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Uniform Crossover

Uniform Crossover first used by Ackley (1987)

Studied and popularized by Syswerda (1989) and Spears & De
Jong (1990, 1991)

Numerous accounts of optimization in GAs with UX

In practice frequently outperforms XO with tight linkage
(Fogel, 2006)
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Optimization in GAs with UX Unexplained

Cannot be explained within the rubric of the BBH

No viable alternative has been proposed
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Optimization in GAs with UX Unexplained

Hyperclimbing Hypothesis

A scientific explanation for optimization in GAs with UX
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What Does “Scientific” Mean?

Logical Positivism (Proof or Bust)

Scientific truth is absolute

Emphasis on Verifiability (i.e. mathematical proof)

The Popperian method

Scientific truth is provisional

Emphasis on Falsifiability (testable predictions)
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Popperian Method

Logic behind the Popperian Method : Contrapositive

Theory ⇒ Phenomenon ⇔ ¬Phenomenon⇒ ¬Theory

Additional tightening by Popper

Unexpected Phenomenon → More credence owed to the theory
e.g. Gravitational lensing → General theory of relativity
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Additional Requirements in a Science of EC

Weak assumptions about distribution of fitness

This is just Occam’s Razor

Upfront proof of concept

Avoid another ”Royal Roads moment”

(Nice to have) Identification of a core computational efficiency
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Hyperclimbing Hypothesis

GAs with UX perform optimization by efficiently
implementing a global search heuristic called hyperclimbing
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Outline

1 Highlight Symmetry of UX

2 Describe Hyperclimbing Heuristic

3 Provide proof-of-concept

Show a GA implementing hyperclimbing efficiently

4 Make a prediction and validate it on

MAX-3SAT
Sherrington Kirkpatrick Spin Glasses problem

5 Outline future work
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Variation in GAs

0 1 0 0 1 0 1 0 1 . . . . . . . . . 0

1 0 0 1 1 0 0 1 1 . . . . . . . . . 1
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Variation in GAs

0 1 0 0 1 0 1 0 1 . . . . . . . . . 0
X1 X2 X3 X4 X5 X6 X7 X8 X9 . . . . . . . . . X`
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Variation in GAs
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Variation in GAs
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Variation in GAs

X1 X2 X3 X4 X5 X6 X7 X8 X9 . . . . . . . . . X`

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 . . . . . . . . . Y`

UX: X1, . . . ,X` are independent

Absence of positional bias (Eshelman et al., 1989)

Attributes can be arbitrarily permuted

Suppose Y1, . . . ,Y` independent and independent of `

If locus i immaterial to fitness, can be spliced out

Keki Burjorjee Explaining Adaptation in GAs with UX



Introduction Hyperclimbing Proof of Concept Prediction & Validation Conclusion

The Hyperclimbing Heuristic
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Hyperclimbing: A Stochastic Search Heuristic

The Setting

{0, 1}` f→ R

f may be stochastic

Keki Burjorjee Explaining Adaptation in GAs with UX



Introduction Hyperclimbing Proof of Concept Prediction & Validation Conclusion

Schema Partitions and Schemata

Given index set I ⊂ {1, . . . , `}, s.t. |I| = k

I partitions the search space into 2k schemata

Schema partition denoted by JIK

E.g. for I = {3, 7}

A3 = 0, A7 = 0

A3 = 0, A7 = 1

A3 = 1, A7 = 1A3 = 1, A7 = 0

Coarseness of the partition
determined by k (the order)(
`
k

)
schema partitions of

order k

For fixed k,
(
`
k

)
∈ Ω(`k)
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The Effect of a Schema Partition

Effect of JIK: Variance of average fitness of schemata in JIK

If I ⊂ I ′, then Effect(I) ≤ Effect(I ′)

JIK
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The Effect of a Schema Partition

Effect of JIK: Variance of average fitness of schemata in JIK

If I ⊂ I ′, then Effect(I) ≤ Effect(I ′)

JIK JI ′K
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How a Hyperclimbing Heuristic Works

Finds a coarse schema partition
with a detectable effect

Limits future sampling to a
schema with above average
fitness

Raises expected fitness of all future samples
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How a Hyperclimbing Heuristic Works

Limit future sampling to some schema
m equivalent to m

Fix defining loci of the schema in the population

Hyperclimbing Heuristic now recurses

Search occurs over the unfixed loci

And so on . . .
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Fitness Distribution Assumption

∃ a small set of unfixed loci, I, such that
Conditional effect of JIK is detectable

Conditional upon loci that have already been fixed

Unconditional effect of JIK may be undetectable

E.g.

Effect of 1*#*0*#* is detectable
Effect of **#***#* undetectable
(‘*’ = wildcard, ‘#’= defined locus)

Called staggered coarse conditional effects
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Fitness Distribution Assumption is Weak

Staggered coarse conditional effects assumption is weak
Weaker than fitness distribution assumption in the BBH

BBH assumes unstaggered coarse unconditional effects

Weaker assumptions are more likely to be satisfied in practice

Good b/c we aspire to explain optimization in all GAs with UX
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Hyperclimbing Heuristic is in Good Company

Hyperclimbing an example of a global decimation heuristic

Global decimation heuristics iteratively reduce the size of a
search space

Use non-local information to find and fix partial solutions
No backtracking

E.g. Survey propagation (Mérzad et al., 2002)

State-of-the-art solver for large, random SAT problems
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Proof Of Concept
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4-Bit Stochastic Learning Parities Problem

fitness(x) ∼
{
N (+0.25, 1) if xi1 ⊕ xi2 ⊕ xi3 ⊕ xi4 = 1
N (−0.25, 1) otherwise

0
                                                                                 Fitness

P
ro

ba
bi

lit
y

−0.25 +0.25
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4-Bit Stochastic Learning Parities Problem

The Game

10111001011101001111000001 7→ +0.5689
10001010110110100011110000 7→ −0.25565
11101100100010111101101110 7→ −0.37747
01110101001111100000110001 7→ −0.29589
00000010001000100110011101 7→ −1.4751
00001100000100010001100000 7→ −0.234
01000001111000111100110100 7→ +0.11844
11010001000101000011000110 7→ +0.31481
00000011100010001100000111 7→ +1.4435
00100111000111000001110000 7→ −0.35097
10100011011010101010100001 7→ +0.62323
00011011101010100010100000 7→ +0.79905
00101010101100101110100000 7→ +0.94089
01010110000000110110110011 7→ −0.99209
11100101000110010110110101 7→ +0.21204
00011111011101110101000111 7→ +0.23788
00001111111101011110111010 7→ −1.0078

...
...

...
...

00001011101111000000111100 7→ +1.0823
11011100111100010100111101 7→ −0.1315
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4-Bit Stochastic Learning Parities Problem

The Game

↓ ↓ ↓ ↓
10111001011101001111000001 7→ +0.5689
10001010110110100011110000 7→ −0.25565
11101100100010111101101110 7→ −0.37747
01110101001111100000110001 7→ −0.29589
00000010001000100110011101 7→ −1.4751
00001100000100010001100000 7→ −0.234
01000001111000111100110100 7→ +0.11844
11010001000101000011000110 7→ +0.31481
00000011100010001100000111 7→ +1.4435
00100111000111000001110000 7→ −0.35097
10100011011010101010100001 7→ +0.62323
00011011101010100010100000 7→ +0.79905
00101010101100101110100000 7→ +0.94089
01010110000000110110110011 7→ −0.99209
11100101000110010110110101 7→ +0.21204
00011111011101110101000111 7→ +0.23788
00001111111101011110111010 7→ −1.0078

...
...

...
...

00001011101111000000111100 7→ +1.0823
11011100111100010100111101 7→ −0.1315

↑ ↑ ↑ ↑
Effective Loci
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Solving the 4-Bit Stochastic Learning Parities Problem

Naive approach

Visit loci in groups of four

Check for differentiation in
the multivariate marginal
fitness values

Time complexity is Ω(`4)

xi1 xi2 xi3 xi4

Expected
Marginal
Fitness

0 0 0 0 −0.25
0 0 0 1 +0.25
0 0 1 0 +0.25
0 0 1 1 −0.25
0 1 0 0 +0.25
0 1 0 1 −0.25
0 1 1 0 −0.25
0 1 1 1 +0.25
1 0 0 0 +0.25
1 0 0 1 −0.25
1 0 1 0 −0.25
1 0 1 1 +0.25
1 1 0 0 −0.25
1 1 0 1 +0.25
1 1 1 0 +0.25
1 1 1 1 −0.25
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Solving the 4-Bit Stochastic Learning Parities Problem

Visiting loci in groups of
three or less won’t work

xj

Expected
Marginal
Fitness

0 0.0
1 0.0

xj1 xj2

Expected
Marginal
Fitness

0 0 0.0
0 1 0.0
1 0 0.0
1 1 0.0

xj1 xj2 xj3

Expected
Marginal
Fitness

0 0 0 0.0
0 0 1 0.0
0 1 0 0.0
0 1 1 0.0
1 0 0 0.0
1 0 1 0.0
1 1 0 0.0
1 1 1 0.0
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B
Watch On YouTube

Dynamics of a SGA on the 4-Bit Learning Parities problem
#Loci=200
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4BitParity200AttrsDiss.mpg
Media File (video/mpeg)

http://youtu.be/pFC4w_xjRsk
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Symmetry Analytic Conclusion

Expected #generations for the red dots to diverge constant w.r.t.

Location of the red dots

Number of blue dots

Dynamics of a blue dot invariant to

Location of the red dots

Number of blue dots
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B
Watch On YouTube

Dynamics of a SGA on the 4-Bit Learning Parities problem
#Loci=1000
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4BitParity1000AttrsDiss.mpg
Media File (video/mpeg)

http://youtu.be/aBb3I8LhLPo
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B
Watch On YouTube

Dynamics of a SGA on the 4-Bit Learning Parities problem
#Loci=10000
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4BitParity10000AttrsDiss.mpg
Media File (video/mpeg)

http://youtu.be/IdHUVFvlyro
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Staircase Functions

Staircase function descriptor: (m, n, δ, σ, `, L,V )

L =


3 87 · · · 93

42 58 · · · 72
...

...
. . .

...
67 73 · · · 81


︸ ︷︷ ︸

n

m, V =


1 0 · · · 1
1 0 · · · 0
...

...
. . .

...
0 1 · · · 1


︸ ︷︷ ︸

n

m

Staircase function is a stochastic function f : {0, 1}` → R

          0                   δ                  2δ                                                                          (m−1)δ            mδ                                 
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Staircase Function

64 128 192 256

64

128

192

256
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Staircase Functions

δ = 0.2, σ = 1
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` = 50

m = 5

n = 4

δ = 0.2

σ = 1

L =


1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
17 18 19 20



V =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 B
Watch On YouTube
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coloredInOrder__ell=50_V=ones.mpg
Media File (video/mpeg)

http://youtu.be/0qWlanu5qo0
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` = 50

m = 5

n = 4

δ = 0.2

σ = 1

L =


1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
17 18 19 20



V =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 #trials=100. Error bars show standard error.
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` = 50

m = 5

n = 4

δ = 0.2

σ = 1

L =


35 25 37 46
31 5 32 20
21 33 50 42
40 27 30 3
12 14 48 2



V =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
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Watch On YouTube
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coloredRandom___ell=50_V=ones.mpg
Media File (video/mpeg)

http://youtu.be/8ASDjcyjOBA
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` = 5000

m = 5

n = 4

δ = 0.2

σ = 1

L =
2050 4659 1931 3284
2130 2404 205 4418
143 1284 53 437

2061 904 2650 3080
3503 724 4822 4444



V =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 B
Watch On YouTube
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coloredRandom___ell=5000_V=ones.mpg
Media File (video/mpeg)

http://youtu.be/-RP6G4_f2ZI
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` = 5000

m = 5

n = 4

δ = 0.2

σ = 1

L =
2050 4659 1931 3284
2130 2404 205 4418
143 1284 53 437

2061 904 2650 3080
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V =
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1 1 0 1
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coloredRandom___ell=5000_V=random.mpg
Media File (video/mpeg)

http://youtu.be/BD2bSWdmGPw
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Prediction & Validation
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crosstype=2Mut=003Anim.mpg
Media File (video/mpeg)

http://youtu.be/DPja7zKrNlw
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#trials=10. Error bars show standard error.
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Media File (video/mpeg)
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Uniform Random MAX-3SAT

#variables=1000, #clauses=4000
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#trials=10. Error bars show standard error.
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Uniform Random MAX-3SAT
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SK Spin Glasses System
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SK Spin Glasses System
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Conclusion
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Summary

Proposed the Hyperclimbing Hypothesis

Weak assumptions about the distribution of fitness

Based on a computational efficiency of GAs with UX

Upfront proof of concept

Testable predictions + Validation on

Uniform Random MAX-3SAT
SK Spin Glasses Problem
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Corollaries

Implicit Parallelism is real

Not your grandmother’s implicit parallelism

Effect of coarse schema partitions evaluated in parallel

NOT the average fitness of short schemata

Defining length of a schema partition is immaterial

New Implicit parallelism more powerful

Think in terms of Hyperscapes not Landscapes
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What Now?

Flesh out the Hypothesis

What does a deceptive hyperscape look like?

More Testable Predictions + Validation

Are staggered coarse conditional effects indeed common?

Generalization

Explain optimization in other EAs

Outreach

Identify and efficiently solve problems familiar to
theoretical computer scientists

Exploitation

Construct better representations
Choose better parameters for existing EAs
Construct better EAs (e.g. backtracking EAs)
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Questions?

follow me @evohackr

Keki Burjorjee Explaining Adaptation in GAs with UX

http://twitter.com/evohackr
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