

# A lens on complexity, cryptography, and beyond

Henry Yuen University of Toronto



#### The model



What can the PI learn from the two devices through classical interaction only?

- Devices are described by quantum mechanics
- Devices cannot signal to each other

PI: polynomial time investigator

#### The model



The PI might wonder: are these boxes...

- Performing a quantum computation correctly?
- Generating secure random bits?
- Holding a ground state of a local Hamiltonian?
- Capable of solving the Halting Problem?
- Using infinite-dimensional entanglement?

#### All verifiable using multiprover protocols!

PI: polynomial time investigator

#### The model

**Prover:** want to convince the verifier of a statement X (even if untrue)

 $|\Psi |$ 



- PI is computationally limited "verifier"
- Devices are "provers"
  - More computationally powerful than PI
  - Trying to convince a skeptical verifier of some claim *X*, *e.g.* 
    - "N is product of two primes"
    - "boxes are generating secure random bits"
    - "quantum circuit C accepts whp"
- Multiprover protocol: efficient interactive procedure to determine if *X* is true
  - **Completeness**: if *X* true, provers can convince verifier whp
  - **Soundness**: if *X* false, provers cannot convince verifier whp

## The multiprover lens

- Cryptography
  - Delegated quantum computation
  - Randomness expansion
  - Device independent quantum cryptography
  - Zero knowledge
- Complexity theory
  - Complexity of MIP\*
  - Hamiltonian complexity

- Foundations of quantum mechanics
  - Rigidity of quantum correlations
  - Finite vs infinite dimensional quantum correlations
- Pure mathematics
  - Functional analysis
  - Representation theory
  - Algebra
  - Noncommutative optimization

#### This talk, and the next

- Multiprover protocols I
  - Simple rigidity
  - Application: A simple interactive proof for quantum computations
- Multiprover protocols II
  - Advanced rigidity
  - Application: Complexity of MIP\*

#### Classical verification of quantumness









# EPR (1935): Can the behavior of these boxes be described by classical physics?



#### Bell (1964): No!

#### Row sums



#### Row sums





This CSP is not satisfiable. Classical devices win with prob. ≤ 17/18



#### Winning conditions:

- Constraint satisfaction:  $a_1 + a_4 + a_7 = 1$
- Consistency:  $b = a_4$

#### Row sums





By sharing four entangled qubits, devices can win MS game with probability 1! Winning conditions:

- Constraint satisfaction:  $a_1 + a_4 + a_7 = 1$
- Consistency:  $b = a_4$

| $\sigma_X \sigma_I$ | $\sigma_I \sigma_X$ | $\sigma_X \sigma_X$ |
|---------------------|---------------------|---------------------|
| $\sigma_I \sigma_Z$ | $\sigma_Z \sigma_I$ | $\sigma_Z \sigma_Z$ |
| $\sigma_X \sigma_Z$ | $\sigma_Z \sigma_X$ | $\sigma_Y \sigma_Y$ |

#### "Spooky" quantum strategy

 Upon receiving a variable/constraint, provers measure their share of |EPR⟩<sup>⊗2</sup> using corresponding Pauli observables



Experimental test for nonclassical physics:

- Play Magic Square with two devices
- If devices consistently win the game, they cannot be classical!

Many Bell tests carried out experimentally!





Assuming QM, there is essentially a **unique** quantum strategy to win Magic Square with probability 1.

**Theorem**: If  $(|\psi\rangle, M)$  win Magic Square with probability 1, there is local change of basis where

- $|\psi\rangle \equiv |EPR\rangle^{\otimes 2}$
- $M \equiv$  Pauli X and Z measurements on EPR pairs.



Assuming QM, there is essentially a **unique** quantum strategy to win Magic Square with probability 1.

**Theorem**: If  $(|\psi\rangle, M)$  win Magic Square with probability 1, there is local change of basis where

- $|\psi\rangle \equiv |EPR\rangle^{\otimes 2}$
- $M \equiv \text{Pauli } X \text{ and } Z$  measurements on EPR pairs.



#### A classical leash on quantum systems

- Magic Square gives a classical test for **specific** quantum behavior!
  - Many other games with similar rigidity phenomena: CHSH, GHZ, ...
  - Topic also called **self-testing**.
- Simple game, powerful tool.
- Rigidity properties are the heart of many quantum multiprover protocols.
  - Advances in rigidity lead to advances in protocol design.

### Testing many qubits

- Certify N qubits of entanglement?
- Play N independent instances of Magic Square.

**Theorem**: If  $(|\psi\rangle, M)$  win *N*-fold Magic Square with probability 1, there is local change of basis where

- $|\psi\rangle \equiv |EPR\rangle^{\otimes 2N}$
- $M \equiv$  tensor products of Pauli X and Z measurements on EPR pairs.



#### Classical verification of quantum *computations*

(In the multiprover setting)

### A longstanding problem

- Can a quantum computer efficiently prove its correctness to a classical verifier?
- Before 2012, the best results used semi-classical verifiers (ABE08, BFK08)
- Reichardt-Unger-Vazirani (2012): classical verification of quantum computations in the multiprover setting.
- Mahadev (2018): classical verification of quantum computations in single prover setting, with crypto assumptions.

#### RUV

- Introduces many beautiful ideas
  - Analysis of sequential CHSH
  - Interleaving of rigidity tests with computation tests
  - Combining rigidity with measurement-based computation
- Tour-de-force
  - 100 pages
  - Prover complexity for *T*-gate circuit:  $\Omega(T^{8192})$
  - Many rounds of interaction

#### nature

#### Article Published: 24 April 2013

# Classical command of quantum systems

Ben W. Reichardt <sup>⊡</sup>, Falk Unger & Umesh Vazirani

Nature 496, 456–460(2013) Cite this article 545 Accesses 126 Citations 57 Altmetric Metrics

#### Abstract

Quantum computation and cryptography both involve scenarios in which a user interacts with an imperfectly modelled or 'untrusted' system. It is therefore of

- Much simpler than RUV
- 20 pages
- 1 round protocol
- I can describe it to you in this talk

Relativistic verifiable delegation of quantum computation

Alex B. Grilo\*

#### Abstract

The importance of being able to verify quantum computation delegated to remote servers increases with recent development of quantum technologies. In some of the proposed protocols for this task, a client delegates her quantum computation to non-communicating servers. The fact that the servers do not communicate is not physically justified and it is essential for the proof of security of such protocols. For



PI: polynomial time investigator

- Provers trying to prove output of C is |1> with high probability.
- **Completeness**: if statement true, then provers have quantum strategy that causes verifier whp.
- **Soundness**: if statement untrue, verifier always rejects whp.
- **Prover efficiency**: provers should run in polynomial time.



- Suppose verifier has trusted measurement device
  - Device receives untrusted state from prover
  - Can command device to measure each qubit in X or Z basis.
- Then verifier can easily check arbitrary BQP computations!



"010101001..."

Biamonte-Love: WLOG terms are tensor products of X/Z measurements

• Feynman-Kitaev circuit-to-Hamiltonian construction

circuit  $C \rightarrow$  Hamiltonian  $H = H_1 + \dots + H_m$ 

• Ground state of *H*: history state of computation

$$|\psi\rangle = \frac{1}{\sqrt{T+1}} \sum_{t=0}^{T} |t\rangle \otimes |\psi_t\rangle$$
 state of circuit at time  $t$ 

• Feynman-Kitaev circuit-to-Hamiltonian construction

circuit 
$$C \rightarrow$$
 Hamiltonian  $H = H_1 + \dots + H_m$ 

- **(YES)** If output of *C* accepts with probability 1, then history state  $|\psi\rangle$  satisfies  $\langle \psi | H | \psi \rangle = 0$
- (NO) If output of *C* accepts with probability  $\leq 1/3$ , then  $\frac{1}{m} \langle \psi | H | \psi \rangle \geq \frac{1}{poly(n)}$ for all  $|\psi\rangle$ .

• Feynman-Kitaev circuit-to-Hamiltonian construction

circuit 
$$C \rightarrow$$
 Hamiltonian  $H = H_1 + \dots + H_m$ 

- **(YES)** If output of *C* accepts with probability 1, then history state  $|\psi\rangle$  satisfies  $\langle \psi | H | \psi \rangle = 0$
- (NO) If output of *C* accepts with probability  $\leq 1/3$ , then  $\frac{1}{m} \langle \psi | H | \psi \rangle \geq \frac{1}{2}$ for all  $|\psi\rangle$ .

Simple Hamiltonian amplification trick. Results in non-local Hamiltonian, but only polynomial-size blow-up.

#### **Measurement Protocol**

- Prover sends  $|\psi
  angle$  to trusted measuring device
- Verifier commands device to measure random term  $H_i$
- Verifier accepts if outcomes correspond to kernel of *H<sub>i</sub>*.
- **(YES)** Verifier always accepts, if  $|\psi\rangle$  is history state.
- (NO) Verifier rejects with probability  $\geq \frac{1}{2}$ , for all  $|\psi\rangle$



- **Goal**: determine if output of C is  $|1\rangle$  whp.
- Verifier first computes Hamiltonian *H* from *C*.
- Let n be # of qubits Hamiltonian acts on. Let  $N \gg n$ .



- Force one prover to act as trusted measurement device.
- With prob. ½, verifier performs **Rigidity Test** 
  - Play *N* parallel MS games.



- Force prover B to act as trusted measurement device.
- With prob. ½, verifier performs **Rigidity Test** 
  - Play N parallel MS games.
- With prob. ½, verifier performs Energy Test
  - Use prover A to teleport ground state  $|\psi\rangle$  to prover B, and prover B measures state.



 $|EPR\rangle^{\otimes N}$ 

- Pick *n* random EPR pairs out of *N*
- Tell prover A ("teleporter") to teleport  $|\psi\rangle$  through those EPRs
- Pick random term  $H_i$ , and "hide"  $H_i$  in random X/Z basis string s
- Send s to prover B ("measurer")
- Accept if outcomes corresponding to hidden  $H_i$  pass measurement protocol



- Pick random subset  $S \subseteq [N]$  of n EPR pairs
- Tell prover A ("teleporter") to teleport  $|\psi\rangle$  through those EPRs, and prover reports teleportation keys  $K \in \{0,1\}^{2n}$



- Pick random subset  $S \subseteq [N]$  of n EPR pairs
- Tell prover A ("teleporter") to teleport  $|\psi\rangle$  through those EPRs, and prover reports teleportation keys  $K \in \{0,1\}^{2n}$
- Keys *K* indicate *X*/*Z* errors on each qubit.



- Pick random term  $H_i$
- Pick random basis string  $R \in \{X, Z\}^N$ such that  $R|_S$  consistent with  $H_i$



- Pick random term  $H_i$
- Pick random basis string  $R \in \{X, Z\}^N$ such that  $R|_S$  consistent with  $H_i$
- Tell prover B ("measurer") to measure EPR pairs using basis choice R, and report outcomes  $M \in \{0,1\}^N$ .



- $M|_S$  corresponds to measuring  $X^K Z^K |\psi\rangle$ with  $H_i$
- Decode  $M|_S$  using keys K.
- Accept if outcomes correspond to kernel of  $H_i$ .



- (YES case) Suppose circuit C accepts with probability 1.
- There exists  $|\psi\rangle$  such that  $\langle \psi|H|\psi\rangle = 0$ .
- Prover B performs measurement protocol honestly, so verifier always accepts.



- Conversely, suppose provers succeeded with probability  $1 \epsilon$ .
  - Pass Rigidity Test with probability  $\geq 1 2\epsilon$
  - Pass Energy Test with probability  $\geq 1-2\epsilon$
- Pass Rigidity Test
  - Prover B is  $poly(N\epsilon)$ -close to ideal, trusted measurement device
  - Shared state is  $poly(N\epsilon)$ -close to  $|EPR\rangle^{\otimes N}$



- Key fact: prover B cannot tell difference between Rigidity and Energy Tests
- Passing Rigidity Test  $\Rightarrow$  Prover B  $\approx$  trusted measurer in both tests
- Passing Energy Test  $\Rightarrow$ 
  - For all keys *K*, residual state on prover B's side passes trusted measurement protocol whp.
  - Implies *H* has ground energy ≈ 0, thus circuit *C* accepts with probability 1.



- **Completeness**: if circuit *C* accepts with probability 1, there is prover strategy that is accepted with probability 1.
- Soundness: if circuit C accepts with probability  $\leq \frac{1}{3}$ , then all prover strategies are rejected with inverse-polynomial probability.

- **Completeness**: if circuit *C* accepts with probability 1, there is prover strategy that is accepted with probability 1.
- Soundness: if circuit C accepts with probability  $\leq \frac{1}{3}$ , then all prover strategies are rejected with high probability.

Standard amplification tricks for 1-round protocols

- **Prover complexity**: *poly*(*n*, *T*) for *n*-qubit circuits with *T* gates
- Number of rounds: 1

#### Recap

- Multiprover protocols is a useful framework to study complex quantum systems
- Rigidity gives a powerful classical leash on quantum systems
- Certifying EPR pairs and X/Z measurements is enough to verify arbitrary BQP computations
- Next: the frontier of rigidity, and complexity of multiprover protocols

#### Last time

- 2014 Simons program: Quantum Hamiltonian Complexity
- Classically verifiable quantum computation (Reichardt-Unger-Vazirani)
- Infinite, robust randomness expansion (Miller-Shi, Coudron-Y.)
- Device-independent quantum key distribution (Vazirani-Vidick)
- NEXP  $\subseteq$  MIP\* (Ito-Vidick)
- Few nonlocal games: CHSH, Magic Square, GHZ

#### Multiprover protocols today

- 2020 Simons program: The Quantum Wave in Computing
- Simple protocols for verifying quantum computations
- Tight security analysis of DIQKD protocols
- MIP\* = RE
- Zero knowledge protocols
- A zoo of nonlocal games
- NIST Randomness Beacon

What advances in multiprover protocols will appear the next Simons quantum program?