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Continuous-time quantum / random walks

Laplacian of a weighted graph

Let G = (V, E) be a finite simple graph, with non-negative edge-weights w: E — R,.
The Laplacian is defined as
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Discrete-time quantum / random walks
Discrete-time Markov-chain on a weighted graph
Transition probability in one step (stochastic matrix)

Wyy

P,, = Pr(step to v| being at u) = Z—W
vel YWWu
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Discrete-time quantum / random walks

Discrete-time Markov-chain on a weighted graph

Transition probability in one step (stochastic matrix)

VVVU

P,, = Pr(step to v| being at u) = Z—W
velU YWv'u

A unitary implementing the update

U: 0)lu) = > VPuIvlu)

veV

How to erase history? The Szegedy quantum walk operator:

W .= U -SWAP- U
W = U"- SWAP - U((2/0X0|® ) - )

2/24



Understanding Szegedy’s quantum walk operator

For simplicity let us assume P,, = P,,, i.e., the total weight of vertices is constant.
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Are we happy with Chebyshev polynomials?
Linear combination of (non-)unitary mat. [Childs & Wiebe *12, Berry et al. ’15]
Suppose that V = ¥, [kXk|® U, and Q : |0) — Y.; \/qili) for g; € [0, 1], then
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Linear combination of (non-)unitary mat. [Childs & Wiebe *12, Berry et al. ’15]
Suppose that V = ¥, [kXk|® U, and Q : |0) — Y.; \/qili) for g; € [0, 1], then

0) o TEm==a -0
0) 1 q : : Q' —@
((o1Q'®N)V(QIo)®I) = 3 I |
0 1 O
— uHe e h——
L -~ —-—_—_=—== dl

In particular the top-left corner of 3, gk W* is 3; qi Tic(P).
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In particular the top-left corner of ¥, gk WX is 3; gk Tk (P).
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In particular the top-left corner of ¥, gk WX is 3; gk Tk (P).
Corollary: Quantum fast-forwarding (Apers & Sarlette 2018)
We can implement a unitary V such that
(0l hV(0ye ) ~ P!
with using only O( /1 log(1 /s)) quantum walk steps. (Proof: x! ~ Zz;{’) Tk(x))
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Szegedy quantum walk based search
Suppose we have some unknown marked vertices M c V.

Quadratically faster hitting

Hitting time: expected time to hit a marked vertex starting from the stationary distr.
Starting from the quantum state }’,.,, +/7,|v) we can

» detect the presence of marked vertices (M # 0) in time O( \/HT) (Szegedy 2004)
» find a marked vertex in time O(%) (Magniez, Nayak, Roland, Santha 2006)
» find a marked vertex in time 5( \/HT) (Ambainis, G, Jeffery, Kokainis 2019)
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» detect the presence of marked vertices (M # 0) in time O( \/HT) (Szegedy 2004)
» find a marked vertex in time O(ﬁ) (Magniez, Nayak, Roland, Santha 2006)
» find a marked vertex in time 5( \/HT) (Ambainis, G, Jeffery, Kokainis 2019)

Starting from arbitrary distributions

Starting from distribution o~ on some vertices we can
> detect marked vertices in square-root commute time O( CU,M) (Belovs 2013)

» find a marked vertex in time 5( \/C(,,M) (Piddock; Apers, G, Jeffery 2019)
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Walks on the Johnson graph (Santha arXiv:0808.0059)
Vertices: {S c N: |S| = K}; Edges: {(S,S’): |SAS’| = 2}
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> Black box: Computes f on inputs corresponding to elements of [n]
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Triangle Finding [(2014) non-walk algorithm by Le Gall: O(n**)]
» Black box: For any pair u, v € V x V tells whether there is an edge uv
» Question: Is there any triangle in G?
> Query complexity: O(n'®1%) (Magniez, Santha, Szegedy 2003)

Matrix Product Verification
» Black box: Tells any entry of the n x n matrices A, B or C.
» Question: Does AB = C hold?
> Query complexity: O(n®?) (Buhrman, Spalek 2004)
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Block-encodings and

Quantum Singular Value Transformation



Block-encoding

A way to represent large matrices on a quantum computer efficiently

U:['f\ :] = A=(0PeU(0y )
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Block-encoding

A way to represent large matrices on a quantum computer efficiently

U= [ A ] = A=(0PeU(0y )
One can efficiently construct block-encodings of

» an efficiently implementable unitary U,

> a sparse matrix with efficiently computable elements,

> a matrix stored in a clever data-structure in a QRAM,

> a density operator p given a unitary preparing its purification.

» a POVM operator M given we can sample from the rand.var.: Tr(pM),

Implementing arithmetic operations on block-encoded matrices

» Given block-encodings A; we can implement convex combinations.
> Given block-encodings A, B we can implement block-encoding of AB.
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Example: Block-encoding sparse matrices

Suppose that A is s-sparse and |A;| < 1 for all i, j indices.
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Quantum Singular Value Transformation (QSVT)

Main theorem about QSVT (G, Su, Low, Wiebe 2018)
Let P: [-1,1] — [-1, 1] be a degree-d odd polynomial map.
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Main theorem about QSVT (G, Su, Low, Wiebe 2018)
Let P: [-1,1] — [-1, 1] be a degree-d odd polynomial map. Suppose that

U— [ A . ]: [ 2isilwiXvil . ]: Us — [ i Pl IwiXvil

where ®(P) € RY is efficiently computable and Us is the following circuit:

Alternating phase modulation sequence Uy =

Simmilar result holds for even polynomials. 9/24



Singular vector transformation and projection
Fixed-point amplitude ampl. (Yoder, Low, Chuang 2014)

Amplitude amplification problem: Given U such that
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Note that (|0X0| ® I)U(I0X0]) = +/pl0, ¥/g00aXOl; We can apply QSVT.

Singular vector transformation [Oblivious ampl. ampl. (Berry et al. 2013)]

Given a unitary U, such that

A = ((01% & ) U(I0)* ® Z SilgiXwi

is a singular value decomposition. Transform one copy of a quantum state

k k
v = Z aly)y to gy = Z alg)).

If ¢; > 6 for all 0 # a;, we can g-apx. using QSVT with compl. O( Iog( ))
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Direct implementation of the pseudoinverse (HHL)

Singular value decomposition and pseudoinverse

Suppose A = Y ¢;|lw;Xv|| is a singular value decomposition.
Then the pseudoinverse of Ais AT = Y, 1/¢/|viXwj
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Direct implementation of the pseudoinverse (HHL)

Singular value decomposition and pseudoinverse

Suppose A = Y ¢;|lw;Xv|| is a singular value decomposition.
Then the pseudoinverse of A is A* = 3. 1/¢,lviXwi| (note AT = 3, ¢/|viXwi|).

Implementing the pseudoinverse using QSVT

Suppose that U is an a-qubit block-encoding of A, and ||A*| < «.
By QSVT we can implement an g-approximate block-encoding of

1
—A+,
2K

using O(K Iog(%)) queries to U. Finally amplify the result (O(«) times).

» Complexity can be improved to O(x) using variable-time amplitude-amplification.
» Other variants are possible, such as weighted and generalized least-squares.
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The special case of Hermitian matrices

Singular value transf. = eigenvalue transf. [Low & Chuang (2017)]

Let P: [-1,1] — [-1, 1] be a degree-d even/odd polynomial map.
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The special case of Hermitian matrices

Singular value transf. = eigenvalue transf. [Low & Chuang (2017)]

Let P: [-1,1] — [-1, 1] be a degree-d even/odd polynomial map.
If H is Hermitian, then P(H) coincides with the singular value transform.
(Direct corollary: Fast-Forwarding Markov Chains.)

Removing parity constraint for Hermitian matrices

Let P: [-1,1] — —%, %] be a degree-d polynomial map. Suppose that U is an a-qubit
block-encoding of a Hermitian matrix H. We can implement

o=

using d times U and U', 1 controlled U, and O(ad) extra two-qubit gates.
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Optimal block-Hamiltonian simulation

Suppose that H is given as an a-qubit block-encoding, i.e., U = [ i ]
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Complexity of block-Hamiltonians simulation [Low & Chuang (2016)]

Given t, e > 0, implement a unitary U’, which is & close to ™. Can be achieved with
query complexity

O(t + log(1/¢)).

Gate complexity is O(a) times the above.
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Optimal block-Hamiltonian simulation
Suppose that H is given as an a-qubit block-encoding, i.e., U = [ i ]

Complexity of block-Hamiltonians simulation [Low & Chuang (2016)]

Given t, e > 0, implement a unitary U’, which is & close to ™. Can be achieved with
query complexity

O(t + log(1/¢)).
Gate complexity is O(a) times the above.

Proof sketch

Approximate to e-precision sin(tx) and cos(tx) with polynomials of degree as above.
Then use QSVT and combine even/odd parts.
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Gibbs sampling

Suppose that H is given as U = [ A l The goal is to prepare p o« e 1.

14/24



Gibbs sampling
Suppose that H is given as U = [ A l The goal is to prepare p o« e 1.

The basic algorithm (Inspired by Poulin & Wocjan 2009)

» Start with a maximally mixed state I/N, and apply the map e2H,

14/24



Gibbs sampling
Suppose that H is given as U = [ A l The goal is to prepare p o« e 1.

The basic algorithm (Inspired by Poulin & Wocjan 2009)

> Start with a maximally mixed state I/N, and apply the map e 2H,
» The new state is proportional to e"”( )e‘g” ePH

14/24



Gibbs sampling
Suppose that H is given as U = [ A l The goal is to prepare p o« e 1.

The basic algorithm (Inspired by Poulin & Wocjan 2009)

> Start with a maximally mixed state I/N, and apply the map e 2H,
» The new state is proportional to e"”( )e‘g” ePH
> Finally, apply amplitude amplification. Probability of success?

14/24



Gibbs sampling
Suppose that H is given as U = [ A ] The goal is to prepare p o« e 1.

The basic algorithm (Inspired by Poulin & Wocjan 2009)

> Start with a maximally mixed state I/N, and apply the map e 2H,
» The new state is proportional to e"”( )e‘g” ePH
> Finally, apply amplitude amplification. Probability of success?

Final algorithm

» Use minimum finding (Dtrr & Hayer 1996; van Apeldoorn, G, Gribling, de Wolf
2017) to find an approximation of the ground state energy Hp.

14/24



Gibbs sampling
Suppose that H is given as U = [ A ] The goal is to prepare p o« e 1.

The basic algorithm (Inspired by Poulin & Wocjan 2009)
» Start with a maximally mixed state I/N, and apply the map e2H,
» The new state is proportional to e‘g”(ﬁ)e‘g’” = eAH,
> Finally, apply amplitude amplification. Probability of success?

Final algorithm

» Use minimum finding (Dtrr & Hayer 1996; van Apeldoorn, G, Gribling, de Wolf
2017) to find an approximation of the ground state energy Hp.

» Use the previous procedure but with the map e~ (H-Ho)
> The final complexity is O(,B \/N)

14/24



Summarizing the various speed-ups by QSVT

Speed-up Source of speed-up Examples of algorithms
) Dimensionality of the Hilbert space Hamiltonian simulation
Exponential
Precise polynomial approximations Improved HHL algorithm
Singular value = square root of probability =~ Grover search
Quadratic | Singular values are easier to distinguish Amplitude estimation

Close-to-1 singular values are more flexible

Quantum walks
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Summarizing the various speed-ups by QSVT

Speed-up Source of speed-up Examples of algorithms
. Dimensionality of the Hilbert space Hamiltonian simulation
Exponential
Precise polynomial approximations Improved HHL algorithm

Singular value = square root of probability ~ Grover search

Quadratic | Singular values are easier to distinguish Amplitude estimation

Close-to-1 singular values are more flexible Quantum walks

Some other applications
» Fast QMA amplification, fast quantum OR lemma
» Quantum Machine learning: PCA, principal component regression
> “Non-commutative measurements” (for ground state preparation)
» Fractional queries

v
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Quantum algorithms for optimization



Optimization
In general we want to find the best solution minyex f(x)
» Unstructured: can be solved with O( |X|) queries (Durr & Hoyer 1996)
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Optimization
In general we want to find the best solution minyex f(x)
» Unstructured: can be solved with O( |X|) queries (Durr & Hoyer 1996)

Discrete structures:

> Finding the shortest path in a graph_

O(n?) (Dijkstra 1956); quantum O(n®2) (Dilrr, Heiligman, Hayer, Mhalla 2004)
» Matching and flow problems:

Polynomial speed-ups, typically based on Grover search

» NP-hard problems:
Quadratic speed-ups for Schéning’s algorithm for 3-SAT (Ampl. ampl.)
Quadratic speed-ups for backtracking (Montanaro 2015)
Polynomial speed-ups for dynamical programming, e.g., TSP 2" — 1.73"
(Ambainis, Balodis, Iraids, Kokainis, Prusis, Vihrovs 2018)
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Continuous optimization

Convex optimization
» Linear programs, semidefinite programs
SDPs: O(( Vn + \/5)575) (Brand&o et al., van Apeldoorn et al. 2016-18)
Zero-sum games: 5(( \Vn+ x/ﬁ)/e3), 5(5/335) (Apeldoorn & G 2019)
» Quantum interior point method (Kerenidis & Prakash 2018)

» Polynomial speed-up for estimating volumes of convex bodies
(Chakrabarti, Childs, Hung, Li, Wang, Wu 2019)
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Continuous optimization

Convex optimization

» Linear programs, semidefinite programs
SDPs: 5(( vVn + \/5)375) (Brand&o et al., van Apeldoorn et al. 2016-18)
Zero-sum games: 5(( vn + \/m)/s3), 5(5/335) (Apeldoorn & G 2019)

» Quantum interior point method (Kerenidis & Prakash 2018)

» Polynomial speed-up for estimating volumes of convex bodies
(Chakrabarti, Childs, Hung, Li, Wang, Wu 2019)

Application of the SDP solver: Shadow tomography (Aaronson 2017)

Given n-dimensional quantum state p, estimate the probability of acceptance of each
the two-outcome measurements Eq, ..., E,, to within additive error &.
>

5(|og4(n;)4 log(n)

) copies suffice
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Zero-sum games

Pay-off matrix of Alice is A € R™". Expected pay-off for strategies x, y: x” Ay
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Algorithm for approximate Nash-equilibrium (Grigoriadis & Khachiyan 1995)

Start with x® «— 0 e R" and y(® « 0 € R™
for t=1.2,....0(%)do

o PO A gnd Q1) A"

e p — PO/|[PO]. and g — Q®/|[QW),
e Sample a ~ p!) and b ~ g(¥)

° y(t+1) — y(t) e %ea and X(t+1) — X(t) L %eb
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Zero-sum games
Pay-off matrix of Alice is A € R™". Expected pay-off for strategies x, y: x” Ay
Algorithm for approximate Nash-equilibrium (Grigoriadis & Khachiyan 1995)
Start with x® «— 0 e R" and y(® « 0 € R™
for t=1.2,....0(%)do
o PO A gnd Q1) A"
p® /:a(t)/”p(t)”1 and gt) « Q(t)/”(;;(t)”1
Sample a ~ p and b ~ gV
° y(t+1) — y(t) e %ea and X(t+1) — X(t) L %eb

The main taks is Gibbs sampling from a linear-combination of vectors.
For SDPs: we need to Gibbs sample from a linear-combination of matrices.
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Statistics, estimation and stochastic algorithms

» Quadratic speed-up for Monte-Carlo methods O(%) (Montanaro 2015)
Generalizes approximate counting (Brassard, Hoyer, Mosca, Tapp 1998)
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Movies: a linear combination of a small number of features
User taste: a linear weighing of the features
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Major difficulty: how to input the data?

Data conversion: classical to quantum

» Given b € R" prepare

m bi
|b>—;m
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Major difficulty: how to input the data?

Data conversion: classical to quantum

» Given b € R™ prepare
m
bi
by =) —
; bl
» Given A € R™" construct quantum circuit (block-encoding)

U:( A/lIAlF )

How to preserve the exponential advantage?
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Solution: assume QRAM (readable in superposition)

Data structure

Firs prepare: ,/22:0 |bi|?|0) + ,/ ° b2
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Solution: assume QRAM (readable in superposition)

Data structure

Firs prepare: «/Z,Lo |bi|?|0) + ,/ ° b2
\ETS \/ZLO |bi2|0) — |bol|00) + |b4]|01) and \/ 2 L |bi2110) > |bal[11) + |bs|01)

Add phases to get by|00) + by|01) + bo[10) + bs|11)
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On-line updates to the data structure

Data structure
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On-line updates to the data structure

Data structure

Cost is about the depth: log(dimension)

More about this in Ewin Tang’s afternoon talk
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