Lattices, Post-Quantum Security,
and Fully Homomorphic Encryption

Daniele Micciancio
(UC San Diego)

April 2020

Encryption

e Secure communication over insecure channel

Decrypt(sk,c)= H1’
_%Alice says H1

RS ciphertext
¢=Encrypt(pk,“Hi") . O

Bob

Modern Cryptography

 Hard mathematical Problem:
- Factoring: Given pq, find p and g

* Cryptographic Construction:
- Encryption scheme

* Proof of security:

e e
s TR

Factoring and
Quantum (In)Security

e Shor (1994): Wil
- efficient quantum algorithm to factor numbers "I

 Assumption that factoring is hard does not hold
In a “post-quantum” world

e Same holds for most other mathematical
problems currently in use:

- discrete logarithm, elliptic curve, etc.

* Need for new mathematical problems that are
not solvable by quantum algorithms

Subset-Sum Problem

* Given n integer numbers

and a target value
- b
* Goal:

- Find a subset that adds up to b
2 {ai|li€eS}=D

€+a4+a5+aﬁ+a8

Subset-Sum / Knapsack

* Also known as the “Knapsack” problem
- Fill a knapsack of capacity b
- using a selection of items of size a,...,an
- Items can be used multiple times

Try i1t out!

MY HOBBY:

EMBEDDING NP-(DMPLETE PROBLEMS IN RESTAURANT ORDERS

CHOTCHRIES RESTAURAWT

" APPENZERS ——
MUXED FRUIT 2.15
FRENCH FRIES 2.75
SIDE 5ALAD 3.35
HOT WINGS 3.55
MOZZARELLA STICKS 420
SAMPLER PLATE 5.80
—— SANDWICHES ~—
RACERF/UE L BT

WED LIKE EXACTLY §15.05
WORTH OF APPETIZERS, PLEASE.

1 . EXACTLY? UMK .

HERE, THESE PAPERS ON THE. KNAPSACK,
PROBLEM MIGHT HELP YOU OUT.

LISTEN, I HAVE Six OTHER
TABLES TO GET TD —

—AG FAST RS PUSSIBLE, (F (DURSE. WANT
SOMETHING ON TRAVELING SALESHANT /

\
(XIER

https://xkcd.com/licence.html

Hardness of Subset-Sum

 NP-complete: no efficient algorithm
unless P=NP (or NP < BQP)

* One of Karp 21 NP-complete problems

[Ka rp 1 9 ? !] REDUCIBILITY AMONG COMBINATORIAL PRDBLEJ{S*

Richard M. Karp

University of California at Berkeley

NP-hard problems:

Abstract: A large class of computational problems involve the
determination of properties of graphs, digraphs, integers, arrays
of integers, finite families of finite sets, boolean formulas and

.
1 Set paCkI ng elements of other countable domains. Through simple encodings
.

from such domains into the set of words over a finite alphabet
these problems can be converted into language recognition problems,

2 . Ve rtex Cover and we can inquire into their computational complexity. It is
reasonable to consider such a problem satisfactorily solved when
an algorithm for its solutien is found which terminates within a
. number of steps bounded by a polynomial in the length of the input.
We show that a large number of classic unsolved problems of cover-
1 8 ing, matching, packing, routing, assignment and sequencing are

. equivalent, in the sense that either each of them possesses a
polynomial-bounded algorithm or none of them does.

21. MaX Cut 1. TINTRODUCTION

All the general methods presently known for computing the
chromatic number of a graph, deciding whether a graph has a
Hamilton circuit, or solving a system of linear inequalities in
which the variables are constrained to be 0 or 1, require a
combinatorial search for which the worst case time requirement
grows exponentially with the length of the imput. In this paper
we give theorems which strongly suggest, but do not imply, that
these problems, as well as many others, will remain intractable
perpetually.

+Th]’.s research was partially supported by National Science Founda-
tion Grant GJ-474.

Lattice/Knapsack Cryptgraphy:
abridged (pre-)history

« Knapsack public key cryptosystem
- [Merkle, Hellman 1978]
* Cryptanalysis
- [Shamir 1984],[Lagarias,Odlyzko 1985]

e Several variants kept being suggested for almost two
decades, but invariably broken

- “The Rise and Fall of Knapsack Cryptosystems” [Odlyzko 1990]
* Turning point [Ajtai 1996]

- worst-case/average-case connection

- the “right” way to use knapsack/lattices for cryptography

Subset-Sum vs

Lattice Problems
e Subset-sum over vectors ai = I c /"

* Essentially the same as the knapsack
problem, just more convenient in

cryptography applications

WN O
+

LW W~ 0o
I

Ul 5 NG

linear combination with
small coefficients

Geometry of Lattices

Set of all integer linear combinations of basis
vectors B = [b,,...,b,] € R

L(B)={Bx: x € Zn} < span(B)={Bx: x € Rn}

Linear functions

. T . h
Matrix-Vector multiplication
A€z x€Z" bez, R

f.(x) = Ax t
fOc+y) = R00+F(y) }

Easy to compute and invert

matrix-vector multiplication
| P
A, X
—_ |

Gaussian elimination

Short Integer Solution (SIS)

« [Ajtal 1996] One-Way Function:
- f.(x) = Ax (mod q) I- I
- A€ Z ™, x€{0,1} ,beZ

* Short Integer Solution Problem:

- Given [A,b] find a small x such that Ax=Db
- More generally, ||x||<_

A

Learning With Errors (LWE)

* LWE function family: %J
- Key: A € Z,[nxh] i
- LWE, (s,e)= As + e (mod q) - .- .
- Small |e|.x< B = O(Vn) !

- g,m=poly(n)
- Injective version of Ajtai’s SIS function

 [Regev 2005] assuming quantum hard lattice problems
- LWE, is one-way: Hard to recover from [A,Db]
- b=LWE\(s,e) is pseudorandom (= uniform over Z,[h])
- [Peikert 2009], [BLPRS13] hard under classical reductions

Encrypting with LWE

|dea: Use b=LWE,(s,e) as a one-time pad

Private key encryption scheme:]
- secret key:s € Z,",

s
- message: m & ”Z .
- encryption randomness: [A,e]
- Enc,(m; [A,e]) = [A,b+m] < + =
[BFKL93],[GRS08] 1

- Learning Parity with Noise (LPN): q=2

‘ -l

- If LWE, is one-way, then b=As+e is pseudo-random

Regev LWE: g = poly(n)

Decryption

« Enc.(m;[A,e]) = [A,b+m] where b = As+e

* Decryption:
- Dec.([A,b+m]) = (b+m) - As = m+e mod g

L

- Low order bits of m are corrupted by e

q/4

 Fix: scale m, and round: #

0 q/4 q/2 3q9/4

(Fully) Homomorphic Encryption

* Encryption: used to protect data at rest or
In transit

- ‘ N
M T e
S
="
et

* Fully Homomorphic Encryption: supports
arbitrary computations on encrypted data

FHE Timeline

* Concept originally proposed by
[Rivest, Adleman, Dertouzos 1978]

* [Gentry 2009]
- First candidate solution
- Bootstrapping technique

 Much subsequent work (2010-2020 ...)

- Basing security on standard (lattice) assumptions
[BV11,B12,AP13,GSW13,BV14,...]

- Efficiency improvements
[GHS12,BGH13,AP13/14,DM15,CP16,CGGI16/17,CKKS17,BDF18,MS18,...]

- Implementations:
HElib, SEAL, PALISADE, FHEW, TFHE, HEAAN, AoA, NFLIib, ...

Homomorphic Addition
Enc.(maz) + Enc.(mz2)

A ,A;s+e.+my] + [A,,As+e,4+m,]
(AL+A), (AL+A)s+()+ (m;+m,)]

Enc_(m;[3): encryption of m with error |e| <

»Enc_(mz;31)+Enc (m2;52) € Enc (mai+msz;
- c*Enc_(m1;B1) € Enc (c*ma;c*31)

Can take any linear comination of ciphertexts with small coefficients

Multiplication by any constant

Enc’'[m] = (Enc[m],Enc[2m],Enc[4m],...,Enc[2°°“m])
Multiplication by c € Z,;:
- Writec =%, ¢, 2', wherec, € {0,1}
- Compute 2, ¢, Enc[2' m] = Enc[Z, ¢; 2’m] = Enc[cm]
c*Enc’'[m] = Enc[cm]
We can also compute Enc’[cm]:
c*Enc’[m]=(cEnc’[m], (2c)Enc’'[m], .., (2°°°c)Enc’'[m])
= (Enc[cm], Enc[(2c)m], .., Enc[(2°%c)m])
= Enc’[cm]

Public Key Encryption

Public Key:
[A;,b;] = Enc(0), ..., [A,,b,]=Enc,(0)

Encrypt(m): (2, r;* [A,b;]) + (O,m)

- Enc,(0)+...4+4Enc,(0)+Enc.,(m;0) = Enc.(m)
Decrypt normally using secret key
'Regev05] LWE Public Key Encryption

Rothblum11]: any linear homomorphic
encryption implies public key encryption

Homomorphic Multiplication?

* Is it possible to multiply two ciphertexts?
- Enc.(mz1;B1)*Enc(mz;32)cEnc.(mi*mz; B()

 Any computation can be expressed in terms of
addition and multiplication

- 0: False, 1: True

- 1-x = Not(x)

- XYY =XAY

- X+ Yy-X*y=XVYy

How to multiply two ciphertexts

* Linearity allows to multiply ciphertexts!

« Several multiplication methods:
1) Encryption Nesting [2008 ...]
2) Ciphertext Tensoring [2011 ...]
3) Homomorphic Decryption [2013 ...]
4) Gate Bootstrapping [2015 ...]

* Notes:
- Main difference between FHE schemes
- Only allows a bounded number of multiplication

- Basic Multiplication + Bootstrapping = FHE

(1) Homomorphic Multiplication by

Encryption Nesting

Multiplication by
Encryption Nesting

¢« Co = Encge(mo), C1 = Encg(ma)

* Multiply Co homomorphically by Ci:
- Enco(mMo)*C1 = Encgp(mo*Ca)
- But mo*C1 = mo*Encg;(m1) = Encg;(mMo*ma)
- S0, end result is Enc¢y(Encg;(mo*ma))

« Decrypt by applying Dec., and then Decg,

e (Encsy . Encey) is still linearly homomorphic
- Nested encryptions still support homomorphic addition

* Extends to more multiplications
(Encso(Ence;(Encs,(mo*ma*msz)))), etc.

Multiplication by
Encryption Nesting

 Omitted several important details:
- Can only multiply by “small” constant Ci:
- Can only left-multply by constants
- Ciphertexts get bigger, requiring |SO|>|S1]|
* [Aguilar Melchor, Gaborit, Herranz, 2010]
- Can only multiply ciphertexts in sequence
- Limited (sublinear) number of multiplications
- Not enough to support bootstrapping

(2) Multiplication by

Ciphertext Tensoring

Trivial (Symbolic) Multiplication

* Symbolic homomorphic product

- Enc(mo)*Enc(mz) = (“*”, Enc(mo), Enc(mz1))
* Decryption(“*"”,Co,C1)

- Decrypt Co = mo

- Decrypt C1 » ma

- Compute mo * ma

« Applies to arbitary operations

 Trivial, uninteresting
- Ciphertext and Decryption grow with computation
- Compactness: decryption of f(Enc(m)) should be sublinear in |f|

Trivial (Symbolic) Multiplication

* Symbolic homomorphic product
- Enc(mo)*Enc(mz) = (“*”, Enc(mo), Enc(mz))

e C = ("*",Co,C1) allows to compute any
function of Co and C:

* This seems unnecessary
- all we want to do is to decrypt C
- enough to compute decryption function on C
- what does the decryption function look like?

Decryption is linear

« Dec.(A,b) =b - As = m+e

* Decryption is linear a linear function of
the ciphertext C=(A,b)

 Remark:
- Only approx. decryption is linear
- Exact decryption involves non-linear rounding

« Dec (Co)*Dec (Ci) is bilinear in Co, C1

Multiplication by Tensoring

* Tensor product of Co, Cai:
- {Co[i]*Ci[j] : i,j = 1..n}
- allows to compute any bilinar function of Co and C:

- still an additive group, so tensor ciphertexts can be
added homomorphically

« Several optimizations are possible:
- No need to compute arbitrary bilinear functions

- Only bilinear functions of the form
(Co,C1) » Dec(Co) * Dec(C1)

- Can use a low rank subspace of tensor product

Multiplication by Tensoring

¢ CO — EnCSo(mO), Cl — EﬂCSl(ml)

* Product C = Co*C1 = Co x C1 (tensor product)
 [Brakerski, Vaikuntanathan 2011]

- Cis larger than Co,Cs

- Only limited number of multiplications

- Also introduces a “key switching” technique that
allows to reduce the size of ciphertext

- Support “bootstrapping”, leading to a FHE

Tensoring and Key Switching

 Decryption: Dec.(A,b) =b - As = m
- Linear in the secret key s'=(-s,1)
- Dec.(A,b) = [A,b]s" = m

* Given two ciphertexts ci1 cz:
- <Ci1,S>= M

- <C2,S'>=mz
- <C1X(C2,8'XS'> = <(C1,S'><C2,S'> = M1 M2

« c1xc2 IS an encryption of mimz w.r.t. s'xs’

Key Switching

Key Switching: c=Encs(m) = ¢'=Enct«(m)

Linear decryption: Decs(c) = <¢,s> = m

Linear Homomorphism:

- <¢,Enct(s)> = Enci(<c,5>) = Enct(m)

Enc:(s) allows to switch key: Encs(m) = Enct(m)

Multiplication by tensoring:

- t = s (requires circular security assumption)
- <C1XC2,SXS> = Mmim:

- <Ci1xCz2,Encs(sxs)> = Encs(mimz)

(3) Multiplication by

Homomorphic Decryption

Decryption is linear

Dec.(A,b) =b - As = m+e
Linear in the ciphertext (A,b)

Linear in the secret key s'=(-s,1)
- Dec.(A,b) = [A,b]ls'=m+e

- Dec..(A,b) = [A,b](cs’)=cm+ce
Remark:

- Only approx. decryption is linear
- Exact decryption involves non-linear rounding

Multiplication via
Homomorphic Decryption

* |dea:
- Encryption Enc(m) = (A,As+e+m) is linearly homomorphic
- Decryption Dec(A,b) = b - As = m+e is linear in s'=(-s,1)
- We can decrypt homomorphically using an encryption of s’
* Detalils
- Given: Enc(m)=(a,b) and Enc(s’)=(Enc(-s),Enc(1))
- Compute Enc(m)*Enc(s’) = a*Enc(-s)+b*Enc(1l)=Enc(m)
* More interesting:
- Given Enc(m) and Enc(cs’)
- Compute Enc(m)*Enc(cs’) = Enc(cm)

Homomorphic
“decrypt and multiply”
« Enc’’(c) = Enc’(cs’) = Enc’(“E(m)—=c*m”)
« Enc’’(c) = {Enc(a,c)} for some a,(s)
« Homomorphic Properties:
- Enc’’(m;) + Enc’”’(m,) = Enc’’(m;+m,)
- Enc’’(my)*Enc’’(m,)
={Enc(a;m,)*Enc’’(m,) }
={Enc(osm;*m,) }
= Enc”’ (m,*m,)

Relation to GSW encryption

* [Gentry,Sahai,Waters’13]
- FHE based on “approximate eigenvectors” intuition
- C1 = Encs(ma), Cz2 = Encs(mz2)
- Ci*s=m1*¥s, Co*¥s=mz2%*s
- (C1*C2) *s=C1*(Cz2*5)
= C1* (m2*s) = m2 * (Ci*s) = (mimz)*s
-C1*Co = Encs(mlmz)

« GSW vs Enc’’ (m)
- conceptually different

- technically equivalent:
perform essentially the same operations

(4) Homomorphic Multiplication by

Gate Bootstrapping

Bootstrapping and FHE

* Encryption scheme supporting
- Enc(my)+Enc(m;) = Enc(my+my)
- Enc(my)*Enc(m;) = Enc(my*m,+e)
* Not quite a FHE yet:
- Enc can evaluate any arithmetic circuit
- But grows with computation

 Effectively:
- can only evaluate small circuits / branching programs

* Bootstrapping: technique to redude e by homomorphic
decryption

- [Gentry 2009] FHE(Dec) —» FHE(PTIME)

Bootstrapping

 Refresh: Enc(s,m;) = Enc(s,m;)
e Consider the function f.(s)=Dec(s,c)

« Compute f.homomorphically on [s]=Enc(s,s ; e)
- ¢ = Enc(s,m;q/8), [s] = Enc(s,s ; e)
- f[s])= [f(s)] = [Dec(s,c)] = [m] =Enc(s,m)

« [m]=Enc(s,m;e") where e’ depends only on e and f..

« Setting

Enc(mzi;) + Enc(mz;) = Enc(mi+mz;)
- Enc(mi+mz;)

« Can perform any number of additions!

FHEW: gate bootstrapping
« Bootstrapping: O-O---

Enc(s,m;q/8) =» Enc(s,m;q/16)
e [Ducas, Micciancio, 2015] 0 1
- Use arithmetics modulo 4 1 0
- Bootstrapping + Compute: 1 1
Enc(s,m;q/8) = Enc(s,floor(m/2);q/16)
 Enough to compute arbitrary circuits:
- m1y, mz2€ {0,1} € Za = {0,1,2,3}
- MUL(mz,m2) = floor((mi+m2)/2)
- NOT(m) = 1-m
« Cannot do this working directly mod 2
— All unary gates mod 2 (0,1,id,not) are linear!

N P = O
R O O O

Many other FHE variants

 Optimizations: [GHS12],[BGV12],[B/FV12] ...
« TFHE,HEAAN [CGGI16,17], [CKKS17]

« Bootstrapping algorithms:
[AP13,BV14,AP14,GINX16,...]

 Libraries: HElib, SEAL, PALISADE, LolL, ...
« All share similar ideas, building blocks, techniques

« Complexity of bootstrapping still main efficiency
bottleneck

Summary

 Lattice Based cryptography
- Post-quantum security
- Homomorphic addition
* Can also multiply ciphertexts
- FHE: arbitrary computations on encrypted data

 Active research area
- Efficiency
- Circular security:
« can Enc.(sxs) be safely revealed?

Additional References

[BFKL93] Blum,Furst,Kearns,Lipton

[GRS08] Gilbert,Robshaw,Seurin

[BV11,14] Brakerski, Vaikuntanathan

[GHS12] Gentry, Halevi, Smart

[BGV12] Brakerski,Gentry,Vaikuntanathan
[B/FV12] Brakerski / Fan,Vercauteren

[BLPRS13] Brakerski,Langlois,Peikert,Regev,Stehle
[AP13,14] Alperin-Sherif, Peikert

[GINX16] Gama, Izabachene, Nguyen, Xie
[CGGI16/17] Chilotti,Gama, Georgieva, lzabachene
[CKKS17] Cheon,Kim,Kim,Song

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

