Explaining Adaptation in Genetic Algorithms with Uniform Crossover

Keki Burjorjee keki.burjorjee@gmail.com

Keki Burjorjee Explaining Adaptation in GAs with UX

- Uniform Crossover first used by Ackley (1987)
- Studied and popularized by Syswerda (1989) and Spears & De Jong (1990, 1991)
- Numerous accounts of optimization in GAs with UX
- In practice frequently outperforms XO with tight linkage (Fogel, 2006)

Introduction Hyperclimbing Proof of Concept Prediction & Validation Conclusion
Optimization in GAs with UX Unexplained

- Cannot be explained within the rubric of the BBH
- No viable alternative has been proposed

Hyperclimbing

Proof of Concept

Prediction & Validation

Conclusion

Optimization in GAs with UX Unexplained

Hyperclimbing Hypothesis

A scientific explanation for optimization in GAs with UX

Keki Burjorjee Explaining Adaptation in GAs with UX

Introduction Hyperclimbing Proof of Concept Prediction & Validation Conclusion What Does "Scientific" Mean?

- Logical Positivism (Proof or Bust)
 - Scientific truth is absolute
 - Emphasis on Verifiability (i.e. mathematical proof)
- The Popperian method
 - Scientific truth is provisional
 - Emphasis on Falsifiability (testable predictions)

Hyperclimbing

Proof of Concept

Prediction & Validation

Conclusion

Popperian Method

- Logic behind the Popperian Method : Contrapositive
 - Theory \Rightarrow Phenomenon $\Leftrightarrow \neg$ Phenomenon $\Rightarrow \neg$ Theory
- Additional tightening by Popper
 - $\bullet~$ Unexpected Phenomenon \rightarrow More credence owed to the theory
 - $\bullet\,$ e.g. Gravitational lensing \rightarrow General theory of relativity

Hyperclimbing

Proof of Concept

Prediction & Validation

Conclusion

Popperian Method

- Logic behind the Popperian Method : Contrapositive
 - Theory \Rightarrow Phenomenon $\Leftrightarrow \neg$ Phenomenon $\Rightarrow \neg$ Theory
- Additional tightening by Popper
 - $\bullet~$ Unexpected Phenomenon \rightarrow More credence owed to the theory
 - ullet e.g. Gravitational lensing ightarrow ullet General theory of relativity ullet

Additional Requirements in a Science of EC

- Weak assumptions about distribution of fitness
 - This is just Occam's Razor
- Upfront proof of concept
 - Avoid another "Royal Roads moment"
- (Nice to have) Identification of a core computational efficiency

Proof of Concept

Prediction & Validation

Conclusion

Hyperclimbing Hypothesis

GAs with UX perform optimization by efficiently implementing a global search heuristic called hyperclimbing

Introduction	Hyperclimbing	Proof of Concept	Prediction & Validation	Conclusion
Outline				

- Highlight Symmetry of UX
- Oescribe Hyperclimbing Heuristic
- Operation of the second sec
 - Show a GA implementing hyperclimbing efficiently
- Make a prediction and validate it on
 - MAX-3SAT
 - Sherrington Kirkpatrick Spin Glasses problem
- Outline future work

Introduction		Нуре	rclimbin	g	Pro	oof of Co	oncept		Predi	ction & Validation		Conclusion
Variat	ion	in (GAs									
	0	1	0	0	1	0	1	0	1		0	
	1	0	0	1	1	0	0	1	1		1	

Variation	in (GAs	•							
0 <i>X</i> 1 1	1 X ₂ 0	0 X ₃ 0	0 X ₄ 1	1 X ₅ 1	0 X ₆ 0	1 X ₇ 0	0 X ₈ 1	1 X9 1	 $egin{array}{c} 0 \ X_\ell \ 1 \end{array}$	

Hyperclimbing

Prediction & Validation

Conclusion

Introduction		Нур	erclimbing		Pro	of of Co	oncept		Predi	ction & Validation	Co	nclusion
Variati	on	in	GAs									
	0	1	0	0	1	0	1	0	1		0	
	↑	\downarrow	\downarrow	↑	\uparrow	\downarrow	\downarrow	\downarrow	↑		\uparrow	
	1	0	0	1	1	0	0	1	1		1	

0

 $Y_1 \quad Y_2 \quad Y_3 \quad Y_4 \quad Y_5 \quad Y_6 \quad Y_7 \quad Y_8 \quad Y_9 \quad \ldots \qquad \qquad Y_\ell$

1 1 0

0

0

0

0

1 0

ntroduction	Hyperclimbing	Proof of Concept	Prediction & Validation	Conclusion
Variatio	n in GAs			

Introduction	Hyperclimbing	Proof of Concept	Prediction & Validation	Conclusion
Variation	in GAs			

$$X_1$$
 X_2 X_3 X_4 X_5 X_6 X_7 X_8 X_9 \ldots X_ℓ

 $Y_1 \quad Y_2 \quad Y_3 \quad Y_4 \quad Y_5 \quad Y_6 \quad Y_7 \quad Y_8 \quad Y_9 \quad \ldots \qquad \qquad Y_\ell$

UX: X_1, \ldots, X_ℓ are independent

- Absence of *positional bias* (Eshelman et al., 1989)
 - Attributes can be arbitrarily permuted
- Suppose Y_1, \ldots, Y_ℓ independent and independent of ℓ
 - If locus *i* immaterial to fitness, can be spliced out

The Hyperclimbing Heuristic

Hyperclimbing

Proof of Concept

Prediction & Validation

Conclusion

Hyperclimbing: A Stochastic Search Heuristic

The Setting

- $\{0,1\}^\ell \xrightarrow{f} \mathbb{R}$
- f may be stochastic

Hyperclimbing

Proof of Concept

Prediction & Validation

Conclusion

Schema Partitions and Schemata

Given index set $\mathcal{I} \subset \{1, \dots, \ell\}$, s.t. $|\mathcal{I}| = k$

- $\mathcal I$ partitions the search space into 2^k schemata
- \bullet Schema partition denoted by $[\![\mathcal{I}]\!]$

E.g. for
$$I = \{3, 7\}$$

- Coarseness of the partition determined by k (the order)
- ^ℓ
 k
 crder k
- For fixed k, $\binom{\ell}{k} \in \Omega(\ell^k)$

Hyperclimbing

Proof of Concept

Prediction & Validation

Conclusion

Schema Partitions and Schemata

Given index set $\mathcal{I} \subset \{1, \dots, \ell\}$, s.t. $|\mathcal{I}| = k$

- $\mathcal I$ partitions the search space into 2^k schemata
- \bullet Schema partition denoted by $[\![\mathcal{I}]\!]$

E.g. for
$$\mathcal{I} = \{3,7\}$$

- Coarseness of the partition determined by k (the order)
- \$\begin{pmatrix} \ell & k \\ k & k \\
- For fixed k, $\binom{\ell}{k} \in \Omega(\ell^k)$

Hyperclimbing

Proof of Concept

Prediction & Validation

Conclusion

Schema Partitions and Schemata

Given index set $\mathcal{I} \subset \{1, \dots, \ell\}$, s.t. $|\mathcal{I}| = k$

- $\mathcal I$ partitions the search space into 2^k schemata
- \bullet Schema partition denoted by $[\![\mathcal{I}]\!]$

E.g. for
$$\mathcal{I} = \{3,7\}$$

- Coarseness of the partition determined by k (the order)
- $\binom{\ell}{k}$ schema partitions of order k

• For fixed k, $\binom{\ell}{k} \in \Omega(\ell^k)$

Hyperclimbing

Proof of Concept

Prediction & Validation

Conclusion

Schema Partitions and Schemata

Given index set $\mathcal{I} \subset \{1,\ldots,\ell\}$, s.t. $|\mathcal{I}| = k$

- $\mathcal I$ partitions the search space into 2^k schemata
- \bullet Schema partition denoted by $[\![\mathcal{I}]\!]$

E.g. for
$$\mathcal{I} = \{3,7\}$$

- Coarseness of the partition determined by k (the order)
- $\binom{\ell}{k}$ schema partitions of order k
- For fixed k, $\binom{\ell}{k} \in \Omega(\ell^k)$

Proof of Concept

Prediction & Validation

The Effect of a Schema Partition

• Effect of $\llbracket \mathcal{I} \rrbracket$: Variance of average fitness of schemata in $\llbracket \mathcal{I} \rrbracket$

• If $\mathcal{I} \subset \mathcal{I}'$, then $\mathsf{Effect}(\mathcal{I}) \leq \mathsf{Effect}(\mathcal{I}')$

- Effect of $[\![\mathcal{I}]\!]$: Variance of average fitness of schemata in $[\![\mathcal{I}]\!]$
- If $\mathcal{I} \subset \mathcal{I}'$, then $\mathsf{Effect}(\mathcal{I}) \leq \mathsf{Effect}(\mathcal{I}')$

Hyperclimbing

Proof of Concept

Prediction & Validation

Conclusion

How a Hyperclimbing Heuristic Works

- Finds a coarse schema partition with a detectable effect
- Limits future sampling to a schema with above average fitness

Raises expected fitness of all future samples

Hyperclimbing

Proof of Concept

Prediction & Validation

Conclusion

How a Hyperclimbing Heuristic Works

- Finds a coarse schema partition with a detectable effect
- Limits future sampling to a schema with above average fitness

Raises expected fitness of all future samples

Hyperclimbing

Proof of Concept

Prediction & Validation

Conclusion

How a Hyperclimbing Heuristic Works

- Finds a coarse schema partition with a detectable effect
- Limits future sampling to a schema with above average fitness

Raises expected fitness of all future samples

Hyperclimbing

Proof of Concept

Prediction & Validation

Conclusion

How a Hyperclimbing Heuristic Works

- Finds a coarse schema partition with a detectable effect
- Limits future sampling to a schema with above average fitness

• Raises expected fitness of all future samples

Hyperclimbing

Proof of Concept

Prediction & Validation

Conclusion

How a Hyperclimbing Heuristic Works

Limit future sampling to some schema $\label{eq:constraint} \ensuremath{\Uparrow} \ensuremath{\texttt{equivalent}} \times \tim$

- Hyperclimbing Heuristic now recurses
 - Search occurs over the unfixed loci
- And so on ...

- $\bullet \ \exists$ a small set of unfixed loci, $\mathcal{I},$ such that
 - \bullet Conditional effect of $[\![\mathcal{I}]\!]$ is detectable
 - Conditional upon loci that have already been fixed
 - $\bullet\,$ Unconditional effect of $[\![\mathcal{I}]\!]$ may be undetectable
- E.g.
 - Effect of 1*#*0*#* is detectable
 - Effect of **#***#* undetectable
 - ('*' = wildcard, '#'= defined locus)
- Called staggered coarse conditional effects

Hyperclimbing

Proof of Concept

Prediction & Validation

Conclusion

Fitness Distribution Assumption is Weak

- Staggered coarse conditional effects assumption is weak
 - Weaker than fitness distribution assumption in the BBH
 - BBH assumes unstaggered coarse unconditional effects
- Weaker assumptions are more likely to be satisfied in practice
 - $\bullet~\mbox{Good}~\mbox{b/c}$ we aspire to explain optimization in all GAs with UX

Hyperclimbing Heuristic is in Good Company

- Hyperclimbing an example of a global decimation heuristic
- Global decimation heuristics iteratively reduce the size of a search space
 - Use non-local information to find and fix partial solutions
 - No backtracking
- E.g. Survey propagation (Mérzad et al., 2002)
 - State-of-the-art solver for large, random SAT problems

Proof Of Concept

Hyperclimbing

Proof of Concept

Prediction & Validation

Conclusion

4-Bit Stochastic Learning Parities Problem

$$fitness(x) \sim \begin{cases} \mathcal{N}(+0.25, 1) \text{ if } x_{i_1} \oplus x_{i_2} \oplus x_{i_3} \oplus x_{i_4} = 1 \\ \mathcal{N}(-0.25, 1) \text{ otherwise} \end{cases}$$

Proof of Concept

Prediction & Validation

Conclusion

4-Bit Stochastic Learning Parities Problem

The Game

10111001011101001111000001	\mapsto	+0.5689
10001010110110100011110000	\mapsto	-0.25565
11101100100010111101101110	\mapsto	-0.37747
01110101001111100000110001	\mapsto	-0.29589
00000010001000100110011101	\mapsto	-1.4751
00001100000100010001100000	\mapsto	-0.234
01000001111000111100110100	\mapsto	+0.11844
11010001000101000011000110	\mapsto	+0.31481
00000011100010001100000111	\mapsto	+1.4435
00100111000111000001110000	\mapsto	-0.35097
10100011011010101010100001	\mapsto	+0.62323
00011011101010100010100000	\mapsto	+0.79905
00101010101100101110100000	\mapsto	+0.94089
01010110000000110110110011	\mapsto	-0.99209
11100101000110010110110101	\mapsto	+0.21204
00011111011101110101000111	\mapsto	+0.23788
00001111111101011110111010	\mapsto	-1.0078
: :	:	:
000010111011110000001111100	\mapsto	+1.0823
11011100111100010100111101	\mapsto	-0.1315

Proof of Concept

Prediction & Validation

Conclusion

4-Bit Stochastic Learning Parities Problem

The Game

\mapsto	+0.5689
\mapsto	-0.25565
\mapsto	-0.37747
\mapsto	-0.29589
\mapsto	-1.4751
\mapsto	-0.234
\mapsto	+0.11844
\mapsto	+0.31481
\mapsto	+1.4435
\mapsto	-0.35097
\mapsto	+0.62323
\mapsto	+0.79905
\mapsto	+0.94089
\mapsto	-0.99209
\mapsto	+0.21204
\mapsto	+0.23788
\mapsto	-1.0078
:	:
\mapsto	+1.0823
\mapsto	-0.1315
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Proof of Concept

Prediction & Validation

Conclusion

Solving the 4-Bit Stochastic Learning Parities Problem

Naive approach

- Visit loci in groups of four
- Check for differentiation in the multivariate marginal fitness values
- Time complexity is $\Omega(\ell^4)$

x _{i1}	× _{i2}	×i3	× _{i4}	Expected Marginal Fitness
0	0	0	0	-0.25
0	0	0	1	+0.25
0	0	1	0	+0.25
0	0	1	1	-0.25
0	1	0	0	+0.25
0	1	0	1	-0.25
0	1	1	0	-0.25
0	1	1	1	+0.25
1	0	0	0	+0.25
1	0	0	1	-0.25
1	0	1	0	-0.25
1	0	1	1	+0.25
1	1	0	0	-0.25
1	1	0	1	+0.25
1	1	1	0	+0.25
1	1	1	1	-0.25

Introduction Hyperclimbing Proof of Concept Prediction & Validation Conclusion Solving the 4-Bit Stochastic Learning Parities Problem

×j	Expected Marginal	x_{j_1}	× _{j2}	Expected Marginal Fitness
	Fitness	0	0	0.0
0	0.0	0	1	0.0
1	0.0	1	0	0.0
		1	1	0.0

 x_{j_3}

0

1

0

1

Expected Marginal

Fitness

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

• Visiting loci in groups of three or less won't work

x_{j1} x_{j2}

0

0

0

0

1 0 0

1

1 1

1

0 0

0 1

1

1

0 1

1

Introduction	Hyperclimbing	Proof of Concept	Prediction & Validation	Conclusion

⊳ Watch On YouTube

Dynamics of a SGA on the 4-Bit Learning Parities problem #Loci=200 Expected #generations for the red dots to diverge constant w.r.t.

- Location of the red dots
- Number of blue dots

Dynamics of a blue dot invariant to

- Location of the red dots
- Number of blue dots

Introduction	Hyperclimbing	Proof of Concept	Prediction & Validation	Conclusion

Dynamics of a SGA on the 4-Bit Learning Parities problem #Loci=1000

Keki Burjorjee Explaining Adaptation in GAs with UX

Introduction	Hyperclimbing	Proof of Concept	Prediction & Validation	Conclusion

Dynamics of a SGA on the 4-Bit Learning Parities problem #Loci=10000

Keki Burjorjee Explaining Adaptation in GAs with UX

• Staircase function descriptor: $(m, n, \delta, \sigma, \ell, L, V)$

• Staircase function is a stochastic function $f: \{0,1\}^\ell \to \mathbb{R}$

Introduction	Hyperclimbing	Proof of Concept	Prediction & Validation	Conclusion
$\ell = 50$				
m = 5				
<i>n</i> = 4				
$\delta = 0.2$				
$\sigma = 1$				
$L = \begin{bmatrix} 1 \\ 5 \\ 9 \\ 13 \\ 17 \end{bmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$V = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$	$ \begin{array}{cccc} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{array} $		⊳ Vatch On YouTube	

Introduction	Hyperclimbing	Proof of Concept	Prediction & Validation	Conclusion
$\ell = 50$				
m = 5				
<i>n</i> = 4				
$\delta = 0.2$				
$\sigma = 1$				
$L = \begin{bmatrix} 35\\ 31\\ 21\\ 40\\ 12 \end{bmatrix}$	25 37 46 5 32 20 33 50 42 27 30 3 14 48 2			
$V = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 &$		⊳ Vatch On YouTube	

Introduction	Hyperclimbing	Proof of Concept	Prediction & Validation	Conclusion
Introduction $\ell = 5000$ m = 5 n = 4 $\delta = 0.2$ $\sigma = 1$ L = - $\Gamma = 2050$ 465	Нурегсlimbing 9 1931 3284 г	Proof of Concept	Prediction & Validation	Conclusion
2130 2404 143 1284 2061 904 3503 724	4 205 4418 4 53 437 4 2650 3080 4 4822 4444			
$V = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$	 	⊳ Vatch On YouTube	

Introduction	Hyperclimbing	Proof of Concept	Prediction & Validation	Conclusion
Introduction $\ell = 5000$ $m = 5$ $n = 4$ $\delta = 0.2$ $\sigma = 1$ $L =$ $\begin{bmatrix} 2050 & 4650 \\ 4650 \end{bmatrix}$	Hyperclimbing 9 1931 3284]	Proof of Concept	Prediction & Validation	Conclusion
2130 240 143 128 2061 904 3503 724	4 205 4418 4 53 437 4 2650 3080 4 4822 4444			
$V = \begin{bmatrix} 0 & 0 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 0 & 0 \end{bmatrix}$	$ \begin{array}{cccc} 1 & 0 \\ 0 & 0 \\ 0 & 1 \\ 1 & 1 \end{array} $		⊳ Natch On YouTube	

Prediction & Validation

Introduction	Hyperclimbing	Proof of Concept	Prediction & Validation	Conclusion
$\ell = 500$ $m = 125$ $n = 4$ $\delta = 0.2$ $\sigma = 1$ $L = \begin{bmatrix} 1 & 2 \\ 5 & 6 \\ \vdots & \vdots \end{bmatrix}$	3 4 7 8 : :			
$V = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ \vdots & \vdots \\ 1 & 1 \end{bmatrix}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		⊳ Natch On YouTube	

Keki Burjorjee Explaining Adaptation in GAs with UX

Introduction	Hyperclimbing	Proof of Concept	Prediction & Validation	Conclusion
$\ell = 500$ $m = 125$ $n = 4$ $\delta = 0.2$ $\sigma = 1$ $L = \begin{bmatrix} 1 & 2 \\ 5 & 6 \\ \vdots & \vdots \end{bmatrix}$	3 4 7 8 : :			
$V = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ \vdots & \vdots \\ 1 & 1 \end{bmatrix}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		⊳ Natch On YouTube	

Keki Burjorjee Explaining Adaptation in GAs with UX

Uniform Random MAX-3SAT

#variables=1000, #clauses=4000

#trials=10. Error bars show standard error.

Uniform Random MAX-3SAT

#variables=1000, #clauses=4000

#trials=10. Error bars show standard error.

Uniform Random MAX-3SAT

#variables=1000, #clauses=4000

#trials=10. Error bars show standard error.

SK Spin Glasses System

SK Spin Glasses System

#trials=10. Error bars show standard error.

SK Spin Glasses System

#trials=10. Error bars show standard error.

Conclusion

Introduction	Hyperclimbing	Proof of Concept	Prediction & Validation	Conclusion
Summary				

Proposed the Hyperclimbing Hypothesis

- Weak assumptions about the distribution of fitness
- Based on a computational efficiency of GAs with UX
- Upfront proof of concept
- Testable predictions + Validation on
 - Uniform Random MAX-3SAT
 - SK Spin Glasses Problem

- Implicit Parallelism is real
 - Not your grandmother's implicit parallelism
 - Effect of coarse schema partitions evaluated in parallel
 - NOT the average fitness of short schemata
 - Defining length of a schema partition is immaterial
 - New Implicit parallelism more powerful
- Think in terms of Hyperscapes not Landscapes

Introduction	Hyperclimbing	Proof of Concept	Prediction & Validation	Conclusion
What Now	/?			

- Flesh out the Hypothesis
 - What does a deceptive hyperscape look like?
- More Testable Predictions + Validation
 - Are staggered coarse conditional effects indeed common?
- Generalization
 - Explain optimization in other EAs
- Outreach
 - Identify and efficiently solve problems familiar to theoretical computer scientists
- Exploitation
 - Construct better representations
 - Choose better parameters for existing EAs
 - Construct better EAs (e.g. backtracking EAs)

Questions?

follow me @evohackr