
Path Detection:
A Quantum Algorithmic Primitive

Shelby Kimmel
Middlebury College

Based on work with
Stacey Jeffery: arXiv: 1704.00765 (Quantum vol 1 p 26)
Michael Jarret, Stacey Jeffery, Alvaro Piedrafita, arXiv:1804.10591 (ESA 2018)
Kai DeLorenzo, Teal Witter, arXiv:1904.05995 (TQC 2019)

Primitives!

• Quantum algorithmic primitives
1. Widely applicable
2. Can be used in a black box manner (with easily

analyzable behavior)

Primitives!

• Quantum algorithmic primitives
1. Widely applicable
2. Can be used in a black box manner (with easily

analyzable behavior)

– Ex: Searching unordered list of 𝑛 items
– Classically, takes Ω(𝑛) time
– Quantumly, takes 𝑂(𝑛) time

Primitives!

• Quantum algorithmic primitives
1. Widely applicable
2. Can be used in a black box manner (with easily

analyzable behavior)

– Ex: Searching unordered list of 𝑛 items
– Classically, takes Ω(𝑛) time
– Quantumly, takes 𝑂(𝑛) time

Good primitive: 𝒔𝒕-connectivity

Outline:

A. Introduction to st-connectivity
B. st-connectivity makes a good algorithmic primitive

1. Widely applicable
2. Easy to analyze

Outline:

A. Introduction to st-connectivity
B. st-connectivity makes a good algorithmic primitive

1. Widely applicable
2. Easy to analyze

Applications:
• Read-once Boolean formulas (query optimal) [JK]
• Total connectivity (query optimal) [JJKP]
• Cycle detection (query optimal) [DKW]
• Even length cycle detection [DKW]
• Bipartiteness (query optimal) [DKW]
• Directed st-connectivity (query optimal) (Beigi et al ‘19)
• Directed smallest cycle (query optimal) (Beigi et al ‘19)

Outline:

Applications:
• Topological sort (Beigi et al ‘19)
• Connected components (Beigi et al ‘19)
• Strongly connected components (Beigi et al ‘19)
• k-cycle at vertex v (Beigi et al ‘19)
• st-connectivity (Reichardt, Belovs ‘12)

𝑠𝑡-connectivity

𝑠

𝑡

𝒔𝒕 − 𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒊𝒗𝒊𝒕𝒚:
is there a path from 𝑠 to 𝑡?

𝑠𝑡-connectivity

𝑠

𝑡

𝒔𝒕 − 𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒊𝒗𝒊𝒕𝒚:
is there a path from 𝑠 to 𝑡?

Input to Algorithm

Bit String:

𝑥! 𝑥" 𝑥#…

Input to Algorithm

Bit String:

𝑥! 𝑥" 𝑥#
101

…

Input to Algorithm

𝑥! 𝑥" 𝑥$

Skeleton
Graph

Bit String:
2

83 1

3

2

1
3

𝑠

𝑡

Input to Algorithm

2

1

3

2

1
3

𝑠

𝑡

𝑥! 𝑥" 𝑥$
101

Skeleton
Graph

Bit String:

83

Input to Algorithm

2

1

3

2

1
3

𝑠

𝑡

𝑥! 𝑥" 𝑥$
100

Skeleton
Graph

Bit String:

83

Input to Algorithm

2

1

3

2

1
3

𝑠

𝑡

𝑥! 𝑥" 𝑥$
1

Skeleton
Graph

Bit String:

• Bit string initially hidden, can query
value of string at each bit.

83

Input to Algorithm

2

1

3

2

1
3

𝑠

𝑡

𝑥! 𝑥" 𝑥$
1

Skeleton
Graph

Bit String:

• Bit string initially hidden, can query
value of string at each bit.

83

𝑂! 𝑖 𝑏 = 𝑖 𝑏 + 𝑥"

Algorithm

𝑥! 𝑥" 𝑥$

Skeleton
Graph

𝑂%for Bit String:

2

83 1

3

2

1
3

𝑠

𝑡

Q. Algorithm to
Solve

connectivity
Yes/No

Outline:

A. Introduction to st-connectivity
B. st-connectivity makes a good algorithmic primitive

1. Widely applicable
2. Easy to analyze

Cycle Detection

Is there a cycle?

Yes

Cycle Detection

Is there a cycle?

No

Cycle Detection

1

2 3

4

5

Is there a cycle?

Input to Cycle Detection:
• Skeleton graph
• Hidden bit string

𝑥!𝑥"𝑥$𝑥+𝑥,

𝑥- = 1 ↔edge 𝑖 is present

Cycle Detection

Is there a cycle through edge 1?

1

2 3

4

5

Cycle Detection

There is a cycle through
Edge 1 iff
• Edge 1 is present
• Path between the

endpoints of Edge 1
not using Edge 1

1

2 3

4

5

Is there a cycle through edge 1?

Cycle Detection

There is a cycle through
Edge 1 iff
• Edge 1 is present
• Path between the

endpoints of Edge 1
not using Edge 1

1

2 3

4

5

Is there a cycle through edge 1?

1

2

3

4

5

𝑠

𝑡

Edge 1 is present

Path between
the endpoints
of Edge 1 not
using Edge 1

Cycle Detection

Is there a cycle?

There is a cycle if
there is a cycle
through some edge

1

2 3

4

5

Cycle Detection

Is there a cycle?

There is a cycle if
there is a cycle
through some edge

1

2 3

4

5

1

2

3

4

5

𝑠

𝑡

1
2

3

4 5

2

3

4

5

1

1

2

3

4

5
1

2

3

5

4

Boolean Formulas

⋀

⋁

⋀ ⋀ ⋀

⋁ ⋁

𝑥#$

𝑥# 𝑥% 𝑥& 𝑥'
𝑥(𝑥) 𝑥* 𝑥+ 𝑥,

𝑓(𝑥)

1

0 0 1 0

0 1 0 1 1

𝒔

𝒕
𝑥!0

𝑥!

𝑥"

𝑥$

𝑥+

𝑥,

𝑥1

𝑥2
𝑥3

𝑥4

Outline:

A. Introduction to st-connectivity
B. st-connectivity makes a good algorithmic primitive

1. Widely applicable
2. Easy to analyze

Algorithm Analysis:

Space Complexity: 𝑂 log(# 𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑠𝑘𝑒𝑙𝑒𝑡𝑜𝑛 𝑔𝑟𝑎𝑝ℎ)

Algorithm Analysis:

Query Complexity:

• Bit string initially unknown
• Minimum # of oracle uses to

determine w.h.p. on worst input

Algorithm Analysis:

Query Complexity:

• Bit string initially unknown
• Minimum # of oracle uses to

determine w.h.p. on worst input

≈
Time Complexity

Algorithm Analysis:

Query Complexity:

𝑂 max
!"##$!%$& '

𝑅(,% 𝐺 max
#"% !"##$!%$& '

𝐶(,% 𝐺

Effective resistance Effective capacitance

Algorithm Analysis:

Query Complexity:

𝑂 max
!"##$!%$& '

𝑅(,% 𝐺 max
#"% !"##$!%$& '

𝐶(,% 𝐺

Effective resistance Effective capacitance
[Belovs,
Reichardt, ’12]

[Jarret, Jeffery, Kimmel,
Piedrafita, ’18]

Effective Resistance

𝑠

𝑡

1 unit of flow

1 unit of
flow

Effective Resistance

Valid flow:
• 1 unit in at 𝑠
• 1 unit out at 𝑡
• At all other nodes, zero

net flow

𝑠

𝑡

1 unit of flow

1 unit of
flow

1

1

𝑓 1 − 𝑓

0

Effective Resistance

Flow energy:

N
56758

𝑓𝑙𝑜𝑤 𝑜𝑛 𝑒𝑑𝑔𝑒 "

𝑠

𝑡

1 unit of flow

1 unit of
flow

1

1

𝑓 1 − 𝑓

0

Effective Resistance

Flow energy:

N
56758

𝑓𝑙𝑜𝑤 𝑜𝑛 𝑒𝑑𝑔𝑒 "

Effective Resistance: 𝑅8,:(𝐺)
• Smallest energy of any valid

flow from 𝑠 to 𝑡 on 𝐺.

𝑠

𝑡

1 unit of flow

1 unit of
flow

1

1

𝑓 1 − 𝑓

0

Effective Resistance

𝑠

𝑡

1 unit of flow

1 unit of
flow

1

1

1/2 1/2

0Flow energy:

N
56758

𝑓𝑙𝑜𝑤 𝑜𝑛 𝑒𝑑𝑔𝑒 "

Effective Resistance: 𝑅8,:(𝐺)
• Smallest energy of any valid

flow from 𝑠 to 𝑡 on 𝐺.

Algorithm Analysis:

Query Complexity:

𝑂 max
!"##$!%$& '

𝑅(,% 𝐺 max
#"% !"##$!%$& '

𝐶(,% 𝐺

Effective resistance Effective capacitance

Effective Capacitance

Generalized cut:
• 1 at 𝑠
• 0 at 𝑡
• Difference is 0 across edge

𝑠

𝑡

1
1 1

0
𝑣

Effective Capacitance

𝑠

𝑡

1
1 1

0
𝑣

Potential energy:

N
56758 -#

8;5<5:=# 7>?@A

𝑐𝑢𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 "

Effective Capacitance

Potential energy:

N
56758 -#

8;5<5:=# 7>?@A

𝑐𝑢𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 "

Effective Capacitance: 𝐶8,:(𝐺)
• Smallest potential energy of

any valid generalized cut
between 𝑠 and 𝑡 on 𝐺.

𝑠

𝑡

1
1 1

0
2/3

Algorithm Analysis:

Query Complexity:

𝑂 max
!"##$!%$& '

𝑅(,% 𝐺 max
#"% !"##$!%$& '

𝐶(,% 𝐺

Effective resistance Effective capacitance

Example

1

2

3

4

5

𝑠

𝑡

1
2

3

4 5

2

3

4

5
1

1
2

3

4

5
1

2

3

5

4

Cycle Detection 𝑂 max
B=##5B:56 C

𝑅8,: 𝐺 max
#=: B=##5B:56 C

𝐶8,: 𝐺

Example

Cycle Detection

1

2

3

4

5

𝑠

𝑡

1
2

3

4 5

2

3

4

5
1

1
2

3

4

5
1

2

3

5

4

𝑂 max
B=##5B:56 C

𝑅8,: 𝐺 max
#=: B=##5B:56 C

𝐶8,: 𝐺

Example

Cycle Detection

1

2

3

4

5

𝑠

𝑡

1
2

3

4 5

2

3

4

5
1

1
2

3

4

5
1

2

3

5

4

𝑂 max
B=##5B:56 C

𝑅8,: 𝐺 max
#=: B=##5B:56 C

𝐶8,: 𝐺

Length k cycle
• k parallel paths of length k
• 1/𝑘 flow on each path
• Effective resistance is 1

Example

Cycle Detection

1

2

3

4

5

𝑠

𝑡

1
2

3

4 5

2

3

4

5
1

1
2

3

4

5
1

2

3

5

4

𝑂 max
B=##5B:56 C

𝑅8,: 𝐺 max
#=: B=##5B:56 C

𝐶8,: 𝐺

Multiple cycles Effective resistance is < 1

Example

Cycle Detection

1

2

3

4

5

𝑠

𝑡

1
2

3

4 5

2

3

4

5
1

1
2

3

4

5
1

2

3

5

4

𝑂 max
B=##5B:56 C

𝑅8,: 𝐺 max
#=: B=##5B:56 C

𝐶8,: 𝐺

Example

Cycle Detection

1

2

3

4

5

𝑠

𝑡

1
2

3

4 5

2

3

4

5
1

1
2

3

4

5
1

2

3

5

4

𝑂 max
B=##5B:56 C

𝑅8,: 𝐺 max
#=: B=##5B:56 C

𝐶8,: 𝐺

• 𝑂 𝑛% subgraphs
corresponding to non-
present edges: cut at top

• 𝑂 𝑛 subgraphs
corresponding to present
edges, cut could have
𝑂(𝑛%) edges in cut

Example

Cycle Detection 𝑂 max
B=##5B:56 C

𝑅8,: 𝐺 max
#=: B=##5B:56 C

𝐶8,: 𝐺

𝐶8,: 𝐺 = 𝑂(𝑛$)𝑅8,: 𝐺 = 𝑂(1)

Query complexity: 𝑂 𝑛$/"

(optimal – logarithmic improvement over previous algorithm)

Example

Cycle Detection 𝑂 max
B=##5B:56 C

𝑅8,: 𝐺 max
#=: B=##5B:56 C

𝐶8,: 𝐺

𝑅8,: 𝐺 = 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑟𝑎𝑛𝑘 E!

Circuit rank = min # of edges to cut to create a cycle free graph

• Quantum algorithm picks out critical topological parameter
• If promised either large circuit rank or no cycle, then cycle

detection algorithm runs faster
• Proved by 2nd year undergrads

Estimation Algorithm:

Quantum query algorithm to estimate effective resistance or
effective capacitance of 𝐺. (Jeffery, Ito ’15)

Estimation Algorithm:

Quantum query algorithm to estimate effective resistance or
effective capacitance of 𝐺. (Jeffery, Ito ’15)

Because effective resistance depends directly on circuit rank,
we now have a quantum algorithm to estimate circuit rank.

Umm…Algorithm?

Umm…Algorithm?

Theorem 14. Let U(P, x) = (2Πker A − I)(2ΠH(x)− I). Fix X ⊆ {0, 1}N and f : X → {0, 1}, and let P be a span

program on {0, 1}N that decides f . Let W+(f , P) = maxx∈ f −1(1) w+(x, P) and W−(f , P) = maxx∈ f −1(0) w−(x, P).

Then there is a bounded error quantum algorithm that decides f by making O(
√

W+(f , P)W−(f , P)) calls to U(P, x),
and elementary gates. In particular, this algorithm has quantum query complexity O(

√
W+(f , P)W−(f , P)).

Ref. [IJ16] defines the approximate positive and negative witness sizes, w̃+(x, P) and w̃−(x, P). These are
similar to the positive and negative witness sizes, but with the conditions |w⟩ ∈ H(x) and ωAΠH(x) = 0
relaxed.

Definition 15 (Approximate Positive Witness). For any span program P on {0, 1}N and x ∈ {0, 1}N, we define
the positive error of x in P as:

e+(x) = e+(x, P) := min
{∥∥∥ΠH(x)⊥|w⟩

∥∥∥
2

: A|w⟩ = τ

}
. (14)

We say |w⟩ is an approximate positive witness for x in P if
∥∥∥ΠH(x)⊥ |w⟩

∥∥∥
2
= e+(x) and A|w⟩ = τ. We define

the approximate positive witness size as

w̃+(x) = w̃+(x, P) := min
{
∥|w⟩∥2 : A|w⟩ = τ,

∥∥∥ΠH(x)⊥ |w⟩
∥∥∥

2
= e+(x)

}
. (15)

If x ∈ P1, then e+(x) = 0. In that case, an approximate positive witness for x is a positive witness, and
w̃+(x) = w+(x). For negative inputs, the positive error is larger than 0.

We can define a similar notion of approximate negative witnesses (see [IJ16]).

Theorem 16 ([IJ16]). Let U(P, x) = (2Πker A − I)(2ΠH(x) − I). Fix X ⊆ {0, 1}N and f : X → R≥0. Let P be a

span program on {0, 1}N such that for all x ∈ X, f (x) = w−(x, P) and define W̃+ = W̃+(P) = maxx∈X w̃+(x, P).

Then there exists a quantum algorithm that estimates f to accuracy ϵ and that uses Õ
(

1
ϵ3/2

√
w−(x)W̃+

)
calls to

U(P, x) and elementary gates.

A span program for st-connectivity An important example of a span program is one for st-connectivity,
first introduced in [KW93], and used in [BR12] to give a new quantum algorithm for st-connectivity. We
state this span program below, somewhat generalized to include weighted graphs, and to allow the input
to be specified as a subgraph of some parent graph G that is not necessarily the complete graph. We allow
a string x ∈ {0, 1}N to specify a subgraph G(x) of G in a fairly general way, as described in Section 2.2.
In particular, for i ∈ [N], let

−→
E i,1 ⊆ −→

E (G) denote the set of (directed) edges associated with the literal xi,
and

−→
E i,0 the set of edges associated with the literal xi. Note that if (u, v, ℓ) ∈ −→

E i,b then we must also have
(v, u, ℓ) ∈ −→

E i,b, since G(x) is an undirected graph. We assume G has some implicit weighting function c.
Then we refer to the following span program as PG:

∀i ∈ [N], b ∈ {0, 1} : Hi,b = span{|e⟩ : e ∈ −→
E i,b}

U = span{|v⟩ : v ∈ V(G)}
τ = |s⟩ − |t⟩

∀e = (u, v, ℓ) ∈ −→
E (G) : A|u, v, ℓ⟩ =

√
c(u, v, ℓ)(|u⟩ − |v⟩) (16)

One can check that if s and t are connected, then if |w⟩ represents a weighted st-path or linear combination
of weighted st-paths in G(x), then |w⟩ is a positive witness for x. Furthermore, this is the only possibility
for a positive witness, so x is a positive input for PG if and only if G(x) is st-connected, and in particular,
w+(x, PG) = 1

2 Rs,t(G(x)) [BR12]. Since the weights c(e) are positive, the set of positive inputs of PG are
independent of the choice of c, however, the witness sizes will depend on c.

10

Span Program

Span Program->Unitary U = (reflection about space that
depends on skeleton graph)(reflection about a space that
depends on input)

Do phase estimation on U to precision 𝑂 max
!"##$!%$& '

𝑅(,% 𝐺 max
#"% !"##$!%$& '

𝐶(,% 𝐺

Open Questions and Current
Directions

• How to choose edge weights? (Beigi et al ‘19)
• Conditions when st-connectivity reduction optimal?
• What is the classical time/query complexity of st-

connectivity in the black box model? Under the promise
of small capacitance/resistance?

• Better estimation algorithm for st-connectivity effective
resistance/capacitance

• Primitives/Pedagogical Problems?

Thank you!

Andr
ew
Zhao

Teal
Witter

Kai De
Lorenzo

Stacey
Jeffery

Michael
Jarret

Alvaro
Piedrafita

