Multiprover Protocols

A lens on complexity, cryptography, and beyond

Henry Yuen *University of Toronto*

The model

What can the PI learn from the two devices through classical interaction only?

- Devices are described by quantum mechanics
- Devices cannot signal to each other

PI: polynomial time investigator

The model The PI might wonder: are these boxes...

- Performing a quantum computation correctly?
- Generating secure random bits?
- Holding a ground state of a local Hamiltonian?
- Capable of solving the Halting Problem?
- Using infinite-dimensional entanglement?

All verifiable using multiprover protocols!

PI: polynomial time investigator

Prover: want to convince the verifier of a statement X (even if untrue)

 $\overline{\mathsf{I}\,\mathsf{Y}\,\mathsf{I}}$

- The model PI is computationally limited "verifier"
	- Devices are "provers"
		- More computationally powerful than PI
		- Trying to convince a skeptical verifier of some claim *X, e.g.*
			- *"N is product of two primes"*
			- *"boxes are generating secure random bits"*
			- *"quantum circuit C accepts whp"*
	- Multiprover protocol: efficient interactive procedure to determine if *X* is true
		- **Completeness**: if *X* true, provers can convince verifier whp
		- **Soundness**: if *X* false, provers cannot convince verifier

The multiprover lens

- Cryptography
	- Delegated quantum computation
	- Randomness expansion
	- Device independent quantum cryptography
	- Zero knowledge
- Complexity theory
	- Complexity of MIP*
	- Hamiltonian complexity
- Foundations of quantum mechanics
	- Rigidity of quantum correlations
	- Finite vs infinite dimensional quantum correlations
- Pure mathematics
	- Functional analysis
	- Representation theory
	- Algebra
	- Noncommutative optimization

This talk, and the next

- Multiprover protocols I
	- Simple rigidity
	- Application: A simple interactive proof for quantum computations
- Multiprover protocols II
	- Advanced rigidity
	- Application: Complexity of MIP*

Classical verification of quantumness

EPR (1935): Can the behavior of these boxes be described by classical physics?

Bell (1964): No!

Row sums

Row sums

This CSP is not satisfiable. **Classical devices win with prob. ≤ 17/18**

Winning conditions:

- **Constraint satisfaction:** $a_1 + a_4 + a_7 = 1$
- **Consistency:** $b = a_A$

Row sums

By sharing four entangled qubits, devices can win MS game with probability 1!

Winning conditions:

- Constraint satisfaction: $a_1+a_4+a_7=1$
- **Consistency:** $b = a_A$

"Spooky" quantum strategy

• Upon receiving a variable/constraint, provers measure their share of $|EPR\rangle^{\otimes 2}$ using corresponding Pauli observables

Experimental test for nonclassical physics:

- Play Magic Square with two devices
- If devices consistently win the game, they cannot be classical!

Many Bell tests carried out experimentally!

Assuming QM, there is essentially a **unique** quantum strategy to win Magic Square with probability 1.

Theorem: If $(|\psi\rangle, M)$ win Magic Square with probability 1, there is local change of basis where

- $|\psi\rangle \equiv |EPR\rangle^{\otimes 2}$
- $M \equiv$ Pauli X and Z measurements on EPR pairs.

Assuming QM, there is essentially a **unique** quantum strategy to win Magic Square with probability 1.

Theorem: If $(|\psi\rangle, M)$ win Magic Square with probability 1, there is local change of basis where

- $|\psi\rangle \equiv |EPR\rangle^{\otimes 2}$
- $M \equiv$ Pauli X and Z measurements on EPR pairs.

A classical leash on quantum systems

- Magic Square gives a classical test for **specific** quantum behavior!
	- Many other games with similar rigidity phenomena: CHSH, GHZ, …
	- Topic also called **self-testing**.
- Simple game, powerful tool.
- Rigidity properties are the heart of many quantum multiprover protocols.
	- Advances in rigidity lead to advances in protocol design.

Testing many qubits

- Certify N qubits of entanglement?
- Play N independent instances of Magic Square.

Theorem: If $(|\psi\rangle, M)$ win N-fold Magic Square with probability 1, there is local change of basis where

- $|\psi\rangle \equiv |EPR\rangle^{\otimes 2N}$
- $M \equiv$ tensor products of Pauli X and Z measurements on EPR pairs.

Sequential rigidity: Reichardt, Unger, Vazirani (Nature 2013) Parallel rigidity: Coudron, Natarajan (2016)

Classical verification of quantum *computations*

(In the multiprover setting)

A longstanding problem

- Can a quantum computer efficiently prove its correctness to a classical verifier?
- Before 2012, the best results used semi-classical verifiers (ABE08, BFK08)
- Reichardt-Unger-Vazirani (2012): classical verification of quantum computations in the multiprover setting.
- Mahadev (2018): classical verification of quantum computations in single prover setting, with crypto assumptions.

RUV

- Introduces many beautiful ideas
	- Analysis of sequential CHSH
	- Interleaving of rigidity tests with computation tests
	- Combining rigidity with measurement-based computation
- Tour-de-force
	- 100 pages
	- Prover complexity for T-gate circuit: $\Omega(T^{8192})$
	- Many rounds of interaction

nature

Article | Published: 24 April 2013

Classical command of quantum systems

Ben W. Reichardt[∞], Falk Unger & Umesh Vazirani

Nature 496, 456-460(2013) Cite this article 545 Accesses | 126 Citations | 57 Altmetric | Metrics

Abstract

Quantum computation and cryptography both involve scenarios in which a user interacts with an imperfectly modelled or 'untrusted' system. It is therefore of

- Much simpler than RUV
- 20 pages
- 1 round protocol
- I can describe it to you in this talk

Relativistic verifiable delegation of quantum computation

Alex B. Grilo*

Abstract

The importance of being able to verify quantum computation delegated to remote servers increases with recent development of quantum technologies. In some of the proposed protocols for this task, a client delegates her quantum computation to non-communicating servers. The fact that the servers do not nominate is not physically institied and it is essential for the proof of security of such proto

PI: polynomial time investigator

- Provers trying to prove output of C is |1⟩ with high probability.
- **Completeness**: if statement true, then provers have quantum strategy that causes verifier whp.
- **Soundness**: if statement untrue, verifier always rejects whp.
- **Prover efficiency**: provers should run in polynomial time.

- Suppose verifier has trusted measurement device
	- Device receives **untrusted state** from **prover**
	- Can command device to measure each qubit in X or Z basis.
- Then verifier can easily check arbitrary BQP computations!

"010101001…"

Biamonte-Love: WLOG terms are tensor products of X/Z measurements

• Feynman-Kitaev circuit-to-Hamiltonian construction

circuit $C \to$ Hamiltonian $H = H_1 + \cdots + H_m$

• Ground state of H : history state of computation

$$
|\psi\rangle = \frac{1}{\sqrt{T+1}} \sum_{t=0}^{T} |t\rangle \otimes |\psi_t\rangle
$$
 state of circuit at time *t*

• Feynman-Kitaev circuit-to-Hamiltonian construction

circuit
$$
C \rightarrow
$$
 Hamiltonian $H = H_1 + \cdots + H_m$

- **(YES)** If output of C accepts with probability 1, then history state $|\psi\rangle$ satisfies $\langle \psi | H | \psi \rangle = 0$
- **(NO)** If output of C accepts with probability $\leq 1/3$, then $\frac{1}{m}\langle\psi|H|\psi\rangle\geq\frac{1}{poly(n)}$ **for all** $|\psi\rangle$ **.**

• Feynman-Kitaev circuit-to-Hamiltonian construction

circuit
$$
C \rightarrow
$$
 Hamiltonian $H = H_1 + \cdots + H_m$

- **(YES)** If output of C accepts with probability 1, then history state $|\psi\rangle$ satisfies $\langle \psi | H | \psi \rangle = 0$
- **(NO)** If output of C accepts with probability $\leq 1/3$, then $\frac{1}{m} \langle \psi | H | \psi \rangle \geq \frac{1}{2}$ **for all** $|\psi\rangle$ **.**

Simple Hamiltonian amplification trick. Results in non-local Hamiltonian, but only polynomial-size blow-up.

Measurement Protocol

- Prover sends $|\psi\rangle$ to trusted measuring device
- Verifier commands device to measure random term H_i
- Verifier accepts if outcomes correspond to kernel of H_i .
- **(YES)** Verifier always accepts, if $|\psi\rangle$ is history state.
- **(NO)** Verifier rejects with probability $\geq \frac{1}{2}$ (, for all $|\psi\rangle$

"010101001…"

- **Goal**: determine if output of C is |1⟩ whp.
- Verifier first computes Hamiltonian H from C .
- Let n be # of qubits Hamiltonian acts on. Let $N \gg n$.

- Force one prover to act as trusted measurement device.
- With prob. $\frac{1}{2}$, verifier performs **Rigidity Test**
	- \bullet Play N parallel MS games.

- Force prover B to act as trusted measurement device.
- With prob. $\frac{1}{2}$, verifier performs **Rigidity Test**
	- Play N parallel MS games.
- With prob. $\frac{1}{2}$, verifier performs **Energy Test**
	- Use prover A to teleport ground state $|\psi\rangle$ to prover B, and prover B measures state.

 $|EPR\rangle^{\otimes N}$

- Pick n random EPR pairs out of N
- Tell prover A ("teleporter") to tele $\mathsf{port} \ket{\psi}$ through those <code>EPRs</code>
- Pick random term H_i , and "hide" H_i in random X/Z basis string s
- Send s to prover B ("measurer")
- Accept if outcomes corresponding to hiḋden H_i pass measurement
protocol

- Pick random subset $S \subseteq [N]$ of n EPR pairs
- Tell prover A ("teleporter") to teleport $\ket{\psi}$ through those EPRs, and prover reports teleportation keys $K \in \{0,1\}^{2n}$

- Pick random subset $S \subseteq [N]$ of n EPR pairs
- Tell prover A ("teleporter") to teleport $|\psi\rangle$ through those EPRs, and prover reports teleportation keys $K \in \{0,1\}^{2n}$
- Keys K indicate X/Z errors on each qubit.

- Pick random term H_i
- Pick random basis string $R \in \{X, Z\}^N$ such that $R|_S$ consistent with H_i

- Pick random term H_i
- Pick random basis string $R \in \{X, Z\}^N$ such that $R|_S$ consistent with H_i
- Tell prover B ("measurer") to measure EPR pairs using basis choice R , and report outcomes $M \in \{0,1\}^N$.

- $M|_S$ corresponds to measuring $X^K Z^K |\psi\rangle$ with H_i
- $H_i = \sigma_X^+ \otimes \sigma_Z^- \otimes \sigma_Z^+$ $R = ZXXZXZZ$ $\overline{S}^{KZ^{K}|\psi\rangle}$

A B

 $K \left(\bigoplus_{i=1}^n V_i \right)$ M

- Decode $M|_S$ using keys K.
- Accept if outcomes correspond to kernel of H_i .

- **(YES case)** Suppose circuit C accepts with probability 1.
- There exists $|\psi\rangle$ such that $\langle \psi | H | \psi \rangle = 0$.
- Prover B performs measurement protocol honestly, so verifier always accepts.

- Conversely, suppose provers succeeded with probability 1ϵ .
	- Pass Rigidity Test with probability $\geq 1-2\epsilon$
	- Pass Energy Test with probability $\geq 1-2\epsilon$
- Pass Rigidity Test
	- Prover B is $poly(N\epsilon)$ -close to ideal, trusted measurement device
	- Shared state is $poly(N\epsilon)$ -close to $|EPR\rangle^{\otimes N}$

- **Key fact**: prover B cannot tell difference between Rigidity and Energy Tests
- Passing Rigidity Test \Rightarrow Prover B \approx trusted measurer in both tests
- Passing Energy Test ⇒
	- For all keys K , residual state on prover B's side passes trusted measurement protocol whp.
	- Implies H has ground energy ≈ 0 , thus circuit C accepts with probability 1.

- **Completeness**: if circuit C accepts with probability 1, there is prover strategy that is accepted with probability 1.
- **Soundness:** if circuit C accepts with probability $\leq \frac{1}{2}$ \$, then all prover strategies are rejected with inverse-polynomial probability.

- **Completeness**: if circuit C accepts with probability 1, there is prover strategy that is accepted with probability 1.
- **Soundness:** if circuit C accepts with probability $\leq \frac{1}{2}$ \$, then all prover strategies are rejected with high probability. \leftarrow

Standard amplification tricks for 1-round protocols

- **Prover complexity**: $poly(n, T)$ for n -qubit circuits with T gates
- **Number of rounds:** 1

Recap

- Multiprover protocols is a useful framework to study complex quantum systems
- Rigidity gives a powerful classical leash on quantum systems
- Certifying EPR pairs and X/Z measurements is enough to verify arbitrary BQP computations
- **Next**: the frontier of rigidity, and complexity of multiprover protocols

Last time

- 2014 Simons program: Quantum Hamiltonian Complexity
- Classically verifiable quantum computation (Reichardt-Unger-Vazirani)
- Infinite, robust randomness expansion (Miller-Shi, Coudron-Y.)
- Device-independent quantum key distribution (Vazirani-Vidick)
- NEXP ⊆ MIP* (Ito-Vidick)
- Few nonlocal games: CHSH, Magic Square, GHZ

Multiprover protocols today

- 2020 Simons program: The Quantum Wave in Computing
- Simple protocols for verifying quantum computations
- Tight security analysis of DIQKD protocols
- $MIP^* = RE$
- Zero knowledge protocols
- A zoo of nonlocal games
- NIST Randomness Beacon

What advances in multiprover protocols will appear the next Simons quantum program?