Quantum Singular Value Transformation
& Its Algorithmic Applications

Andréas Gilyén

Institute for Quantum Information and Matter

Caltech

The Quantum Wave in Computing Boot Camp
Berkeley, 28th January 2020

Quantum walks

Continuous-time quantum / random walks

Laplacian of a weighted graph

Let G = (V, E) be a finite simple graph, with non-negative edge-weights w: E — R,.
The Laplacian is defined as

utv:L, —w,,andL, — —Z Wyy.
Vv

1/24

Continuous-time quantum / random walks

Laplacian of a weighted graph

Let G = (V, E) be a finite simple graph, with non-negative edge-weights w: E — R,.
The Laplacian is defined as

utv:L, —w,,andL, — —Z Wyy.
Vv

Continuous-time walks
Evolution of the state:

Sol) =Y Lapl) = p(t) = e"p(0)

7%

1/24

Continuous-time quantum / random walks

Laplacian of a weighted graph

Let G = (V, E) be a finite simple graph, with non-negative edge-weights w: E — R,.
The Laplacian is defined as

utv:L, —w,,andL, — —Z Wyy.
Vv

Continuous-time walks
Evolution of the state:

So =D Lenl) = p(t) = e"p(0)

7%

i) = 3 Lalt) = u(t) = e4(0)

veV

1/24

Discrete-time quantum / random walks
Discrete-time Markov-chain on a weighted graph
Transition probability in one step (stochastic matrix)

Wyy

P,, = Pr(step to v| being at u) = Z—W
vel YWWu

2/24

Discrete-time quantum / random walks

Discrete-time Markov-chain on a weighted graph

Transition probability in one step (stochastic matrix)

Wyy

P,, = Pr(step to v| being at u) = S won
viel YYv'u

A unitary implementing the update

U: 10)u) > > VPulvlud

veV

2/24

Discrete-time quantum / random walks

Discrete-time Markov-chain on a weighted graph

Transition probability in one step (stochastic matrix)

VVVU

P,, = Pr(step to v| being at u) = Z—W
velU YWv'u

A unitary implementing the update

U: 0)lu) = > VPuIvlu)

veV

How to erase history? The Szegedy quantum walk operator:

W .= U -SWAP- U
W = U"- SWAP - U((2/0X0|®) -)

2/24

Understanding Szegedy’s quantum walk operator

For simplicity let us assume P,, = P,,, i.e., the total weight of vertices is constant.

3/24

Understanding Szegedy’s quantum walk operator

For simplicity let us assume P,, = P,,, i.e., the total weight of vertices is constant.

A block-encoding of the Markov chain: ((0|® W'(|0)® I) = P

3/24

Understanding Szegedy’s quantum walk operator
For simplicity let us assume P,, = P,,, i.e., the total weight of vertices is constant.

A block-encoding of the Markov chain: ((0|® W'(|0)® I) = P
Proof:

:
(OKulW’|0)|v) = (OKulU"-SWAP- U|0)|v) = (Z \/Pvfulv'>lu>) SWAP(Z \/Pufvlu’>|V>J

v'eV ueV

3/24

Understanding Szegedy’s quantum walk operator
For simplicity let us assume P,, = P,,, i.e., the total weight of vertices is constant.

A block-encoding of the Markov chain: ((0|® W'(|0)® I) = P
Proof:

:
(OKulW’|0)|v) = (OKulU"-SWAP- U|0)|v) = (Z \/Pvfulv'>lu>) SWAP(Z \/Pufvlu’>|V>J

v'eV ueV

Multiple steps of the quantum walk: (0| ® W*(|0) ® I) = Tx(P)
[Tk(x) = cos(k arccos(x)) Chebyshev polynomials: Ty 1(X) = 2xTk(x) — Tk-1(x)]

3/24

Understanding Szegedy’s quantum walk operator
For simplicity let us assume P,, = P,,, i.e., the total weight of vertices is constant.

A block-encoding of the Markov chain: ((0|® W'(|0)® I) = P
Proof:

:
(OKulW’|0)|v) = (OKulU"-SWAP- U|0)|v) = (Z \/Pvfulv'>lu>) SWAP(Z \/Pufvlu'>lv>]

v'eV ueV

Multiple steps of the quantum walk: (0| ® W*(|0) ® I) = Tx(P)
[Tk(x) = cos(k arccos(x)) Chebyshev polynomials: Ty 1(X) = 2xTk(x) — Tk-1(x)]
Proof: Proceed by induction, observe To(P) = I/, T1(P) = PV

3/24

Understanding Szegedy’s quantum walk operator
For simplicity let us assume P,, = P,,, i.e., the total weight of vertices is constant.

A block-encoding of the Markov chain: ((0|® W'(|0)® I) = P
Proof:

:
(OKulW’|0)|v) = (OKulU"-SWAP- U|0)|v) = (Z \/Pv/ulv'>lu>) SWAP(Z \/Pufvlu'>lv>]

v'eV ueV

Multiple steps of the quantum walk: (0| ® W*(|0) ® I) = Tx(P)
[Tk(x) = cos(k arccos(x)) Chebyshev polynomials: Ty 1(x) = 2xTi(x) — Tx-1(x)]
Proof: Proceed by induction, observe To(P) = IV, T1(P) = PV
(Ol NWET(10y @ 1) = (Ol @ HW'((20X0l & /) = NW*(10) & /) =
= (0@)W'(20) (0| @ W (10) @ 1) - (O] ® YW*"(|0) ® I)

2P Tk(P) Tk-1(P)

Understanding Szegedy’s quantum walk operator
For simplicity let us assume P,, = P,,, i.e., the total weight of vertices is constant.

A block-encoding of the Markov chain: ((0|® W'(|0)® I) = P
Proof:

:
(OKulW’|0)|v) = (OKulU"-SWAP- U|0)|v) = (Z \/Pv/ulv'>lu>) SWAP(Z \/Pufvlu'>lv>]

v'eV ueV

Multiple steps of the quantum walk: (0| ® W*(|0) ® I) = Tx(P)
[Tk(x) = cos(k arccos(x)) Chebyshev polynomials: Ty 1(x) = 2xTi(x) — Tx-1(x)]
Proof: Proceed by induction, observe To(P) = IV, T1(P) = PV
(Ol NWET(10y @ 1) = (Ol @ HW'((20X0l & /) = NW*(10) & /) =
= (0@)W'(20) (0| @ W (10) @ /) - (<Ol ® YW*'(|0) ® 1)

2P Tk(P) Tk-1(P)

3/24

Are we happy with Chebyshev polynomials?
Linear combination of (non-)unitary mat. [Childs & Wiebe *12, Berry et al. ’15]
Suppose that V = ¥, [kXk|® U, and Q : |0) — Y.; \/qili) for g; € [0, 1], then

4/24

Are we happy with Chebyshev polynomials?
Linear combination of (non-)unitary mat. [Childs & Wiebe *12, Berry et al. ’15]
Suppose that V = ¥, [kXk|® U, and Q : |0) — Y.; \/qili) for g; € [0, 1], then

((0|Q'®N)V(Ql0)®I) =

R e O
O —af aim
: | |
e O
4¢-|| U|—| U? |>— U2’ _|—I
e g -

:ZQkUk
P

4/24

Are we happy with Chebyshev polynomials?
Linear combination of (non-)unitary mat. [Childs & Wiebe *12, Berry et al. ’15]
Suppose that V = ¥, [kXk|® U, and Q : |0) — Y.; \/qili) for g; € [0, 1], then

0) o TEm==a -0
0) 1 q : : Q' —@
((o1Q'®N)V(QIo)®I) = 3 I |
0 1 O
— uHe e h——
L -~ —-—_—_=—== dl

In particular the top-left corner of 3, gk W* is 3; qi Tic(P).

:ZQkUk
P

4/24

Are we happy with Chebyshev polynomials?
Linear combination of (non-)unitary mat. [Childs & Wiebe *12, Berry et al. ’15]
Suppose that V = ¥, [kXk|® U, and Q : |0) — Y.; \/qili) for g; € [0, 1], then

|0) - :‘ _____ ._..____‘: _@
0 qf — ot 19
0N V(Qo)Rl) =1 ' ' =) g U
()V() oy I : : o Zk] k
4'-|| U|—| U2 |>— UZ”’1 _|—I
L - - _ _ ——= _

In particular the top-left corner of ¥, gk WX is 3; gk Tk (P).
Corollary: Quantum fast-forwarding (Apers & Sarlette 2018)
We can implement a unitary V such that

((0|@ NV(0)® I) = P!
with using only O(tlog(1 /s)) guantum walk steps.

4/24

Are we happy with Chebyshev polynomials?
Linear combination of (non-)unitary mat. [Childs & Wiebe *12, Berry et al. ’15]
Suppose that V = ¥, [kXk|® U, and Q : |0) — Y.; \/qili) for g; € [0, 1], then

|0) - :‘ _____ ._..____‘: _@
0 qf — ot 19
0N V(Qo)Rl) =1 ' ' =) g U
()V() oy I : : o Zk] k
4'-|| U|—| U2 |>— UZ”’1 _|—I
L - - _ _ ——= _

In particular the top-left corner of ¥, gk WX is 3; gk Tk (P).
Corollary: Quantum fast-forwarding (Apers & Sarlette 2018)
We can implement a unitary V such that
(0l hV(0ye) ~ P!
with using only O(/1 log(1 /s)) quantum walk steps. (Proof: x! ~ Zz;{’) Tk(x))

4/24

Szegedy quantum walk based search
Suppose we have some unknown marked vertices M c V.

Quadratically faster hitting

Hitting time: expected time to hit a marked vertex starting from the stationary distr.
Starting from the quantum state }’,.,, +/7,|v) we can

» detect the presence of marked vertices (M # 0) in time O(\/HT) (Szegedy 2004)
» find a marked vertex in time O(%) (Magniez, Nayak, Roland, Santha 2006)
» find a marked vertex in time 5(\/HT) (Ambainis, G, Jeffery, Kokainis 2019)

5/24

Szegedy quantum walk based search
Suppose we have some unknown marked vertices M c V.
Quadratically faster hitting

Hitting time: expected time to hit a marked vertex starting from the stationary distr.
Starting from the quantum state }’,.,, +/7,|v) we can

» detect the presence of marked vertices (M # 0) in time O(\/HT) (Szegedy 2004)
» find a marked vertex in time O(ﬁ) (Magniez, Nayak, Roland, Santha 2006)
» find a marked vertex in time 5(\/HT) (Ambainis, G, Jeffery, Kokainis 2019)

Starting from arbitrary distributions

Starting from distribution o~ on some vertices we can
> detect marked vertices in square-root commute time O(CU,M) (Belovs 2013)

» find a marked vertex in time 5(\/C(,,M) (Piddock; Apers, G, Jeffery 2019)

5/24

Walks on the Johnson graph (Santha arXiv:0808.0059)
Vertices: {S c N: |S| = K}; Edges: {(S,S’): |SAS’| = 2}

6/24

Walks on the Johnson graph (Santha arXiv:0808.0059)
Vertices: {S c N: |S| = K}; Edges: {(S,S’): |SAS’| = 2}
Element Distinctness

> Black box: Computes f on inputs corresponding to elements of [n]

> Question: Are there any i # j € [n] x [n] such that (i) = f(j)?

> Query complexity: O(n?’®) (Ambainis 2003) Q(n*®) (Aaronson & Shi 2001)

6/24

Walks on the Johnson graph (Santha arXiv:0808.0059)
Vertices: {S c N: |S| = K}; Edges: {(S,S’): |SAS’| = 2}
Element Distinctness

> Black box: Computes f on inputs corresponding to elements of [n]

> Question: Are there any i # j € [n] x [n] such that f(i) = f(j)?

> Query complexity: O(n?’®) (Ambainis 2003) Q(n*®) (Aaronson & Shi 2001)

Triangle Finding [(2014) non-walk algorithm by Le Gall: O(n**)]
» Black box: For any pair u, v € V x V tells whether there is an edge uv
» Question: Is there any triangle in G?
> Query complexity: O(n'®1%) (Magniez, Santha, Szegedy 2003)

6/24

Walks on the Johnson graph (Santha arXiv:0808.0059)
Vertices: {S c N: |S| = K}; Edges: {(S,S’): |SAS’| = 2}
Element Distinctness

> Black box: Computes f on inputs corresponding to elements of [n]

> Question: Are there any i # j € [n] x [n] such that f(i) = f(j)?

> Query complexity: O(n?’®) (Ambainis 2003) Q(n*®) (Aaronson & Shi 2001)

Triangle Finding [(2014) non-walk algorithm by Le Gall: O(n**)]
» Black box: For any pair u, v € V x V tells whether there is an edge uv
» Question: Is there any triangle in G?
> Query complexity: O(n'®1%) (Magniez, Santha, Szegedy 2003)

Matrix Product Verification
» Black box: Tells any entry of the n x n matrices A, B or C.
» Question: Does AB = C hold?
> Query complexity: O(n®?) (Buhrman, Spalek 2004)

6/24

Block-encodings and

Quantum Singular Value Transformation

Block-encoding

A way to represent large matrices on a quantum computer efficiently

U:['f\ :] = A=(0PeU(0y)

7/24

Block-encoding

A way to represent large matrices on a quantum computer efficiently

U:['f\ :] = A=(0PeU(0y)

One can efficiently construct block-encodings of

7/24

Block-encoding

A way to represent large matrices on a quantum computer efficiently

U:['f\ :] = A=(0PeU(0y)

One can efficiently construct block-encodings of

» an efficiently implementable unitary U,

7/24

Block-encoding
A way to represent large matrices on a quantum computer efficiently
A . a b
U:[] = A=(0PeU(0y)

One can efficiently construct block-encodings of

» an efficiently implementable unitary U,
> a sparse matrix with efficiently computable elements,

7/24

Block-encoding

A way to represent large matrices on a quantum computer efficiently

U:[f‘ :] = A=(0PeU(0y)

One can efficiently construct block-encodings of

» an efficiently implementable unitary U,
> a sparse matrix with efficiently computable elements,
> a matrix stored in a clever data-structure in a QRAM,

7/24

Block-encoding

A way to represent large matrices on a quantum computer efficiently

u:[/.‘ :] = A=(0PeU(0y)

One can efficiently construct block-encodings of

» an efficiently implementable unitary U,

> a sparse matrix with efficiently computable elements,

> a matrix stored in a clever data-structure in a QRAM,

> a density operator p given a unitary preparing its purification.

7/24

Block-encoding

A way to represent large matrices on a quantum computer efficiently

u:[/.‘ :] = A=(0PeU(0y)

One can efficiently construct block-encodings of

>

>
>
>
>

an efficiently implementable unitary U,

a sparse matrix with efficiently computable elements,

a matrix stored in a clever data-structure in a QRAM,

a density operator p given a unitary preparing its purification.

a POVM operator M given we can sample from the rand.var.: Tr(oM),

7/24

Block-encoding

A way to represent large matrices on a quantum computer efficiently

U= [A] = A=(0PeU(0y)
One can efficiently construct block-encodings of

» an efficiently implementable unitary U,

> a sparse matrix with efficiently computable elements,

> a matrix stored in a clever data-structure in a QRAM,

> a density operator p given a unitary preparing its purification.

» a POVM operator M given we can sample from the rand.var.: Tr(pM),

Implementing arithmetic operations on block-encoded matrices

» Given block-encodings A; we can implement convex combinations.
> Given block-encodings A, B we can implement block-encoding of AB.

7/24

Example: Block-encoding sparse matrices

Suppose that A is s-sparse and |A;| < 1 for all i, j indices.

8/24

Example: Block-encoding sparse matrices

Suppose that A is s-sparse and |A;| < 1 for all /, j indices. Given "sparse-access “ we
can efficiently implement unitaries preparing "rows*

8/24

Example: Block-encoding sparse matrices

Suppose that A is s-sparse and |A;| < 1 for all /, j indices. Given "sparse-access “ we
can efficiently implement unitaries preparing "rows*

R: 10)I0)i) —

8/24

Example: Block-encoding sparse matrices

Suppose that A is s-sparse and |A;| < 1 for all /, j indices. Given "sparse-access “ we
can efficiently implement unitaries preparing "rows*

R: 10)I0)i) —

and "columns*

A/
C: 100} — IO>Z %I@U) +[2)lj)lgarbage),
&

8/24

Example: Block-encoding sparse matrices

Suppose that A is s-sparse and |A;| < 1 for all /, j indices. Given "sparse-access “

we
can efficiently implement unitaries preparing "rows*

R: 10)I0)i) —

and "columns*

A/
C: 100} — IO>Z %I@U) +[2)lj)lgarbage),
&

They form a block-encoding of A/s:

(OOKiIR" C0)I0)j)

8/24

Example: Block-encoding sparse matrices

Suppose that A is s-sparse and |A;| < 1 for all /, j indices. Given "sparse-access “ we
can efficiently implement unitaries preparing "rows*

R: 10)I0)i) — |0>

and "columns*

A/
C: 100} — IO>Z %I@U) +[2)lj)lgarbage),
&

They form a block-encoding of A/s:

(OKOKIIR"ClO)0)j) = (RI0)0)i))-(CI0)0)1j))

8/24

Example: Block-encoding sparse matrices

Suppose that A is s-sparse and |A;| < 1 for all /, j indices. Given "sparse-access “

we
can efficiently implement unitaries preparing "rows*

R: 10)I0)i) —

and "columns*

A/
C: 100} — IO>Z %I@U) +[2)lj)lgarbage),
&

They form a block-encoding of A/s:

AI Ay g
(OKOKIIR" CI0)0)y = (RI0)0)IiY)"(CI0)O)jY) = [Z - |:>|k>)[z f’|€>u>)
k t

S

%l

8/24

Example: Block-encoding sparse matrices

Suppose that A is s-sparse and |A;| < 1 for all /, j indices. Given "sparse-access “ we
can efficiently implement unitaries preparing "rows*

R: 10)I0)i) — |0>

and "columns*

A/
C: 100} — IO>Z %I@U) +[2)lj)lgarbage),
&

They form a block-encoding of A/s:

Ai) Aj Aii
(OKOKIIR" CIOY0Mj) = (RI0)0))'-(CI0)O)j)) = [Z . |:>|k>)[z f’|€>u>)=;’
k l

S

%l

8/24

Quantum Singular Value Transformation (QSVT)

Main theorem about QSVT (G, Su, Low, Wiebe 2018)
Let P: [-1,1] — [-1, 1] be a degree-d odd polynomial map.

9/24

Quantum Singular Value Transformation (QSVT)

Main theorem about QSVT (G, Su, Low, Wiebe 2018)
Let P: [-1,1] — [-1, 1] be a degree-d odd polynomial map. Suppose that

M B

9/24

Quantum Singular Value Transformation (QSVT)

Main theorem about QSVT (G, Su, Low, Wiebe 2018)
Let P: [-1,1] — [-1, 1] be a degree-d odd polynomial map. Suppose that

U— [A .]: [2isilwiXvil .]: Us — [i Plsi)lwixvil .

9/24

Quantum Singular Value Transformation (QSVT)

Main theorem about QSVT (G, Su, Low, Wiebe 2018)
Let P: [-1,1] — [-1, 1] be a degree-d odd polynomial map. Suppose that

U— [A .]: [2isilwiXvil .]: Us — [i Pl IwiXvil

where ®(P) € RY is efficiently computable and Us is the following circuit:

9/24

Quantum Singular Value Transformation (QSVT)

Main theorem about QSVT (G, Su, Low, Wiebe 2018)
Let P: [-1,1] — [-1, 1] be a degree-d odd polynomial map. Suppose that

U— [A .]: [2isilwiXvil .]: Us — [i Pl IwiXvil

where ®(P) € RY is efficiently computable and Us is the following circuit:

Alternating phase modulation sequence Uy :=

9/24

Quantum Singular Value Transformation (QSVT)

Main theorem about QSVT (G, Su, Low, Wiebe 2018)
Let P: [-1,1] — [-1, 1] be a degree-d odd polynomial map. Suppose that

U— [A .]: [2isilwiXvil .]: Us — [i Pl IwiXvil

where ®(P) € RY is efficiently computable and Us is the following circuit:

Alternating phase modulation sequence Uy =

Simmilar result holds for even polynomials. 9/24

Singular vector transformation and projection
Fixed-point amplitude ampl. (Yoder, Low, Chuang 2014)

Amplitude amplification problem: Given U such that

U|6> — ‘/5|0>|l//good> + V1 - p|1>|l//bad>, prepare |l//good>-

10/24

Singular vector transformation and projection
Fixed-point amplitude ampl. (Yoder, Low, Chuang 2014)

Amplitude amplification problem: Given U such that

U|6> — \/f_)|0>|l//good> + V1 - p|1>|l/’bad>, prepare |l//good>-
Note that (|0X0| ® I)U(I0X0]) = +/pl0, ¥/g00aXOl; We can apply QSVT.

10/24

Singular vector transformation and projection
Fixed-point amplitude ampl. (Yoder, Low, Chuang 2014)

Amplitude amplification problem: Given U such that

U|6> — \/ao)ll//good) + V1 - p|1>|wbad>, prepare |l//good>-
Note that (|0X0| ® I)U(I0X0]) = +/pl0, ¥/g00aXOl; We can apply QSVT.

Singular vector transformation [Oblivious ampl. ampl. (Berry et al. 2013)]

Given a unitary U, such that

A = ((01% &) U(I0)* ® Z SilgiXwi

is a singular value decomposition.

10/24

Singular vector transformation and projection
Fixed-point amplitude ampl. (Yoder, Low, Chuang 2014)

Amplitude amplification problem: Given U such that

U|6> — \/ao)lwgood) + V1 - p|1>|wbad>, prepare W/good)-
Note that (|0X0| ® I)U(I0X0]) = +/pl0, ¥/g00aXOl; We can apply QSVT.

Singular vector transformation [Oblivious ampl. ampl. (Berry et al. 2013)]

Given a unitary U, such that

A = ((01% &) U(I0)* ® Z SilgiXwi

is a singular value decomposition. Transform one copy of a quantum state

k k
W)= D ailgd to Ig)= > ailgy.

10/24

Singular vector transformation and projection
Fixed-point amplitude ampl. (Yoder, Low, Chuang 2014)

Amplitude amplification problem: Given U such that

U|6> — \/5|0>|1/’good> + V1 - p|1>|wbad>, prepare W’good)-
Note that (|0X0| ® I)U(I0X0]) = +/pl0, ¥/g00aXOl; We can apply QSVT.

Singular vector transformation [Oblivious ampl. ampl. (Berry et al. 2013)]

Given a unitary U, such that

A = ((01% &) U(I0)* ® Z SilgiXwi

is a singular value decomposition. Transform one copy of a quantum state

k k
v = Z aly)y to gy = Z alg)).

If ¢; > 6 for all 0 # a;, we can g-apx. using QSVT with compl. O(Iog())

10/24

Direct implementation of the pseudoinverse (HHL)

Singular value decomposition and pseudoinverse

Suppose A = Y ¢;|lw;Xv|| is a singular value decomposition.
Then the pseudoinverse of Ais AT = Y, 1/¢/|viXwj

11/24

Direct implementation of the pseudoinverse (HHL)

Singular value decomposition and pseudoinverse

Suppose A = Y ¢;|lw;Xv|| is a singular value decomposition.
Then the pseudoinverse of A is A* = 3. 1/¢,lviXwi| (note AT = 3, ¢/|viXwi|).

11/24

Direct implementation of the pseudoinverse (HHL)

Singular value decomposition and pseudoinverse

Suppose A = Y ¢;|lw;Xv|| is a singular value decomposition.
Then the pseudoinverse of A is A* = 3. 1/¢,lviXwi| (note AT = 3, ¢/|viXwi|).

Implementing the pseudoinverse using QSVT

- 05 05 1

11/24

Direct implementation of the pseudoinverse (HHL)

Singular value decomposition and pseudoinverse

Suppose A = Y ¢;|lw;Xv|| is a singular value decomposition.
Then the pseudoinverse of A is A* = 3. 1/¢,lviXwi| (note AT = 3, ¢/|viXwi|).

Implementing the pseudoinverse using QSVT

- 05 05 1

11/24

Direct implementation of the pseudoinverse (HHL)

Singular value decomposition and pseudoinverse

Suppose A = Y ¢;|lw;Xv|| is a singular value decomposition.
Then the pseudoinverse of A is A* = 3. 1/¢,lviXwi| (note AT = 3, ¢/|viXwi|).

Implementing the pseudoinverse using QSVT

11/24

Direct implementation of the pseudoinverse (HHL)
Singular value decomposition and pseudoinverse

Suppose A = Y ¢;|lw;Xv|| is a singular value decomposition.
Then the pseudoinverse of A is A* = 3. 1/¢,lviXwi| (note AT = 3, ¢/|viXwi|).

Implementing the pseudoinverse using QSVT

Suppose that U is an a-qubit block-encoding of A, and ||A*| < «.

11/24

Direct implementation of the pseudoinverse (HHL)

Singular value decomposition and pseudoinverse

Suppose A = Y ¢;|lw;Xv|| is a singular value decomposition.

Then the pseudoinverse of A is A* = 3. 1/¢,lviXwi| (note AT = 3, ¢/|viXwi|).
Implementing the pseudoinverse using QSVT

Suppose that U is an a-qubit block-encoding of A, and ||A*| < «.
By QSVT we can implement an g-approximate block-encoding of

1
—A+,
2K

using O(K Iog(%)) queries to U. Finally amplify the result (O(«) times).

11/24

Direct implementation of the pseudoinverse (HHL)

Singular value decomposition and pseudoinverse

Suppose A = Y ¢;|lw;Xv|| is a singular value decomposition.
Then the pseudoinverse of A is A* = 3. 1/¢,lviXwi| (note AT = 3, ¢/|viXwi|).

Implementing the pseudoinverse using QSVT

Suppose that U is an a-qubit block-encoding of A, and ||A*| < «.
By QSVT we can implement an g-approximate block-encoding of

1
—A+,
2K

using O(K Iog(%)) queries to U. Finally amplify the result (O(«) times).

» Complexity can be improved to O(x) using variable-time amplitude-amplification.
» Other variants are possible, such as weighted and generalized least-squares.

11/24

The special case of Hermitian matrices

Singular value transf. = eigenvalue transf. [Low & Chuang (2017)]

Let P: [-1,1] — [-1, 1] be a degree-d even/odd polynomial map.

12/24

The special case of Hermitian matrices

Singular value transf. = eigenvalue transf. [Low & Chuang (2017)]

Let P: [-1,1] — [-1, 1] be a degree-d even/odd polynomial map.
If H is Hermitian, then P(H) coincides with the singular value transform.

12/24

The special case of Hermitian matrices

Singular value transf. = eigenvalue transf. [Low & Chuang (2017)]

Let P: [-1,1] — [-1, 1] be a degree-d even/odd polynomial map.
If H is Hermitian, then P(H) coincides with the singular value transform.
(Direct corollary: Fast-Forwarding Markov Chains.)

12/24

The special case of Hermitian matrices

Singular value transf. = eigenvalue transf. [Low & Chuang (2017)]
Let P: [-1,1] — [-1, 1] be a degree-d even/odd polynomial map.

If H is Hermitian, then P(H) coincides with the singular value transform.
(Direct corollary: Fast-Forwarding Markov Chains.)

Removing parity constraint for Hermitian matrices

Let P: [-1,1] — —%, %] be a degree-d polynomial map. Suppose that U is an a-qubit
block-encoding of a Hermitian matrix H.

12/24

The special case of Hermitian matrices

Singular value transf. = eigenvalue transf. [Low & Chuang (2017)]

Let P: [-1,1] — [-1, 1] be a degree-d even/odd polynomial map.
If H is Hermitian, then P(H) coincides with the singular value transform.
(Direct corollary: Fast-Forwarding Markov Chains.)

Removing parity constraint for Hermitian matrices

Let P: [-1,1] — —%, %] be a degree-d polynomial map. Suppose that U is an a-qubit
block-encoding of a Hermitian matrix H. We can implement

o=

using d times U and U', 1 controlled U, and O(ad) extra two-qubit gates.

12/24

Optimal block-Hamiltonian simulation

Suppose that H is given as an a-qubit block-encoding, i.e., U = [i]

13/24

Optimal block-Hamiltonian simulation
Suppose that H is given as an a-qubit block-encoding, i.e., U = [i]

Complexity of block-Hamiltonians simulation [Low & Chuang (2016)]

Given t, e > 0, implement a unitary U’, which is & close to ™. Can be achieved with
query complexity

O(t + log(1/¢)).

Gate complexity is O(a) times the above.

13/24

Optimal block-Hamiltonian simulation
Suppose that H is given as an a-qubit block-encoding, i.e., U = [i]

Complexity of block-Hamiltonians simulation [Low & Chuang (2016)]

Given t, e > 0, implement a unitary U’, which is & close to ™. Can be achieved with
query complexity

O(t + log(1/¢)).
Gate complexity is O(a) times the above.

Proof sketch

Approximate to e-precision sin(tx) and cos(tx) with polynomials of degree as above.
Then use QSVT and combine even/odd parts.

13/24

Gibbs sampling

Suppose that H is given as U = [A l The goal is to prepare p o« e 1.

14/24

Gibbs sampling
Suppose that H is given as U = [A l The goal is to prepare p o« e 1.

The basic algorithm (Inspired by Poulin & Wocjan 2009)

» Start with a maximally mixed state I/N, and apply the map e2H,

14/24

Gibbs sampling
Suppose that H is given as U = [A l The goal is to prepare p o« e 1.

The basic algorithm (Inspired by Poulin & Wocjan 2009)

> Start with a maximally mixed state I/N, and apply the map e 2H,
» The new state is proportional to e"”()e‘g” ePH

14/24

Gibbs sampling
Suppose that H is given as U = [A l The goal is to prepare p o« e 1.

The basic algorithm (Inspired by Poulin & Wocjan 2009)

> Start with a maximally mixed state I/N, and apply the map e 2H,
» The new state is proportional to e"”()e‘g” ePH
> Finally, apply amplitude amplification. Probability of success?

14/24

Gibbs sampling
Suppose that H is given as U = [A] The goal is to prepare p o« e 1.

The basic algorithm (Inspired by Poulin & Wocjan 2009)

> Start with a maximally mixed state I/N, and apply the map e 2H,
» The new state is proportional to e"”()e‘g” ePH
> Finally, apply amplitude amplification. Probability of success?

Final algorithm

» Use minimum finding (Dtrr & Hayer 1996; van Apeldoorn, G, Gribling, de Wolf
2017) to find an approximation of the ground state energy Hp.

14/24

Gibbs sampling
Suppose that H is given as U = [A] The goal is to prepare p o« e 1.

The basic algorithm (Inspired by Poulin & Wocjan 2009)
» Start with a maximally mixed state I/N, and apply the map e2H,
» The new state is proportional to e‘g”(ﬁ)e‘g’” = eAH,
> Finally, apply amplitude amplification. Probability of success?

Final algorithm

» Use minimum finding (Dtrr & Hayer 1996; van Apeldoorn, G, Gribling, de Wolf
2017) to find an approximation of the ground state energy Hp.

» Use the previous procedure but with the map e~ (H-Ho)
> The final complexity is O(,B \/N)

14/24

Summarizing the various speed-ups by QSVT

Speed-up Source of speed-up Examples of algorithms
) Dimensionality of the Hilbert space Hamiltonian simulation
Exponential
Precise polynomial approximations Improved HHL algorithm
Singular value = square root of probability =~ Grover search
Quadratic | Singular values are easier to distinguish Amplitude estimation

Close-to-1 singular values are more flexible

Quantum walks

15/24

Summarizing the various speed-ups by QSVT

Speed-up Source of speed-up Examples of algorithms
. Dimensionality of the Hilbert space Hamiltonian simulation
Exponential
Precise polynomial approximations Improved HHL algorithm

Singular value = square root of probability ~ Grover search

Quadratic | Singular values are easier to distinguish Amplitude estimation

Close-to-1 singular values are more flexible Quantum walks

Some other applications
» Fast QMA amplification, fast quantum OR lemma
» Quantum Machine learning: PCA, principal component regression
> “Non-commutative measurements” (for ground state preparation)
» Fractional queries

v

15/24

Quantum algorithms for optimization

Optimization
In general we want to find the best solution minyex f(x)
» Unstructured: can be solved with O(|X|) queries (Durr & Hoyer 1996)

16/24

Optimization
In general we want to find the best solution minyex f(x)
» Unstructured: can be solved with O(|X|) queries (Durr & Hoyer 1996)

Discrete structures:

> Finding the shortest path in a graph_
O(n?) (Dijkstra 1956); quantum O(n®2) (Diirr, Heiligman, Hoyer, Mhalla 2004)

» Matching and flow problems:
Polynomial speed-ups, typically based on Grover search

16/24

Optimization
In general we want to find the best solution minyex f(x)
» Unstructured: can be solved with O(|X|) queries (Durr & Hoyer 1996)

Discrete structures:

> Finding the shortest path in a graph_

O(n?) (Dijkstra 1956); quantum O(n®2) (Dilrr, Heiligman, Hayer, Mhalla 2004)
» Matching and flow problems:

Polynomial speed-ups, typically based on Grover search

» NP-hard problems:
Quadratic speed-ups for Schéning’s algorithm for 3-SAT (Ampl. ampl.)
Quadratic speed-ups for backtracking (Montanaro 2015)
Polynomial speed-ups for dynamical programming, e.g., TSP 2" — 1.73"
(Ambainis, Balodis, Iraids, Kokainis, Prusis, Vihrovs 2018)

16/24

Continuous optimization

Convex optimization
» Linear programs, semidefinite programs
SDPs: O((Vn + \/5)575) (Brand&o et al., van Apeldoorn et al. 2016-18)
Zero-sum games: 5((\Vn+ x/ﬁ)/e3), 5(5/335) (Apeldoorn & G 2019)
» Quantum interior point method (Kerenidis & Prakash 2018)

» Polynomial speed-up for estimating volumes of convex bodies
(Chakrabarti, Childs, Hung, Li, Wang, Wu 2019)

17/24

Continuous optimization

Convex optimization

» Linear programs, semidefinite programs
SDPs: 5((vVn + \/5)375) (Brand&o et al., van Apeldoorn et al. 2016-18)
Zero-sum games: 5((vn + \/m)/s3), 5(5/335) (Apeldoorn & G 2019)

» Quantum interior point method (Kerenidis & Prakash 2018)

» Polynomial speed-up for estimating volumes of convex bodies
(Chakrabarti, Childs, Hung, Li, Wang, Wu 2019)

Application of the SDP solver: Shadow tomography (Aaronson 2017)

Given n-dimensional quantum state p, estimate the probability of acceptance of each
the two-outcome measurements Eq, ..., E,, to within additive error &.
>

5(|og4(n;)4 log(n)

) copies suffice

17/24

Zero-sum games

Pay-off matrix of Alice is A € R™". Expected pay-off for strategies x, y: x” Ay

18/24

Zero-sum games

Pay-off matrix of Alice is A € R™". Expected pay-off for strategies x, y: x” Ay
Algorithm for approximate Nash-equilibrium (Grigoriadis & Khachiyan 1995)
Start with x(® < 0 e R" and y(© « 0 € R™

18/24

Zero-sum games
Pay-off matrix of Alice is A € R™". Expected pay-off for strategies x, y: x” Ay
Algorithm for approximate Nash-equilibrium (Grigoriadis & Khachiyan 1995)

Start with x® «— 0 e R" and y(® « 0 € R™
for t=1.2,....0(%)do

o PO A gnd Q1) A"

e p — PO/|[PO]. and g — Q®/|[QW),
e Sample a ~ p!) and b ~ g(¥)

° y(t+1) — y(t) e %ea and X(t+1) — X(t) L %eb

18/24

Zero-sum games
Pay-off matrix of Alice is A € R™". Expected pay-off for strategies x, y: x” Ay
Algorithm for approximate Nash-equilibrium (Grigoriadis & Khachiyan 1995)
Start with x® «— 0 e R" and y(® « 0 € R™
for t=1.2,....0(%)do
o PO A gnd Q1) A"
p® ;:>(t)/||;:>(t)||1 and gt) « Q(t)/”(;;(t)”1
Sample a ~ p and b ~ gV
° y(t+1) — y(t) e %ea and X(t+1) — X(t) L %eb

The main taks is Gibbs sampling from a linear-combination of vectors.

18/24

Zero-sum games
Pay-off matrix of Alice is A € R™". Expected pay-off for strategies x, y: x” Ay
Algorithm for approximate Nash-equilibrium (Grigoriadis & Khachiyan 1995)
Start with x® «— 0 e R" and y(® « 0 € R™
for t=1.2,....0(%)do
o PO A gnd Q1) A"
p® /:a(t)/”p(t)”1 and gt) « Q(t)/”(;;(t)”1
Sample a ~ p and b ~ gV
° y(t+1) — y(t) e %ea and X(t+1) — X(t) L %eb

The main taks is Gibbs sampling from a linear-combination of vectors.
For SDPs: we need to Gibbs sample from a linear-combination of matrices.

18/24

Statistics, estimation and stochastic algorithms

» Quadratic speed-up for Monte-Carlo methods O(%) (Montanaro 2015)
Generalizes approximate counting (Brassard, Hoyer, Mosca, Tapp 1998)

19/24

Statistics, estimation and stochastic algorithms

» Quadratic speed-up for Monte-Carlo methods O(%) (Montanaro 2015)
Generalizes approximate counting (Brassard, Hgyer, Mosca, Tapp 1998)

> Testing equality of a distribution on [n] (with query complexity)
To an unknown distribution O(n‘/z) (Bravyi, Hassidim, Harrow 2009; G, Li 2019)
To a known distribution 5(n‘/3) (Chakraborty, Fischer, Matsliah, de Wolf 2010)

> Estimating the (Shannon / von Neumann) entropy of a distribution on [n]
classical distribution: query complexity O(n”z) (Li & Wu 2017)

density operator: query complexity O(n) (G & Li 2019)

19/24

Statistics, estimation and stochastic algorithms

» Quadratic speed-up for Monte-Carlo methods O(%) (Montanaro 2015)
Generalizes approximate counting (Brassard, Hgyer, Mosca, Tapp 1998)

> Testing equality of a distribution on [n] (with query complexity)
To an unknown distribution O(n‘/z) (Bravyi, Hassidim, Harrow 2009; G, Li 2019)
To a known distribution 5(n‘/3) (Chakraborty, Fischer, Matsliah, de Wolf 2010)

> Estimating the (Shannon / von Neumann) entropy of a distribution on [n]
classical distribution: query complexity O(n”z) (Li & Wu 2017)

density operator: query complexity O(n) (G & Li 2019)

19/24

Helen

Mirren [

Sylvester

Stallone NS

George | 488

Clooney

Titanic

Warrior

Image source: https://towardsdatascience.com

Movies: a linear combination of a small number of features
User taste: a linear weighing of the features

1.0

@ Titantic

- ‘L. . 0.8
A S—

@ Good Will Hunting ‘ - l
| e

Feminine | o emiame e NASCUlINE

-1.5 -1.0 -0.! . . 1.0 1.5

® Mean Girls @
- o i
i & ‘ e ® Warrior

Image source: https://towardsdatascience.com

Major difficulty: how to input the data?

Data conversion: classical to quantum

» Given b € R" prepare

m bi
|b>—;m

22/24

Major difficulty: how to input the data?

Data conversion: classical to quantum

» Given b € R™ prepare
m
bi
by =) —
; bl
» Given A € R™" construct quantum circuit (block-encoding)

U:(A/lIAlF)

How to preserve the exponential advantage?

22/24

Solution: assume QRAM (readable in superposition)

23/24

Solution: assume QRAM (readable in superposition)

Data structure

23/24

Solution: assume QRAM (readable in superposition)

Data structure

Firs prepare: «/Z,Lo |bi|?|0) + ,/ 3 b2y

23/24

Solution: assume QRAM (readable in superposition)

Data structure

Firs prepare: «/Z,Lo |bi|?|0) + ,/ ° b2
\ETS \/ZLO |bi210) + |b||00) + |b4]01) and

23/24

Solution: assume QRAM (readable in superposition)

Data structure

Firs prepare: ,/22:0 |bi|?|0) + ,/ ° b2
\ETS \/ZLO |bi2|0) — |bol|00) + |b4]|01) and \/ 2 L |bi2110) > |bal[11) + |bs|01)

23/24

Solution: assume QRAM (readable in superposition)

Data structure

Firs prepare: «/Z,Lo |bi|?|0) + ,/ ° b2
\ETS \/ZLO |bi2|0) — |bol|00) + |b4]|01) and \/ 2 L |bi2110) > |bal[11) + |bs|01)

Add phases to get by|00) + by|01) + bo[10) + bs|11)

23/24

On-line updates to the data structure

Data structure

24/24

On-line updates to the data structure

Data structure

Cost is about the depth: log(dimension)

More about this in Ewin Tang’s afternoon talk

24/24

