Path Detection: A Quantum Algorithmic Primitive

Shelby Kimmel

Middlebury College

Based on work with Stacey Jeffery: arXiv: 1704.00765 (Quantum vol 1 p 26) Michael Jarret, Stacey Jeffery, Alvaro Piedrafita, arXiv:1804.10591 *(*ESA 2018*)* Kai DeLorenzo, Teal Witter, arXiv:1904.05995 (TQC 2019)▎</u> Middlebury

Primitives!

- Quantum algorithmic primitives
	- 1. Widely applicable
	- 2. Can be used in a black box manner (with easily analyzable behavior)

Primitives!

- Quantum algorithmic primitives
	- 1. Widely applicable
	- 2. Can be used in a black box manner (with easily analyzable behavior)

- $-$ Ex: Searching unordered list of n items
	- Classically, takes $\Omega(n)$ time
	- Quantumly, takes $O(\sqrt{n})$ time

Primitives!

- Quantum algorithmic primitives
	- 1. Widely applicable
	- 2. Can be used in a black box manner (with easily analyzable behavior)

- $-$ Ex: Searching unordered list of n items
	- Classically, takes $\Omega(n)$ time
	- Quantumly, takes $O(\sqrt{n})$ time

Good primitive: st-connectivity

- A. Introduction to st-connectivity
- B. st-connectivity makes a good algorithmic primitive
	- 1. Widely applicable
	- 2. Easy to analyze

- A. Introduction to st-connectivity
- B. st-connectivity makes a good algorithmic primitive
	- 1. Widely applicable
	- 2. Easy to analyze

Applications:

- Read-once Boolean formulas (query optimal) [J**K**]
- Total connectivity (query optimal) [JJ**K**P]
- Cycle detection (query optimal) [D**K**W]
- Even length cycle detection [D**K**W]
- Bipartiteness (query optimal) [D**K**W]
- Directed st-connectivity (query optimal) (Beigi et al '19)
- Directed smallest cycle (query optimal) (Beigi et al '19)

Applications:

- Topological sort (Beigi et al '19)
- Connected components (Beigi et al '19)
- Strongly connected components (Beigi et al '19)
- k-cycle at vertex v (Beigi et al '19)
- st-connectivity (Reichardt, Belovs'12)

st-connectivity

st – connectivity: is there a path from s to t ?

st-connectivity

S

st – connectivity: is there a path from s to t ?

Bit String: x_1 x_2 \ldots x_n

Bit String:

Bit String:

Bit String:

Bit String:

· Bit string initially hidden, can query value of string at each bit.

Bit String:

• Bit string initially hidden, can query value of string at each bit.

 $O_x|i\rangle|b\rangle = |i\rangle|b + x_i\rangle$

O_x for Bit String:

- A. Introduction to st-connectivity
- B. st-connectivity makes a good algorithmic primitive
	- 1. Widely applicable
	- 2. Easy to analyze

Cycle Detection

Is there a cycle?

Cycle Detection

Is there a cycle?

Cycle Detection

Input to Cycle Detection:

- Skeleton graph
- Hidden bit string

 $\mathcal{X}_1 \mathcal{X}_2 \mathcal{X}_3 \mathcal{X}_4 \mathcal{X}_5$

 $x_i = 1 \leftrightarrow$ edge *i* is present

Cycle Detection

Is there a cycle through edge 1?

Cycle Detection

Is there a cycle through edge 1?

There is a cycle through Edge 1 iff

- Edge 1 is present
- Path between the endpoints of Edge 1 not using Edge 1

Cycle Detection

Cycle Detection

Is there a cycle?

There is a cycle if there is a cycle through some edge

Cycle Detection

Boolean Formulas

- A. Introduction to st-connectivity
- B. st-connectivity makes a good algorithmic primitive
	- 1. Widely applicable
	- 2. Easy to analyze

Space Complexity: $O(log# edges in skeleton graph))$

Query Complexity:

- Bit string initially unknown
- Minimum # of oracle uses to determine w.h.p. on worst input

Query Complexity:

- Bit string initially unknown
- Minimum # of oracle uses to determine w.h.p. on worst input

≈ Time Complexity

Effective Resistance

Valid flow:

- 1 unit in at s
- \cdot 1 unit out at t
- At all other nodes, zero net flow

Effective Capacitance

Generalized cut:

- \cdot 1 at s
- \bullet 0 at t
- Difference is 0 across edge

Effective Capacitance

Effective Capacitance

Potential energy:

$$
\sum_{edges \ in} (cut \ difference)^2
$$

skeleton graph

Effective Capacitance: $C_{s,t}(G)$

· Smallest potential energy of any valid generalized cut between s and t on G .

$$
\text{Cycle Detection} \quad O\left(\sqrt{\max_{connected \ G} R_{s,t}(G)} \sqrt{\max_{not \text{ connected } G} C_{s,t}(G)}\right)
$$

Cycle Detection 0

Example

Cycle Detection

$$
O\left(\sqrt{\text{connected } G} R\right)
$$

- $O(n^2)$ subgraphs corresponding to nonpresent edges: cut at top
- $O(n)$ subgraphs corresponding to present edges, cut could have $O(n^2)$ edges in cut

Query complexity: $O(n^{3/2})$

(optimal – logarithmic improvement over previous algorithm)

 $R_{s,t}(G) = (circuit rank)^{-1}$

Circuit rank = min $#$ of edges to cut to create a cycle free graph

- Quantum algorithm picks out critical topological parameter
- If promised either large circuit rank or no cycle, then cycle detection algorithm runs faster
- Proved by 2nd year undergrads

Estimation Algorithm:

Quantum query algorithm to estimate effective resistance or effective capacitance of G . (Jeffery, Ito '15)

Estimation Algorithm:

Quantum query algorithm to estimate effective resistance or effective capacitance of G . (Jeffery, Ito '15)

Because effective resistance depends directly on circuit rank, we now have a quantum algorithm to estimate circuit rank.

Umm...Algorithm?

Umm…Algorithm? a string *^x* [∈] {0, 1}*^N* to specify a subgraph *^G*(*x*) of *^G* in a fairly general way, as described in Section 2.2. → **Umm…Algorithm?**

−→*^E ⁱ*,*b*, since *^G*(*x*) is an undirected graph. We assume *^G* has some implicit weighting function *^c*. Then we refer to the following span program as $P(G|G)$ is a *PGC*: Span Program

$$
\forall i \in [N], b \in \{0, 1\} : H_{i,b} = \text{span}\{|e\rangle : e \in \overrightarrow{E}_{i,b}\}
$$

$$
U = \text{span}\{|v\rangle : v \in V(G)\}
$$

$$
\tau = |s\rangle - |t\rangle
$$

$$
\forall e = (u, v, \ell) \in \overrightarrow{E}(G) : A|u, v, \ell\rangle = \sqrt{c(u, v, \ell)}(|u\rangle - |v\rangle)
$$

10

Span Program->Unitary U = (reflection about space that depends on skeleton graph)(reflection about a space that $\frac{1}{2}$ for a positive input for a positive input for α is a positive induced, and in particular, and in particul

Do phase estimation on U to precision $o\left(\sqrt{\max_{\text{max}} R_{s,t}(G)}\right)$

Do phase estimation on U to precision
$$
O\left(\sqrt{\max_{\text{connected } G} R_{s,t}(G)} \sqrt{\max_{\text{connected } G} C_{s,t}(G)}\right)
$$

Open Questions and Current Directions

- How to choose edge weights? (Beigi et al '19)
- Conditions when st-connectivity reduction optimal?
- What is the classical time/query complexity of stconnectivity in the black box model? Under the promise of small capacitance/resistance?
- Better estimation algorithm for st-connectivity effective resistance/capacitance
- Primitives/Pedagogical Problems?

Thank you!

Alvaro Piedrafita

