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• Quantum algorithmic primitives
1. Widely applicable
2. Can be used in a black box manner (with easily 

analyzable behavior)

– Ex: Searching unordered list of 𝑛 items
– Classically, takes Ω(𝑛) time
– Quantumly, takes 𝑂( 𝑛) time

Good primitive: 𝒔𝒕-connectivity
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Applications:
• Read-once Boolean formulas (query optimal) [JK] 
• Total connectivity (query optimal) [JJKP]
• Cycle detection (query optimal) [DKW]
• Even length cycle detection [DKW]
• Bipartiteness (query optimal) [DKW]
• Directed st-connectivity (query optimal) (Beigi et al ‘19)
• Directed smallest cycle (query optimal) (Beigi et al ‘19)



Outline:

Applications:
• Topological sort (Beigi et al ‘19)
• Connected components (Beigi et al ‘19)
• Strongly connected components (Beigi et al ‘19)
• k-cycle at vertex v (Beigi et al ‘19)
• st-connectivity (Reichardt, Belovs ‘12)
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Cycle Detection
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Is there a cycle?

Input to Cycle Detection: 
• Skeleton graph
• Hidden bit string

𝑥!𝑥"𝑥$𝑥+𝑥,

𝑥- = 1 ↔edge 𝑖 is present
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Cycle Detection

Is there a cycle?

There is a cycle if 
there is a cycle 
through some edge
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Cycle Detection
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Boolean Formulas

⋀

⋁

⋀ ⋀ ⋀

⋁ ⋁

𝑥#$

𝑥# 𝑥% 𝑥& 𝑥'
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Algorithm Analysis:
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Reichardt, ’12]

[Jarret, Jeffery, Kimmel, 
Piedrafita, ’18]
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Effective Resistance

Valid flow:
• 1 unit in at 𝑠
• 1 unit out at 𝑡
• At all other nodes, zero 

net flow
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Effective Capacitance

Generalized cut:
• 1 at 𝑠
• 0 at 𝑡
• Difference is 0 across edge

𝑠

𝑡

1
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0
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Effective Capacitance
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Effective Capacitance

Potential energy:

N
56758 -#
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𝑐𝑢𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 "

Effective Capacitance: 𝐶8,:(𝐺)
• Smallest potential energy of 

any valid generalized cut 
between 𝑠 and 𝑡 on 𝐺.
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Length k cycle
• k parallel paths of length k
• 1/𝑘 flow on each path
• Effective resistance is 1
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• 𝑂 𝑛% subgraphs 
corresponding to non-
present edges: cut at top

• 𝑂 𝑛 subgraphs 
corresponding to present 
edges, cut could have 
𝑂(𝑛%) edges in cut



Example

Cycle Detection 𝑂 max
B=##5B:56 C

𝑅8,: 𝐺 max
#=: B=##5B:56 C

𝐶8,: 𝐺

𝐶8,: 𝐺 = 𝑂(𝑛$)𝑅8,: 𝐺 = 𝑂(1)

Query complexity: 𝑂 𝑛$/"

(optimal – logarithmic improvement over previous algorithm)



Example

Cycle Detection 𝑂 max
B=##5B:56 C

𝑅8,: 𝐺 max
#=: B=##5B:56 C

𝐶8,: 𝐺

𝑅8,: 𝐺 = 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑟𝑎𝑛𝑘 E!

Circuit rank = min # of edges to cut to create a cycle free graph

• Quantum algorithm picks out critical topological parameter
• If promised either large circuit rank or no cycle, then cycle 

detection algorithm runs faster
• Proved by 2nd year undergrads
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Estimation Algorithm:

Quantum query algorithm to estimate effective resistance or 
effective capacitance of 𝐺. (Jeffery, Ito ’15)

Because effective resistance depends directly on circuit rank, 
we now have a quantum algorithm to estimate circuit rank.
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Theorem 14. Let U(P, x) = (2Πker A − I)(2ΠH(x)− I). Fix X ⊆ {0, 1}N and f : X → {0, 1}, and let P be a span

program on {0, 1}N that decides f . Let W+( f , P) = maxx∈ f −1(1) w+(x, P) and W−( f , P) = maxx∈ f −1(0) w−(x, P).

Then there is a bounded error quantum algorithm that decides f by making O(
√

W+( f , P)W−( f , P)) calls to U(P, x),
and elementary gates. In particular, this algorithm has quantum query complexity O(

√
W+( f , P)W−( f , P)).

Ref. [IJ16] defines the approximate positive and negative witness sizes, w̃+(x, P) and w̃−(x, P). These are
similar to the positive and negative witness sizes, but with the conditions |w⟩ ∈ H(x) and ωAΠH(x) = 0
relaxed.

Definition 15 (Approximate Positive Witness). For any span program P on {0, 1}N and x ∈ {0, 1}N, we define
the positive error of x in P as:

e+(x) = e+(x, P) := min
{∥∥∥ΠH(x)⊥|w⟩

∥∥∥
2

: A|w⟩ = τ

}
. (14)

We say |w⟩ is an approximate positive witness for x in P if
∥∥∥ΠH(x)⊥ |w⟩

∥∥∥
2
= e+(x) and A|w⟩ = τ. We define

the approximate positive witness size as

w̃+(x) = w̃+(x, P) := min
{
∥|w⟩∥2 : A|w⟩ = τ,

∥∥∥ΠH(x)⊥ |w⟩
∥∥∥

2
= e+(x)

}
. (15)

If x ∈ P1, then e+(x) = 0. In that case, an approximate positive witness for x is a positive witness, and
w̃+(x) = w+(x). For negative inputs, the positive error is larger than 0.

We can define a similar notion of approximate negative witnesses (see [IJ16]).

Theorem 16 ([IJ16]). Let U(P, x) = (2Πker A − I)(2ΠH(x) − I). Fix X ⊆ {0, 1}N and f : X → R≥0. Let P be a

span program on {0, 1}N such that for all x ∈ X, f (x) = w−(x, P) and define W̃+ = W̃+(P) = maxx∈X w̃+(x, P).

Then there exists a quantum algorithm that estimates f to accuracy ϵ and that uses Õ
(

1
ϵ3/2

√
w−(x)W̃+

)
calls to

U(P, x) and elementary gates.

A span program for st-connectivity An important example of a span program is one for st-connectivity,
first introduced in [KW93], and used in [BR12] to give a new quantum algorithm for st-connectivity. We
state this span program below, somewhat generalized to include weighted graphs, and to allow the input
to be specified as a subgraph of some parent graph G that is not necessarily the complete graph. We allow
a string x ∈ {0, 1}N to specify a subgraph G(x) of G in a fairly general way, as described in Section 2.2.
In particular, for i ∈ [N], let

−→
E i,1 ⊆ −→

E (G) denote the set of (directed) edges associated with the literal xi,
and

−→
E i,0 the set of edges associated with the literal xi. Note that if (u, v, ℓ) ∈ −→

E i,b then we must also have
(v, u, ℓ) ∈ −→

E i,b, since G(x) is an undirected graph. We assume G has some implicit weighting function c.
Then we refer to the following span program as PG:

∀i ∈ [N], b ∈ {0, 1} : Hi,b = span{|e⟩ : e ∈ −→
E i,b}

U = span{|v⟩ : v ∈ V(G)}
τ = |s⟩ − |t⟩

∀e = (u, v, ℓ) ∈ −→
E (G) : A|u, v, ℓ⟩ =

√
c(u, v, ℓ)(|u⟩ − |v⟩) (16)

One can check that if s and t are connected, then if |w⟩ represents a weighted st-path or linear combination
of weighted st-paths in G(x), then |w⟩ is a positive witness for x. Furthermore, this is the only possibility
for a positive witness, so x is a positive input for PG if and only if G(x) is st-connected, and in particular,
w+(x, PG) = 1

2 Rs,t(G(x)) [BR12]. Since the weights c(e) are positive, the set of positive inputs of PG are
independent of the choice of c, however, the witness sizes will depend on c.

10

Span Program

Span Program->Unitary U = (reflection about space that 
depends on skeleton graph)(reflection about a space that 
depends on input)

Do phase estimation on U to precision 𝑂 max
!"##$!%$& '

𝑅(,% 𝐺 max
#"% !"##$!%$& '

𝐶(,% 𝐺



Open Questions and Current 
Directions

• How to choose edge weights? (Beigi et al ‘19)
• Conditions when st-connectivity reduction optimal? 
• What is the classical time/query complexity of st-

connectivity in the black box model? Under the promise 
of small capacitance/resistance?

• Better estimation algorithm for st-connectivity effective 
resistance/capacitance

• Primitives/Pedagogical Problems?
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