

Summary

● Lattice Based cryptography
– Post-quantum security
– Homomorphic addition

● Can also multiply ciphertexts
– FHE: arbitrary computations on encrypted data

● Active research area
– Efficiency
– Circular security:

● can Encs(sxs) be safely revealed?

Additional References

● [BFKL93] Blum,Furst,Kearns,Lipton

● [GRS08] Gilbert,Robshaw,Seurin

● [BV11,14] Brakerski, Vaikuntanathan

● [GHS12] Gentry, Halevi, Smart

● [BGV12] Brakerski,Gentry,Vaikuntanathan

● [B/FV12] Brakerski / Fan,Vercauteren

● [BLPRS13] Brakerski,Langlois,Peikert,Regev,Stehle

● [AP13,14] Alperin-Sherif, Peikert

● [GINX16] Gama, Izabachene, Nguyen, Xie

● [CGGI16/17] Chilotti,Gama, Georgieva, Izabachene

● [CKKS17] Cheon,Kim,Kim,Song

Thank You!

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

