Quantum Singular Value Transformation & Its Algorithmic Applications

András Gilyén

Institute for Quantum Information and Matter

The Quantum Wave in Computing Boot Camp Berkeley, 28th January 2020

Quantum walks

Continuous-time quantum / random walks

Laplacian of a weighted graph

Let G = (V, E) be a finite simple graph, with non-negative edge-weights $w : E \to \mathbb{R}_+$. The Laplacian is defined as

$$u \neq v$$
: $L_{uv} = w_{uv}$, and $L_{uu} = -\sum_{v} w_{uv}$.

Continuous-time quantum / random walks

Laplacian of a weighted graph

Let G = (V, E) be a finite simple graph, with non-negative edge-weights $w : E \to \mathbb{R}_+$. The Laplacian is defined as

$$u \neq v$$
: $L_{uv} = w_{uv}$, and $L_{uu} = -\sum_{v} w_{uv}$.

Continuous-time walks

Evolution of the state:

$$\frac{d}{dt}\rho_u(t) = \sum_{v \in V} L_{uv} \rho_v(t) \qquad \Longrightarrow \qquad \qquad \rho(t) = e^{tL} \rho(0)$$

Continuous-time quantum / random walks

Laplacian of a weighted graph

Let G = (V, E) be a finite simple graph, with non-negative edge-weights $w : E \to \mathbb{R}_+$. The Laplacian is defined as

$$u \neq v$$
: $L_{uv} = w_{uv}$, and $L_{uu} = -\sum_{v} w_{uv}$.

Continuous-time walks

Evolution of the state:

$$\frac{d}{dt}\rho_u(t) = \sum_{v \in V} L_{uv} \rho_v(t) \qquad \Longrightarrow \qquad p(t) = e^{tL} \rho(0)$$

$$irac{d}{dt}\psi_u(t)=\sum_{v\in V}L_{uv}\psi_v(t) \implies \psi(t)=e^{-itL}\psi(0)$$

Discrete-time quantum / random walks

Discrete-time Markov-chain on a weighted graph

Transition probability in one step (stochastic matrix)

$${\sf P}_{{\sf v}{\sf u}}={\sf Pr}({\sf step to } {\sf v}\,|\,{\sf being at }{\sf u})=rac{{\sf W}_{{\sf v}{\sf u}}}{\sum_{{\sf v}'\in {\sf U}}{\sf w}_{{\sf v}'{\sf u}}}$$

Discrete-time quantum / random walks

Discrete-time Markov-chain on a weighted graph

Transition probability in one step (stochastic matrix)

$${\sf P}_{{\sf v}{\sf u}}={\sf Pr}({\sf step to } {\sf v}\,|\,{\sf being at }\,{\sf u})=rac{{\sf W}_{{\sf v}{\sf u}}}{\sum_{{\sf v}'\in {\cal U}}{\sf W}_{{\sf v}'{\sf u}}}$$

A unitary implementing the update

$$U: |0\rangle |u\rangle \mapsto \sum_{v \in V} \sqrt{P_{vu}} |v\rangle |u\rangle$$

Discrete-time quantum / random walks

Discrete-time Markov-chain on a weighted graph

Transition probability in one step (stochastic matrix)

$$P_{vu} = \Pr(\text{step to } v \mid \text{being at } u) = \frac{W_{vu}}{\sum_{v' \in U} W_{v'}}$$

A unitary implementing the update

$$U: |0\rangle|u\rangle \mapsto \sum_{v\in V} \sqrt{P_{vu}}|v\rangle|u\rangle$$

How to erase history? The Szegedy quantum walk operator:

 $W' := U^{\dagger} \cdot \text{SWAP} \cdot U$ $W := U^{\dagger} \cdot \text{SWAP} \cdot U((2|0\rangle\langle 0| \otimes I) - I)$

For simplicity let us assume $P_{uv} = P_{vu}$, i.e., the total weight of vertices is constant.

For simplicity let us assume $P_{uv} = P_{vu}$, i.e., the total weight of vertices is constant.

A block-encoding of the Markov chain: $(\langle 0 | \otimes I) W'(| 0 \rangle \otimes I) = P$

For simplicity let us assume $P_{uv} = P_{vu}$, i.e., the total weight of vertices is constant.

A block-encoding of the Markov chain: $(\langle 0 | \otimes I \rangle W'(|0\rangle \otimes I) = P$ Proof:

$$\langle 0|\langle u|W'|0\rangle|v\rangle = \langle 0|\langle u|U^{\dagger} \cdot \mathrm{SWAP} \cdot U|0\rangle|v\rangle = \left(\sum_{v' \in V} \sqrt{P_{v'u}}|v'\rangle|u\rangle\right)^{\dagger} \mathrm{SWAP}\left(\sum_{u' \in V} \sqrt{P_{u'v}}|u'\rangle|v\rangle\right)$$

For simplicity let us assume $P_{uv} = P_{vu}$, i.e., the total weight of vertices is constant.

A block-encoding of the Markov chain: $(\langle 0 | \otimes I \rangle W'(|0\rangle \otimes I) = P$ Proof:

$$\langle 0|\langle u|W'|0\rangle|v\rangle = \langle 0|\langle u|U^{\dagger} \cdot \mathrm{SWAP} \cdot U|0\rangle|v\rangle = \left(\sum_{v' \in V} \sqrt{P_{v'u}}|v'\rangle|u\rangle\right)^{\dagger} \mathrm{SWAP}\left(\sum_{u' \in V} \sqrt{P_{u'v}}|u'\rangle|v\rangle\right)$$

Multiple steps of the quantum walk: $(\langle 0 | \otimes l \rangle W^k (| 0 \rangle \otimes l) = T_k(P)$ $[T_k(x) = \cos(k \arccos(x))$ Chebyshev polynomials: $T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x)]$

For simplicity let us assume $P_{uv} = P_{vu}$, i.e., the total weight of vertices is constant.

A block-encoding of the Markov chain: $(\langle 0 | \otimes I \rangle W'(|0\rangle \otimes I) = P$ Proof:

$$\langle 0|\langle u|W'|0\rangle|v\rangle = \langle 0|\langle u|U^{\dagger} \cdot \mathrm{SWAP} \cdot U|0\rangle|v\rangle = \left(\sum_{v' \in V} \sqrt{P_{v'u}}|v'\rangle|u\rangle\right)^{\dagger} \mathrm{SWAP}\left(\sum_{u' \in V} \sqrt{P_{u'v}}|u'\rangle|v\rangle\right)$$

Multiple steps of the quantum walk: $(\langle 0 | \otimes I \rangle W^k (| 0 \rangle \otimes I) = T_k(P)$ [$T_k(x) = \cos(k \arccos(x))$ Chebyshev polynomials: $T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x)$] Proof: Proceed by induction, observe $T_0(P) = I \checkmark$, $T_1(P) = P \checkmark$

For simplicity let us assume $P_{uv} = P_{vu}$, i.e., the total weight of vertices is constant.

A block-encoding of the Markov chain: $(\langle 0 | \otimes I \rangle W'(|0\rangle \otimes I) = P$ Proof:

$$\langle 0|\langle u|W'|0\rangle|v\rangle = \langle 0|\langle u|U^{\dagger} \cdot \mathrm{SWAP} \cdot U|0\rangle|v\rangle = \left(\sum_{v' \in V} \sqrt{P_{v'u}}|v'\rangle|u\rangle\right)' \mathrm{SWAP}\left(\sum_{u' \in V} \sqrt{P_{u'v}}|u'\rangle|v\rangle\right)$$

Multiple steps of the quantum walk: $(\langle 0| \otimes I \rangle W^{k}(|0\rangle \otimes I) = T_{k}(P)$ $[T_{k}(x) = \cos(k \arccos(x))$ Chebyshev polynomials: $T_{k+1}(x) = 2xT_{k}(x) - T_{k-1}(x)]$ Proof: Proceed by induction, observe $T_{0}(P) = I \checkmark$, $T_{1}(P) = P \checkmark$ $(\langle 0| \otimes I \rangle W^{k+1}(|0\rangle \otimes I) = (\langle 0| \otimes I \rangle W'((2|0\rangle\langle 0| \otimes I) - I) W^{k}(|0\rangle \otimes I) =$ $= \underbrace{(\langle 0| \otimes I \rangle W'(2|0\rangle}_{2P} \underbrace{\langle 0| \otimes I \rangle W^{k}(|0\rangle \otimes I)}_{T_{k}(P)} - \underbrace{(\langle 0| \otimes I \rangle W^{k-1}(|0\rangle \otimes I)}_{T_{k-1}(P)}$

For simplicity let us assume $P_{uv} = P_{vu}$, i.e., the total weight of vertices is constant.

A block-encoding of the Markov chain: $(\langle 0 | \otimes I \rangle W'(|0\rangle \otimes I) = P$ Proof:

$$\langle 0|\langle u|W'|0\rangle|v\rangle = \langle 0|\langle u|U^{\dagger} \cdot \mathrm{SWAP} \cdot U|0\rangle|v\rangle = \left(\sum_{v' \in V} \sqrt{P_{v'u}}|v'\rangle|u\rangle\right)^{\dagger} \mathrm{SWAP}\left(\sum_{u' \in V} \sqrt{P_{u'v}}|u'\rangle|v\rangle\right)$$

Multiple steps of the quantum walk: $(\langle 0| \otimes I \rangle W^{k}(|0\rangle \otimes I) = T_{k}(P)$ $[T_{k}(x) = \cos(k \arccos(x))$ Chebyshev polynomials: $T_{k+1}(x) = 2xT_{k}(x) - T_{k-1}(x)]$ Proof: Proceed by induction, observe $T_{0}(P) = I \checkmark$, $T_{1}(P) = P \checkmark$ $(\langle 0| \otimes I \rangle W^{k+1}(|0\rangle \otimes I) = (\langle 0| \otimes I \rangle W'((2|0\rangle\langle 0| \otimes I) - I) W^{k}(|0\rangle \otimes I) =$ $= \underbrace{(\langle 0| \otimes I \rangle W'(2|0\rangle }_{2P} \underbrace{\langle 0| \otimes I \rangle W^{k}(|0\rangle \otimes I)}_{T_{k}(P)} - \underbrace{(\langle 0| \otimes I \rangle W^{k-1}(|0\rangle \otimes I)}_{T_{k-1}(P)}$

Are we happy with Chebyshev polynomials?

Linear combination of (non-)unitary mat. [Childs & Wiebe '12, Berry et al. '15]

Suppose that $V = \sum_k |k X k| \otimes U^k$, and $Q : |0\rangle \mapsto \sum_i \sqrt{q_i} |i\rangle$ for $q_i \in [0, 1]$, then

Are we happy with Chebyshev polynomials? Linear combination of (non-)unitary mat. [Childs & Wiebe '12, Berry et al. '15] Suppose that $V = \sum_k |k \setminus k| \otimes U^k$, and $Q : |0\rangle \mapsto \sum_i \sqrt{q_i} |i\rangle$ for $q_i \in [0, 1]$, then 0 Q^{\dagger} $=\sum q_k U^k$ $(\langle 0|Q^{\dagger}\otimes I)V(Q|0\rangle\otimes I)$ 01 0

Are we happy with Chebyshev polynomials? Linear combination of (non-)unitary mat. [Childs & Wiebe '12, Berry et al. '15] Suppose that $V = \sum_{k} |k \setminus k| \otimes U^{k}$, and $Q : |0\rangle \mapsto \sum_{i} \sqrt{q_{i}} |i\rangle$ for $q_{i} \in [0, 1]$, then 0 Q^{\dagger} $\sum q_k U^k$ $(\langle 0|Q^{\dagger}\otimes I)V(Q|0\rangle\otimes I)$ 0

In particular the top-left corner of $\sum_k q_k W^k$ is $\sum_i q_k T_k(P)$.

Are we happy with Chebyshev polynomials?

Linear combination of (non-)unitary mat. [Childs & Wiebe '12, Berry et al. '15]

Suppose that $V = \sum_k |k X k| \otimes U^k$, and $Q : |0\rangle \mapsto \sum_i \sqrt{q_i} |i\rangle$ for $q_i \in [0, 1]$, then

In particular the top-left corner of $\sum_k q_k W^k$ is $\sum_i q_k T_k(P)$.

Corollary: Quantum fast-forwarding (Apers & Sarlette 2018) We can implement a unitary V such that $(\langle 0| \otimes I \rangle V(|0\rangle \otimes I) \stackrel{\varepsilon}{\approx} P^t$

with using only $O(\sqrt{t \log(1/\varepsilon)})$ quantum walk steps.

Are we happy with Chebyshev polynomials?

Linear combination of (non-)unitary mat. [Childs & Wiebe '12, Berry et al. '15]

Suppose that $V = \sum_k |k X k| \otimes U^k$, and $Q : |0\rangle \mapsto \sum_i \sqrt{q_i} |i\rangle$ for $q_i \in [0, 1]$, then

In particular the top-left corner of $\sum_k q_k W^k$ is $\sum_i q_k T_k(P)$.

Corollary: Quantum fast-forwarding (Apers & Sarlette 2018) We can implement a unitary V such that $(\langle 0 | \otimes I \rangle V(|0\rangle \otimes I) \stackrel{\varepsilon}{\approx} P^t$

with using only $O(\sqrt{t \log(1/\varepsilon)})$ quantum walk steps. (Proof: $x^t \approx \sum_{k=0}^{\infty} \overline{V_k}(x)$)

Szegedy quantum walk based search

Suppose we have some unknown marked vertices $M \subset V$.

Quadratically faster hitting

Hitting time: expected time to hit a marked vertex starting from the stationary distr. Starting from the quantum state $\sum_{v \in V} \sqrt{\pi_v} |v\rangle$ we can

- detect the presence of marked vertices $(M \neq 0)$ in time $O(\sqrt{HT})$ (Szegedy 2004)
- ▶ find a marked vertex in time $O\left(\frac{1}{\sqrt{\delta \varepsilon}}\right)$ (Magniez, Nayak, Roland, Sántha 2006)
- Find a marked vertex in time $\widetilde{O}(\sqrt{HT})$ (Ambainis, **G**, Jeffery, Kokainis 2019)

Szegedy quantum walk based search

Suppose we have some unknown marked vertices $M \subset V$.

Quadratically faster hitting

Hitting time: expected time to hit a marked vertex starting from the stationary distr. Starting from the quantum state $\sum_{v \in V} \sqrt{\pi_v} |v\rangle$ we can

- detect the presence of marked vertices $(M \neq 0)$ in time $O(\sqrt{HT})$ (Szegedy 2004)
- ▶ find a marked vertex in time $O\left(\frac{1}{\sqrt{\delta c}}\right)$ (Magniez, Nayak, Roland, Sántha 2006)
- Find a marked vertex in time $\widetilde{O}(\sqrt{HT})$ (Ambainis, **G**, Jeffery, Kokainis 2019)

Starting from arbitrary distributions

Starting from distribution σ on some vertices we can

- detect marked vertices in square-root commute time $O(\sqrt{C_{\sigma,M}})$ (Belovs 2013)
- Find a marked vertex in time $\widetilde{O}(\sqrt{C_{\sigma,M}})$ (Piddock; Apers, **G**, Jeffery 2019)

Element Distinctness

- Black box: Computes f on inputs corresponding to elements of [n]
- Question: Are there any $i \neq j \in [n] \times [n]$ such that f(i) = f(j)?
- Query complexity: $O(n^{2/3})$ (Ambainis 2003) $\Omega(n^{2/3})$ (Aaronson & Shi 2001)

Element Distinctness

- Black box: Computes f on inputs corresponding to elements of [n]
- Question: Are there any $i \neq j \in [n] \times [n]$ such that f(i) = f(j)?
- Query complexity: $O(n^{2/3})$ (Ambainis 2003) $\Omega(n^{2/3})$ (Aaronson & Shi 2001)

Triangle Finding

[(2014) non-walk algorithm by Le Gall: $\widetilde{O}(n^{5/4})$]

- ▶ Black box: For any pair $u, v \in V \times V$ tells whether there is an edge uv
- Question: Is there any triangle in G?
- Query complexity: O(n^{13/10}) (Magniez, Sántha, Szegedy 2003)

Element Distinctness

- Black box: Computes f on inputs corresponding to elements of [n]
- Question: Are there any $i \neq j \in [n] \times [n]$ such that f(i) = f(j)?
- Query complexity: $O(n^{2/3})$ (Ambainis 2003) $\Omega(n^{2/3})$ (Aaronson & Shi 2001)

Triangle Finding

[(2014) non-walk algorithm by Le Gall: $\widetilde{O}(n^{5/4})$]

- ▶ Black box: For any pair $u, v \in V \times V$ tells whether there is an edge uv
- Question: Is there any triangle in G?
- Query complexity: O(n^{13/10}) (Magniez, Sántha, Szegedy 2003)

Matrix Product Verification

- Black box: Tells any entry of the $n \times n$ matrices A, B or C.
- Question: Does AB = C hold?
- Query complexity: $O(n^{5/3})$ (Buhrman, Špalek 2004)

Block-encodings and

Quantum Singular Value Transformation

A way to represent large matrices on a quantum computer efficiently

$$U = \begin{bmatrix} A & . \\ . & . \end{bmatrix} \quad \Longleftrightarrow \quad A = (\langle 0 |^a \otimes I) U (|0\rangle^b \otimes I).$$

A way to represent large matrices on a quantum computer efficiently

$$U = \begin{bmatrix} A & . \\ . & . \end{bmatrix} \quad \Longleftrightarrow \quad A = (\langle 0 |^a \otimes I) U (|0\rangle^b \otimes I).$$

A way to represent large matrices on a quantum computer efficiently

$$U = \begin{bmatrix} A & . \\ . & . \end{bmatrix} \quad \Longleftrightarrow \quad A = (\langle 0 |^a \otimes I) U (|0\rangle^b \otimes I).$$

One can efficiently construct block-encodings of

• an efficiently implementable unitary U,

A way to represent large matrices on a quantum computer efficiently

$$U = \begin{bmatrix} A & . \\ . & . \end{bmatrix} \quad \Longleftrightarrow \quad A = (\langle 0 |^a \otimes I) U (|0\rangle^b \otimes I).$$

- ► an efficiently implementable unitary U,
- ► a sparse matrix with efficiently computable elements,

A way to represent large matrices on a quantum computer efficiently

$$U = \begin{bmatrix} A & . \\ . & . \end{bmatrix} \quad \Longleftrightarrow \quad A = (\langle 0 |^a \otimes I) U (|0\rangle^b \otimes I).$$

- an efficiently implementable unitary U,
- a sparse matrix with efficiently computable elements,
- a matrix stored in a clever data-structure in a QRAM,

A way to represent large matrices on a quantum computer efficiently

$$U = \begin{bmatrix} A & . \\ . & . \end{bmatrix} \quad \Longleftrightarrow \quad A = (\langle 0 |^a \otimes I) U (|0\rangle^b \otimes I).$$

- an efficiently implementable unitary U,
- a sparse matrix with efficiently computable elements,
- a matrix stored in a clever data-structure in a QRAM,
- a density operator ρ given a unitary preparing its purification.

A way to represent large matrices on a quantum computer efficiently

$$U = \begin{bmatrix} A & . \\ . & . \end{bmatrix} \quad \Longleftrightarrow \quad A = (\langle 0 |^a \otimes I) U (|0\rangle^b \otimes I).$$

- an efficiently implementable unitary U,
- a sparse matrix with efficiently computable elements,
- a matrix stored in a clever data-structure in a QRAM,
- a density operator ρ given a unitary preparing its purification.
- a POVM operator *M* given we can sample from the rand.var.: $Tr(\rho M)$,

A way to represent large matrices on a quantum computer efficiently

$$U = \begin{bmatrix} A & . \\ . & . \end{bmatrix} \quad \Longleftrightarrow \quad A = (\langle 0 |^a \otimes I) U (|0\rangle^b \otimes I).$$

One can efficiently construct block-encodings of

- an efficiently implementable unitary U,
- a sparse matrix with efficiently computable elements,
- a matrix stored in a clever data-structure in a QRAM,
- a density operator ρ given a unitary preparing its purification.
- ▶ a POVM operator *M* given we can sample from the rand.var.: $Tr(\rho M)$,

Implementing arithmetic operations on block-encoded matrices

- Given block-encodings A_i we can implement convex combinations.
- Given block-encodings A, B we can implement block-encoding of AB.

Example: Block-encoding sparse matrices

Suppose that A is *s*-sparse and $|A_{ij}| \le 1$ for all *i*, *j* indices.
Suppose that *A* is *s*-sparse and $|A_{ij}| \le 1$ for all *i*, *j* indices. Given "sparse-access " we can efficiently implement unitaries preparing "rows"

Suppose that *A* is *s*-sparse and $|A_{ij}| \le 1$ for all *i*, *j* indices. Given "sparse-access " we can efficiently implement unitaries preparing "rows"

$$R: |0
angle|0
angle|i
angle
ightarrow |0
angle \sum_{k} rac{(\sqrt{A_{ik}})^{*}}{\sqrt{s}} |i
angle|k
angle + |1
angle|i
angle| ext{garbage}
angle,$$

Suppose that *A* is *s*-sparse and $|A_{ij}| \le 1$ for all *i*, *j* indices. Given "sparse-access " we can efficiently implement unitaries preparing "rows"

$$R: |0
angle|0
angle|i
angle
ightarrow |0
angle \sum_{k} rac{(\sqrt{A_{ik}})^{*}}{\sqrt{s}} |i
angle|k
angle + |1
angle|i
angle|$$
garbage
angle,

and "columns"

$$C: |0
angle|0
angle |j
angle
ightarrow |0
angle \sum_{\ell} rac{\sqrt{A_{\ell j}}}{\sqrt{s}} |\ell
angle |j
angle + |2
angle |j
angle | ext{garbage}
angle,$$

Suppose that *A* is *s*-sparse and $|A_{ij}| \le 1$ for all *i*, *j* indices. Given "sparse-access " we can efficiently implement unitaries preparing "rows"

$$R: |0
angle|0
angle|i
angle
ightarrow |0
angle \sum_{k} rac{(\sqrt{A_{ik}})^{*}}{\sqrt{s}} |i
angle|k
angle + |1
angle|i
angle|$$
garbage
angle,

and "columns"

$$C: |0
angle|0
angle|j
angle
ightarrow |0
angle \sum_{\ell} rac{\sqrt{A_{\ell j}}}{\sqrt{s}} |\ell
angle|j
angle + |2
angle|j
angle$$
garbage $angle,$

They form a block-encoding of A/s:

 $\langle 0|\langle 0|\langle i|R^{\dagger}C|0
angle|0
angle|j
angle$

Suppose that *A* is *s*-sparse and $|A_{ij}| \le 1$ for all *i*, *j* indices. Given "sparse-access " we can efficiently implement unitaries preparing "rows"

$$R: |0
angle|0
angle|i
angle
ightarrow |0
angle \sum_{k} rac{(\sqrt{A_{ik}})^{*}}{\sqrt{s}} |i
angle|k
angle + |1
angle|i
angle|$$
garbage
angle,

and "columns"

$$C: |0
angle|0
angle|j
angle
ightarrow |0
angle \sum_{\ell} rac{\sqrt{A_{\ell j}}}{\sqrt{s}} |\ell
angle|j
angle + |2
angle|j
angle$$
garbage $angle,$

They form a block-encoding of A/s:

 $\langle 0|\langle 0|\langle i|R^{\dagger}C|0\rangle|0\rangle|j\rangle = (R|0\rangle|0\rangle|i\rangle)^{\dagger} \cdot (C|0\rangle|0\rangle|j\rangle)$

Suppose that A is s-sparse and $|A_{ij}| \le 1$ for all *i*, *j* indices. Given "sparse-access " we can efficiently implement unitaries preparing "rows"

$$R: |0
angle|0
angle|i
angle
ightarrow |0
angle \sum_{k} rac{(\sqrt{A_{ik}})^{*}}{\sqrt{s}} |i
angle|k
angle + |1
angle|i
angle|garbage
angle,$$

and "columns"

$$C: |0
angle|0
angle|j
angle
ightarrow |0
angle \sum_{\ell} rac{\sqrt{A_{\ell j}}}{\sqrt{s}} |\ell
angle|j
angle + |2
angle|j
angle$$
garbage $angle,$

They form a block-encoding of A/s:

$$\langle 0|\langle 0|\langle i|R^{\dagger}C|0\rangle|0\rangle|j\rangle = (R|0\rangle|0\rangle|i\rangle)^{\dagger} \cdot (C|0\rangle|0\rangle|j\rangle) = \left(\sum_{k} \frac{(\sqrt{A_{ik}})^{*}}{\sqrt{s}}|i\rangle|k\rangle\right)^{\dagger} \left(\sum_{\ell} \frac{\sqrt{A_{\ell j}}}{\sqrt{s}}|\ell\rangle|j\rangle\right)$$

Suppose that A is s-sparse and $|A_{ij}| \le 1$ for all *i*, *j* indices. Given "sparse-access " we can efficiently implement unitaries preparing "rows"

$$R: |0
angle|0
angle|i
angle
ightarrow |0
angle \sum_{k} rac{(\sqrt{A_{ik}})^{*}}{\sqrt{s}} |i
angle|k
angle + |1
angle|i
angle|garbage
angle,$$

and "columns"

$$C: |0
angle|0
angle|j
angle
ightarrow |0
angle \sum_{\ell} rac{\sqrt{A_{\ell j}}}{\sqrt{s}} |\ell
angle|j
angle + |2
angle|j
angle$$
garbage $angle,$

They form a block-encoding of A/s:

$$\langle 0|\langle 0|\langle i|R^{\dagger}C|0\rangle|0\rangle|j\rangle = (R|0\rangle|0\rangle|i\rangle)^{\dagger} \cdot (C|0\rangle|0\rangle|j\rangle) = \left(\sum_{k} \frac{(\sqrt{A_{ik}})^{*}}{\sqrt{s}}|i\rangle|k\rangle\right)^{\dagger} \left(\sum_{\ell} \frac{\sqrt{A_{\ell j}}}{\sqrt{s}}|\ell\rangle|j\rangle\right) = \frac{A_{ij}}{s}$$

Main theorem about QSVT (G, Su, Low, Wiebe 2018)

Let $\mathbf{P}: [-1, 1] \rightarrow [-1, 1]$ be a degree-*d* odd polynomial map.

Main theorem about QSVT (G, Su, Low, Wiebe 2018)

Let $\mathbf{P}: [-1, 1] \rightarrow [-1, 1]$ be a degree-*d* odd polynomial map. Suppose that

$$U = \begin{bmatrix} A & . \\ . & . \end{bmatrix} = \begin{bmatrix} \sum_{i} \varsigma_{i} |w_{i} \rangle \langle v_{i} | & . \\ . & . \end{bmatrix}$$

Main theorem about QSVT (G, Su, Low, Wiebe 2018)

Let $\mathbf{P}: [-1, 1] \rightarrow [-1, 1]$ be a degree-*d* odd polynomial map. Suppose that

$$U = \begin{bmatrix} A & . \\ . & . \end{bmatrix} = \begin{bmatrix} \sum_{i} \varsigma_{i} |w_{i} \rangle \langle v_{i}| & . \\ . & . \end{bmatrix} \Longrightarrow U_{\Phi} = \begin{bmatrix} \sum_{i} P(\varsigma_{i}) |w_{i} \rangle \langle v_{i}| & . \\ . & . \end{bmatrix},$$

Main theorem about QSVT (G, Su, Low, Wiebe 2018)

Let $\mathbf{P}: [-1, 1] \rightarrow [-1, 1]$ be a degree-*d* odd polynomial map. Suppose that

$$U = \begin{bmatrix} A & . \\ . & . \end{bmatrix} = \begin{bmatrix} \sum_{i} \varsigma_{i} |w_{i} \rangle \langle v_{i} | & . \\ . & . \end{bmatrix} \Longrightarrow U_{\Phi} = \begin{bmatrix} \sum_{i} P(\varsigma_{i}) |w_{i} \rangle \langle v_{i} | & . \\ . & . \end{bmatrix},$$

where $\Phi(P) \in \mathbb{R}^d$ is efficiently computable and U_{Φ} is the following circuit:

Main theorem about QSVT (G, Su, Low, Wiebe 2018)

Let $\mathbf{P}: [-1, 1] \rightarrow [-1, 1]$ be a degree-*d* odd polynomial map. Suppose that

$$U = \begin{bmatrix} A & . \\ . & . \end{bmatrix} = \begin{bmatrix} \sum_{i} \varsigma_{i} |w_{i} \rangle \langle v_{i} | & . \\ . & . \end{bmatrix} \Longrightarrow U_{\Phi} = \begin{bmatrix} \sum_{i} P(\varsigma_{i}) |w_{i} \rangle \langle v_{i} | & . \\ . & . \end{bmatrix},$$

where $\Phi(P) \in \mathbb{R}^d$ is efficiently computable and U_{Φ} is the following circuit:

Alternating phase modulation sequence $U_{\Phi} :=$

Main theorem about QSVT (G, Su, Low, Wiebe 2018)

Let $\mathbf{P}: [-1, 1] \rightarrow [-1, 1]$ be a degree-*d* odd polynomial map. Suppose that

$$U = \begin{bmatrix} A & . \\ . & . \end{bmatrix} = \begin{bmatrix} \sum_{i} \varsigma_{i} |w_{i}\rangle\langle v_{i}| & . \\ . & . \end{bmatrix} \Longrightarrow U_{\Phi} = \begin{bmatrix} \sum_{i} P(\varsigma_{i}) |w_{i}\rangle\langle v_{i}| & . \\ . & . \end{bmatrix},$$

where $\Phi(P) \in \mathbb{R}^d$ is efficiently computable and U_{Φ} is the following circuit:

Alternating phase modulation sequence $U_{\Phi} :=$

Simmilar result holds for even polynomials.

Singular vector transformation and projection Fixed-point amplitude ampl. (Yoder, Low, Chuang 2014) Amplitude amplification problem: Given *U* such that

 $U|ar{0}
angle = \sqrt{p}|0
angle|\psi_{ ext{good}}
angle + \sqrt{1-p}|1
angle|\psi_{ ext{bad}}
angle, \quad ext{prepare} \ |\psi_{ ext{good}}
angle.$

Singular vector transformation and projection Fixed-point amplitude ampl. (Yoder, Low, Chuang 2014) Amplitude amplification problem: Given *U* such that $U|\bar{0}\rangle = \sqrt{p}|0\rangle|\psi_{good}\rangle + \sqrt{1-p}|1\rangle|\psi_{bad}\rangle$, prepare $|\psi_{good}\rangle$. Note that $(|0\rangle\langle 0| \otimes I\rangle U(|\bar{0}\rangle\langle \bar{0}|) = \sqrt{p}|0, \psi_{good}\rangle\langle \bar{0}|$; we can apply QSVT. Singular vector transformation and projection Fixed-point amplitude ampl. (Yoder, Low, Chuang 2014) Amplitude amplification problem: Given *U* such that $U|\bar{0}\rangle = \sqrt{p}|0\rangle|\psi_{good}\rangle + \sqrt{1-p}|1\rangle|\psi_{bad}\rangle$, prepare $|\psi_{good}\rangle$. Note that $(|0\rangle\langle 0| \otimes I)U(|\bar{0}\rangle\langle \bar{0}|) = \sqrt{p}|0,\psi_{good}\rangle\langle \bar{0}|$; we can apply QSVT. Singular vector transformation [Oblivious ampl. ampl. (Berry et al. 2013)]

Given a unitary *U*, such that

$${\sf A}=(\langle 0|^{\otimes a}\otimes {\it I}){\it U}(|0
angle^{\otimes b}\otimes {\it I})=\sum_{i=1}^{\kappa}arsigma_{i}|\phi_{i}
angle\psi_{i}|$$

is a singular value decomposition.

Singular vector transformation and projection Fixed-point amplitude ampl. (Yoder, Low, Chuang 2014) Amplitude amplification problem: Given *U* such that $U|\bar{0}\rangle = \sqrt{p}|0\rangle|\psi_{good}\rangle + \sqrt{1-p}|1\rangle|\psi_{bad}\rangle$, prepare $|\psi_{good}\rangle$. Note that $(|0\rangle\langle 0| \otimes I)U(|\bar{0}\rangle\langle \bar{0}|) = \sqrt{p}|0, \psi_{good}\rangle\langle \bar{0}|$; we can apply QSVT. Singular vector transformation [Oblivious ampl. ampl. (Berry et al. 2013)]

Given a unitary *U*, such that

$$\mathsf{A} = (\langle 0 |^{\otimes a} \otimes I) U (| 0
angle^{\otimes b} \otimes I) = \sum_{i=1}^{k} \varsigma_i | \phi_i ig \langle \psi_i |$$

is a singular value decomposition. Transform one copy of a quantum state

$$|\psi
angle = \sum_{i=i}^k lpha_i |\psi_i
angle$$
 to $|\phi
angle = \sum_{i=i}^k lpha_i |\phi_i
angle$

Singular vector transformation and projection Fixed-point amplitude ampl. (Yoder, Low, Chuang 2014) Amplitude amplification problem: Given *U* such that $U|\bar{0}\rangle = \sqrt{p}|0\rangle|\psi_{good}\rangle + \sqrt{1-p}|1\rangle|\psi_{bad}\rangle$, prepare $|\psi_{good}\rangle$. Note that $(|0\rangle\langle 0| \otimes I)U(|\bar{0}\rangle\langle \bar{0}|) = \sqrt{p}|0,\psi_{good}\rangle\langle \bar{0}|$; we can apply QSVT. Singular vector transformation [Oblivious ampl. ampl. (Berry et al. 2013)]

Given a unitary *U*, such that

$$\mathsf{A} = (\langle 0 |^{\otimes a} \otimes I) U (| 0
angle^{\otimes b} \otimes I) = \sum_{i=1}^{\kappa} arsigma_i | \phi_i ig \langle \psi_i |$$

is a singular value decomposition. Transform one copy of a quantum state

$$|\psi
angle = \sum_{i=i}^k lpha_i |\psi_i
angle$$
 to $|\phi
angle = \sum_{i=i}^k lpha_i |\phi_i
angle.$

If $\varsigma_i \geq \delta$ for all $0 \neq \alpha_i$, we can ε -apx. using QSVT with compl. $O(\frac{1}{\delta} \log(\frac{1}{\varepsilon}))$.

Singular value decomposition and pseudoinverse

Suppose $A = \sum_{i} G_{i} |w_{i} \rangle \langle v_{i}|$ is a singular value decomposition. Then the pseudoinverse of A is $A^{+} = \sum_{i} 1/G_{i} |v_{i} \rangle \langle w_{i}|$

Singular value decomposition and pseudoinverse

Singular value decomposition and pseudoinverse

Singular value decomposition and pseudoinverse

Singular value decomposition and pseudoinverse

Singular value decomposition and pseudoinverse

Suppose $A = \sum_{i} \mathbf{\varsigma}_{i} |w_{i} \langle v_{i}|$ is a singular value decomposition. Then the pseudoinverse of A is $A^{+} = \sum_{i} \frac{1}{\varsigma_{i}} |v_{i} \langle w_{i}|$ (note $A^{\dagger} = \sum_{i} \mathbf{\varsigma}_{i} |v_{i} \langle w_{i}|$).

Implementing the pseudoinverse using QSVT

Suppose that *U* is an *a*-qubit block-encoding of *A*, and $||A^+|| \le \kappa$.

Singular value decomposition and pseudoinverse

Suppose $A = \sum_{i} \mathbf{\varsigma}_{i} |w_{i} \langle v_{i}|$ is a singular value decomposition. Then the pseudoinverse of A is $A^{+} = \sum_{i} \frac{1}{\varsigma_{i}} |v_{i} \langle w_{i}|$ (note $A^{\dagger} = \sum_{i} \mathbf{\varsigma}_{i} |v_{i} \langle w_{i}|$).

Implementing the pseudoinverse using QSVT

Suppose that *U* is an *a*-qubit block-encoding of *A*, and $||A^+|| \le \kappa$. By QSVT we can implement an ε -approximate block-encoding of

$$\frac{1}{2\kappa}A^+$$

using $O(\kappa \log(\frac{1}{\epsilon}))$ queries to U. Finally amplify the result ($O(\kappa)$ times).

Singular value decomposition and pseudoinverse

Suppose $A = \sum_{i} \mathbf{\varsigma}_{i} |w_{i} \langle v_{i}|$ is a singular value decomposition. Then the pseudoinverse of A is $A^{+} = \sum_{i} \frac{1}{\varsigma_{i}} |v_{i} \langle w_{i}|$ (note $A^{\dagger} = \sum_{i} \mathbf{\varsigma}_{i} |v_{i} \langle w_{i}|$).

Implementing the pseudoinverse using QSVT

Suppose that *U* is an *a*-qubit block-encoding of *A*, and $||A^+|| \le \kappa$. By QSVT we can implement an ε -approximate block-encoding of

$$\frac{1}{2\kappa}A^+$$

using $O(\kappa \log(\frac{1}{\epsilon}))$ queries to U. Finally amplify the result ($O(\kappa)$ times).

- Complexity can be improved to $\widetilde{O}(\kappa)$ using variable-time amplitude-amplification.
- Other variants are possible, such as weighted and generalized least-squares.

Singular value transf. = eigenvalue transf. [Low & Chuang (2017)]

Let $P: [-1, 1] \rightarrow [-1, 1]$ be a degree-*d* even/odd polynomial map.

Singular value transf. = eigenvalue transf. [Low & Chuang (2017)]

Let $P: [-1, 1] \rightarrow [-1, 1]$ be a degree-*d* even/odd polynomial map. If *H* is Hermitian, then P(H) coincides with the singular value transform.

Singular value transf. = eigenvalue transf. [Low & Chuang (2017)]

Let $P: [-1, 1] \rightarrow [-1, 1]$ be a degree-*d* even/odd polynomial map. If *H* is Hermitian, then P(H) coincides with the singular value transform. (Direct corollary: Fast-Forwarding Markov Chains.)

Singular value transf. = eigenvalue transf. [Low & Chuang (2017)]

Let $P: [-1, 1] \rightarrow [-1, 1]$ be a degree-*d* even/odd polynomial map. If *H* is Hermitian, then P(H) coincides with the singular value transform. (Direct corollary: Fast-Forwarding Markov Chains.)

Removing parity constraint for Hermitian matrices

Let $P: [-1, 1] \rightarrow [-\frac{1}{2}, \frac{1}{2}]$ be a degree-*d* polynomial map. Suppose that *U* is an *a*-qubit block-encoding of a Hermitian matrix *H*.

Singular value transf. = eigenvalue transf. [Low & Chuang (2017)]

Let $P: [-1, 1] \rightarrow [-1, 1]$ be a degree-*d* even/odd polynomial map. If *H* is Hermitian, then P(H) coincides with the singular value transform. (Direct corollary: Fast-Forwarding Markov Chains.)

Removing parity constraint for Hermitian matrices

Let $P: [-1, 1] \rightarrow [-\frac{1}{2}, \frac{1}{2}]$ be a degree-*d* polynomial map. Suppose that *U* is an *a*-qubit block-encoding of a Hermitian matrix *H*. We can implement

$$U'=\left[egin{array}{cc} {\sf P}({\sf H}) & .\ . & . \end{array}
ight],$$

using d times U and U^{\dagger} , 1 controlled U, and O(ad) extra two-qubit gates.

Optimal block-Hamiltonian simulation

Suppose that *H* is given as an *a*-qubit block-encoding, i.e., $U = \begin{bmatrix} H & . \\ . & . \end{bmatrix}$

Optimal block-Hamiltonian simulation

Suppose that *H* is given as an *a*-qubit block-encoding, i.e., $U = \begin{bmatrix} H & \cdot \\ \cdot & \cdot \end{bmatrix}$.

Complexity of block-Hamiltonians simulation [Low & Chuang (2016)]

Given $t, \varepsilon > 0$, implement a unitary U', which is ε close to e^{itH} . Can be achieved with query complexity

 $O(t + \log(1/\varepsilon)).$

Gate complexity is O(a) times the above.

Optimal block-Hamiltonian simulation

Suppose that *H* is given as an *a*-qubit block-encoding, i.e., $U = \begin{bmatrix} H & . \\ . & . \end{bmatrix}$

Complexity of block-Hamiltonians simulation [Low & Chuang (2016)]

Given $t, \varepsilon > 0$, implement a unitary U', which is ε close to e^{itH} . Can be achieved with query complexity

 $O(t + \log(1/\varepsilon)).$

Gate complexity is O(a) times the above.

Proof sketch

Approximate to ε -precision sin(*tx*) and cos(*tx*) with polynomials of degree as above. Then use QSVT and combine even/odd parts.

Gibbs sampling

Suppose that *H* is given as $U = \begin{bmatrix} H & . \\ . & . \end{bmatrix}$. The goal is to prepare $\rho \propto e^{-\beta H}$.

Gibbs sampling

Suppose that *H* is given as $U = \begin{bmatrix} H & . \\ . & . \end{bmatrix}$. The goal is to prepare $\rho \propto e^{-\beta H}$.

The basic algorithm (Inspired by Poulin & Wocjan 2009)

Start with a maximally mixed state I/N, and apply the map $e^{-\frac{\beta}{2}H}$.
Suppose that *H* is given as $U = \begin{bmatrix} H & . \\ . & . \end{bmatrix}$. The goal is to prepare $\rho \propto e^{-\beta H}$.

The basic algorithm (Inspired by Poulin & Wocjan 2009)

- Start with a maximally mixed state I/N, and apply the map $e^{-\frac{\beta}{2}H}$.
- The new state is proportional to $e^{-\frac{\beta}{2}H}\left(\frac{1}{N}\right)e^{-\frac{\beta}{2}H} = e^{-\beta H}$.

Suppose that *H* is given as $U = \begin{bmatrix} H & . \\ . & . \end{bmatrix}$. The goal is to prepare $\rho \propto e^{-\beta H}$.

The basic algorithm (Inspired by Poulin & Wocjan 2009)

- Start with a maximally mixed state I/N, and apply the map $e^{-\frac{\beta}{2}H}$.
- The new state is proportional to $e^{-\frac{\beta}{2}H}\left(\frac{1}{N}\right)e^{-\frac{\beta}{2}H} = e^{-\beta H}$.
- Finally, apply amplitude amplification. Probability of success?

Suppose that *H* is given as $U = \begin{bmatrix} H & . \\ . & . \end{bmatrix}$. The goal is to prepare $\rho \propto e^{-\beta H}$.

The basic algorithm (Inspired by Poulin & Wocjan 2009)

- Start with a maximally mixed state I/N, and apply the map $e^{-\frac{\beta}{2}H}$.
- ► The new state is proportional to $e^{-\frac{\beta}{2}H} \left(\frac{1}{N}\right) e^{-\frac{\beta}{2}H} = e^{-\beta H}$.
- Finally, apply amplitude amplification. Probability of success?

Final algorithm

Use minimum finding (Dürr & Høyer 1996; van Apeldoorn, G, Gribling, de Wolf 2017) to find an approximation of the ground state energy H₀.

Suppose that *H* is given as $U = \begin{bmatrix} H & . \\ . & . \end{bmatrix}$. The goal is to prepare $\rho \propto e^{-\beta H}$.

The basic algorithm (Inspired by Poulin & Wocjan 2009)

- Start with a maximally mixed state I/N, and apply the map $e^{-\frac{\beta}{2}H}$.
- ► The new state is proportional to $e^{-\frac{\beta}{2}H} \left(\frac{1}{N}\right) e^{-\frac{\beta}{2}H} = e^{-\beta H}$.
- Finally, apply amplitude amplification. Probability of success?

Final algorithm

- Use minimum finding (Dürr & Høyer 1996; van Apeldoorn, G, Gribling, de Wolf 2017) to find an approximation of the ground state energy H₀.
- Use the previous procedure but with the map $e^{-\frac{\beta}{2}(H-H_0I)}$
- The final complexity is $\widetilde{O}(\beta \sqrt{N})$

Summarizing the various speed-ups by QSVT

Speed-up	Source of speed-up	Examples of algorithms
Exponential	Dimensionality of the Hilbert space	Hamiltonian simulation
	Precise polynomial approximations	Improved HHL algorithm
Quadratic	Singular value = square root of probability	Grover search
	Singular values are easier to distinguish	Amplitude estimation
	Close-to-1 singular values are more flexible	Quantum walks

Summarizing the various speed-ups by QSVT

Speed-up	Source of speed-up	Examples of algorithms
Exponential	Dimensionality of the Hilbert space	Hamiltonian simulation
	Precise polynomial approximations	Improved HHL algorithm
Quadratic	Singular value = square root of probability	Grover search
	Singular values are easier to distinguish	Amplitude estimation
	Close-to-1 singular values are more flexible	Quantum walks

Some other applications

- Fast QMA amplification, fast quantum OR lemma
- Quantum Machine learning: PCA, principal component regression
- "Non-commutative measurements" (for ground state preparation)
- Fractional queries

Quantum algorithms for optimization

Optimization

In general we want to find the best solution $\min_{x \in X} f(x)$

• Unstructured: can be solved with $O(\sqrt{|X|})$ queries (Dürr & Høyer 1996)

Optimization

In general we want to find the best solution $\min_{x \in X} f(x)$

• Unstructured: can be solved with $O(\sqrt{|X|})$ queries (Dürr & Høyer 1996)

Discrete structures:

- Finding the shortest path in a graph $O(n^2)$ (Dijkstra 1956); quantum $\widetilde{O}(n^{3/2})$ (Dürr, Heiligman, Høyer, Mhalla 2004)
- Matching and flow problems: Polynomial speed-ups, typically based on Grover search

Optimization

In general we want to find the best solution $\min_{x \in X} f(x)$

• Unstructured: can be solved with $O(\sqrt{|X|})$ queries (Dürr & Høyer 1996)

Discrete structures:

- Finding the shortest path in a graph $O(n^2)$ (Dijkstra 1956); quantum $\widetilde{O}(n^{3/2})$ (Dürr, Heiligman, Høyer, Mhalla 2004)
- Matching and flow problems: Polynomial speed-ups, typically based on Grover search
- NP-hard problems:

Quadratic speed-ups for Schöning's algorithm for 3-SAT (Ampl. ampl.) Quadratic speed-ups for backtracking (Montanaro 2015) Polynomial speed-ups for dynamical programming, e.g., TSP $2^n \rightarrow 1.73^n$ (Ambainis, Balodis, Iraids, Kokainis, Prūsis, Vihrovs 2018)

Continuous optimization

Convex optimization

Linear programs, semidefinite programs SDPs: Õ((√n + √m)sγ⁵) (Brandão et al., van Apeldoorn et al. 2016-18) Zero-sum games: Õ((√n + √m)/ε³), Õ(s/ε^{3.5}) (Apeldoorn & G 2019)

Quantum interior point method (Kerenidis & Prakash 2018)

 Polynomial speed-up for estimating volumes of convex bodies (Chakrabarti, Childs, Hung, Li, Wang, Wu 2019)

Continuous optimization

Convex optimization

Linear programs, semidefinite programs SDPs: Õ((√n + √m)sγ⁵) (Brandão et al., van Apeldoorn et al. 2016-18) Zero-sum games: Õ((√n + √m)/ε³), Õ(s/ε^{3.5}) (Apeldoorn & G 2019)

Quantum interior point method (Kerenidis & Prakash 2018)

 Polynomial speed-up for estimating volumes of convex bodies (Chakrabarti, Childs, Hung, Li, Wang, Wu 2019)

Application of the SDP solver: Shadow tomography (Aaronson 2017)

Given *n*-dimensional quantum state ρ , estimate the probability of acceptance of each the two-outcome measurements E_1, \ldots, E_m , to within additive error ε .

$$\widetilde{O}\left(rac{\log^4(m)\log(n)}{\varepsilon^4}
ight)$$
 copies suffice

Pay-off matrix of Alice is $A \in \mathbb{R}^{m \times n}$. Expected pay-off for strategies $x, y: x^T A y$

Pay-off matrix of Alice is $A \in \mathbb{R}^{m \times n}$. Expected pay-off for strategies x, y: $x^T A y$ **Algorithm for approximate Nash-equilibrium (Grigoriadis & Khachiyan 1995)** Start with $x^{(0)} \leftarrow 0 \in \mathbb{R}^n$ and $y^{(0)} \leftarrow 0 \in \mathbb{R}^m$

Pay-off matrix of Alice is $A \in \mathbb{R}^{m \times n}$. Expected pay-off for strategies $x, y: x^T A y$

Algorithm for approximate Nash-equilibrium (Grigoriadis & Khachiyan 1995)

Start with
$$x^{(0)} \leftarrow 0 \in \mathbb{R}^n$$
 and $y^{(0)} \leftarrow 0 \in \mathbb{R}^n$
for $t = 1, 2, \dots, \widetilde{O}(rac{1}{\varepsilon^2})$ do

•
$$P^{(t)} \leftarrow e^{-A^T x^{(t)}}$$
 and $Q^{(t)} \leftarrow e^{Ay^{(t)}}$

•
$$p^{(t)} \leftarrow P^{(t)} / ||P^{(t)}||_1$$
 and $q^{(t)} \leftarrow Q^{(t)} / ||Q^{(t)}||_1$

• Sample $a \sim p^{(t)}$ and $b \sim q^{(t)}$

•
$$y^{(t+1)} = y^{(t)} + \frac{\varepsilon}{4}e_a$$
 and $x^{(t+1)} = x^{(t)} + \frac{\varepsilon}{4}e_b$

Pay-off matrix of Alice is $A \in \mathbb{R}^{m \times n}$. Expected pay-off for strategies $x, y: x^T A y$

Algorithm for approximate Nash-equilibrium (Grigoriadis & Khachiyan 1995)

Start with
$$x^{(0)} \leftarrow 0 \in \mathbb{R}^n$$
 and $y^{(0)} \leftarrow 0 \in \mathbb{R}^n$
for $t = 1, 2, \dots, \widetilde{O}(rac{1}{\varepsilon^2})$ do

•
$$P^{(t)} \leftarrow e^{-A^T \chi^{(t)}}$$
 and $Q^{(t)} \leftarrow e^{Ay^{(t)}}$

•
$$p^{(t)} \leftarrow P^{(t)} / ||P^{(t)}||_1$$
 and $q^{(t)} \leftarrow Q^{(t)} / ||Q^{(t)}||_1$

• Sample $a \sim p^{(t)}$ and $b \sim q^{(t)}$

•
$$y^{(t+1)} = y^{(t)} + \frac{\varepsilon}{4}e_a$$
 and $x^{(t+1)} = x^{(t)} + \frac{\varepsilon}{4}e_b$

The main taks is Gibbs sampling from a linear-combination of vectors.

Pay-off matrix of Alice is $A \in \mathbb{R}^{m \times n}$. Expected pay-off for strategies $x, y: x^T A y$

Algorithm for approximate Nash-equilibrium (Grigoriadis & Khachiyan 1995)

Start with
$$x^{(0)} \leftarrow 0 \in \mathbb{R}^n$$
 and $y^{(0)} \leftarrow 0 \in \mathbb{R}^n$
for $t = 1, 2, \dots, \widetilde{O}(rac{1}{\varepsilon^2})$ do

•
$$P^{(t)} \leftarrow e^{-A^T \chi^{(t)}}$$
 and $Q^{(t)} \leftarrow e^{Ay^{(t)}}$

•
$$p^{(t)} \leftarrow P^{(t)} / ||P^{(t)}||_1$$
 and $q^{(t)} \leftarrow Q^{(t)} / ||Q^{(t)}||_1$

• Sample $a \sim p^{(t)}$ and $b \sim q^{(t)}$

•
$$y^{(t+1)} = y^{(t)} + \frac{\varepsilon}{4}e_a$$
 and $x^{(t+1)} = x^{(t)} + \frac{\varepsilon}{4}e_b$

The main taks is Gibbs sampling from a linear-combination of vectors. For SDPs: we need to Gibbs sample from a linear-combination of matrices.

Statistics, estimation and stochastic algorithms

Quadratic speed-up for Monte-Carlo methods $O\left(\frac{\sigma}{\varepsilon}\right)$ (Montanaro 2015) Generalizes approximate counting (Brassard, Høyer, Mosca, Tapp 1998)

Statistics, estimation and stochastic algorithms

- Quadratic speed-up for Monte-Carlo methods O(^σ/_ε) (Montanaro 2015) Generalizes approximate counting (Brassard, Høyer, Mosca, Tapp 1998)
- Testing equality of a distribution on [n] (with query complexity)
 To an unknown distribution O(n^{1/2}) (Bravyi, Hassidim, Harrow 2009; G, Li 2019)
 To a known distribution O(n^{1/3}) (Chakraborty, Fischer, Matsliah, de Wolf 2010)
- Estimating the (Shannon / von Neumann) entropy of a distribution on [n] classical distribution: query complexity O
 (n^{1/2}) (Li & Wu 2017) density operator: query complexity O
 (n) (G & Li 2019)

Statistics, estimation and stochastic algorithms

- Quadratic speed-up for Monte-Carlo methods O(^σ/_ε) (Montanaro 2015) Generalizes approximate counting (Brassard, Høyer, Mosca, Tapp 1998)
- Testing equality of a distribution on [n] (with query complexity)
 To an unknown distribution O(n^{1/2}) (Bravyi, Hassidim, Harrow 2009; G, Li 2019)
 To a known distribution O(n^{1/3}) (Chakraborty, Fischer, Matsliah, de Wolf 2010)
- Estimating the (Shannon / von Neumann) entropy of a distribution on [n] classical distribution: query complexity O
 (n^{1/2}) (Li & Wu 2017) density operator: query complexity O
 (n) (G & Li 2019)

Recommendation systems – Netflix challange

Image source: https://towardsdatascience.com

The assumed structure of preference matrix:

Movies: a linear combination of a small number of features User taste: a linear weighing of the features

Image source: https://towardsdatascience.com

Major difficulty: how to input the data?

Data conversion: classical to quantum

• Given $b \in \mathbb{R}^m$ prepare

$$|b
angle = \sum_{i=1}^m rac{b_i}{\|b\|}$$

Major difficulty: how to input the data?

Data conversion: classical to quantum

• Given $b \in \mathbb{R}^m$ prepare

$$|b\rangle = \sum_{i=1}^{m} \frac{b_i}{\|b\|}$$

• Given $A \in \mathbb{R}^{m \times n}$ construct quantum circuit (block-encoding)

$$U = \begin{pmatrix} A/||A||_F & . \\ . & . \end{pmatrix}.$$

How to preserve the exponential advantage?

Data structure

Data structure

Firs prepare: $\sqrt{\sum_{i=0}^{1} |b_i|^2} |0\rangle + \sqrt{\sum_{i=2}^{3} |b_i|^2} |1\rangle$

Data structure

Firs prepare: $\sqrt{\sum_{i=0}^{1} |b_i|^2} |0\rangle + \sqrt{\sum_{i=2}^{3} |b_i|^2} |1\rangle$ Map $\sqrt{\sum_{i=0}^{1} |b_i|^2} |0\rangle \mapsto |b_0||00\rangle + |b_1||01\rangle$ and

Data structure

Firs prepare: $\sqrt{\sum_{i=0}^{1} |b_i|^2} |0\rangle + \sqrt{\sum_{i=2}^{3} |b_i|^2} |1\rangle$ Map $\sqrt{\sum_{i=0}^{1} |b_i|^2} |0\rangle \mapsto |b_0| |00\rangle + |b_1| |01\rangle$ and $\sqrt{\sum_{i=2}^{3} |b_i|^2} |10\rangle \mapsto |b_2| |11\rangle + |b_3| |01\rangle$

Data structure

Firs prepare: $\sqrt{\sum_{i=0}^{1} |b_i|^2} |0\rangle + \sqrt{\sum_{i=2}^{3} |b_i|^2} |1\rangle$ Map $\sqrt{\sum_{i=0}^{1} |b_i|^2} |0\rangle \mapsto |b_0| |00\rangle + |b_1| |01\rangle$ and $\sqrt{\sum_{i=2}^{3} |b_i|^2} |10\rangle \mapsto |b_2| |11\rangle + |b_3| |01\rangle$ Add phases to get $b_0 |00\rangle + b_1 |01\rangle + b_2 |10\rangle + b_3 |11\rangle$

On-line updates to the data structure

Data structure

On-line updates to the data structure

Data structure

Cost is about the depth: log(dimension)

More about this in Ewin Tang's afternoon talk