Quantum Singular Value Transformation & Its Algorithmic Applications

András Gilyén

Institute for Quantum Information and Matter

The Quantum Wave in Computing Boot Camp Berkeley, 28th January 2020

Quantum walks

Continuous-time quantum / random walks

Laplacian of a weighted graph

Let $G = (V, E)$ be a finite simple graph, with non-negative edge-weights $w: E \to \mathbb{R}_+$. The Laplacian is defined as

$$
u \neq v: L_{uv} = w_{uv}, \text{ and } L_{uu} = -\sum_{v} w_{uv}.
$$

Continuous-time quantum / random walks

Laplacian of a weighted graph

Let $G = (V, E)$ be a finite simple graph, with non-negative edge-weights $w: E \to \mathbb{R}_+$. The Laplacian is defined as

$$
u \neq v: L_{uv} = w_{uv}, \text{ and } L_{uu} = -\sum_{v} w_{uv}.
$$

Continuous-time walks

Evolution of the state:

$$
\frac{d}{dt}p_u(t) = \sum_{v \in V} L_{uv}p_v(t) \qquad \Longrightarrow \qquad p(t) = e^{tL}p(0)
$$

Continuous-time quantum / random walks

Laplacian of a weighted graph

Let $G = (\overline{V}, E)$ be a finite simple graph, with non-negative edge-weights $w : E \to \mathbb{R}_+$. The Laplacian is defined as

$$
u \neq v: L_{uv} = w_{uv}, \text{ and } L_{uu} = -\sum_{v} w_{uv}.
$$

Continuous-time walks

Evolution of the state:

$$
\frac{d}{dt}p_u(t) = \sum_{v \in V} L_{uv}p_v(t) \qquad \Longrightarrow \qquad p(t) = e^{tL}p(0)
$$

$$
i\frac{d}{dt}\psi_u(t) = \sum_{v \in V} L_{uv}\psi_v(t) \qquad \Longrightarrow \qquad \qquad \psi(t) = e^{-itL}\psi(0)
$$

Discrete-time quantum / random walks

Discrete-time Markov-chain on a weighted graph

Transition probability in one step (stochastic matrix)

$$
P_{vu} = \Pr(\text{step to } v \mid \text{being at } u) = \frac{w_{vu}}{\sum_{v' \in U} w_{v'u}}
$$

Discrete-time quantum / random walks

Discrete-time Markov-chain on a weighted graph

Transition probability in one step (stochastic matrix)

$$
P_{vu} = \Pr(\text{step to } v \mid \text{being at } u) = \frac{w_{vu}}{\sum_{v' \in U} w_{v'u}}
$$

A unitary implementing the update

$$
U:|0\rangle|u\rangle\mapsto\sum_{v\in V}\sqrt{P_{vu}}|v\rangle|u\rangle
$$

Discrete-time quantum / random walks

Discrete-time Markov-chain on a weighted graph

Transition probability in one step (stochastic matrix)

$$
P_{vu} = \Pr(\text{step to } v \mid \text{being at } u) = \frac{w_{vu}}{\sum_{v' \in U} w_{v'u}}
$$

A unitary implementing the update

$$
U:|0\rangle|u\rangle\mapsto\sum_{v\in V}\sqrt{P_{vu}}|v\rangle|u\rangle
$$

How to erase history? The Szegedy quantum walk operator:

 $W' := U^{\dagger} \cdot SWAP \cdot U$ $W := U^{\dagger} \cdot \text{SWAP} \cdot U((2|0 \times 0| \otimes I) - I)$

For simplicity let us assume $P_{uv} = P_{vu}$, i.e., the total weight of vertices is constant.

For simplicity let us assume $P_{\mu\nu} = P_{\nu\mu}$, i.e., the total weight of vertices is constant.

A block-encoding of the Markov chain: $(\langle 0 | \otimes I \rangle W' (|0\rangle \otimes I) = P$

For simplicity let us assume $P_{\mu\nu} = P_{\nu\mu}$, i.e., the total weight of vertices is constant.

A block-encoding of the Markov chain: $(\langle 0 | \otimes I \rangle W' (|0\rangle \otimes I) = P$ Proof:

$$
\langle 0|\langle u| W' |0\rangle |v\rangle = \langle 0|\langle u| U^{\dagger}\cdot \text{SWAP} \cdot U |0\rangle |v\rangle = \left(\sum_{v' \in V} \sqrt{P_{v'u}} |v'\rangle |u\rangle\right)^{\dagger} \text{SWAP}\left(\sum_{u' \in V} \sqrt{P_{u'v}} |u'\rangle |v\rangle\right)
$$

For simplicity let us assume $P_{uv} = P_{vu}$, i.e., the total weight of vertices is constant.

A block-encoding of the Markov chain: $(\langle 0 | \otimes I \rangle W' (|0\rangle \otimes I) = P$ Proof:

$$
\langle 0|\langle u| W' |0\rangle |v\rangle = \langle 0|\langle u| U^\dagger \cdot \text{SWAP} \cdot U |0\rangle |v\rangle = \left(\sum_{v' \in V} \, \sqrt{P_{v'u}} |v'\rangle |u\rangle \right)^\dagger \text{SWAP} \biggl(\sum_{v' \in V} \, \sqrt{P_{v'v}} |u'\rangle |v\rangle \biggr)
$$

Multiple steps of the quantum walk: $(\langle 0| \otimes l) W^k (|0\rangle \otimes l) = T_k (P)$ $[T_k(x) = \cos(k \arccos(x))$ Chebyshev polynomials: $T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x)$

For simplicity let us assume $P_{uv} = P_{vu}$, i.e., the total weight of vertices is constant.

A block-encoding of the Markov chain: $(\langle 0 | \otimes I \rangle W' (|0\rangle \otimes I) = P$ Proof:

$$
\langle 0|\langle u| W' |0\rangle |v\rangle = \langle 0|\langle u| U^\dagger \cdot \text{SWAP} \cdot U |0\rangle |v\rangle = \left(\sum_{v' \in V} \, \sqrt{P_{v'u}} |v'\rangle |u\rangle \right)^\dagger \text{SWAP} \biggl(\sum_{v' \in V} \, \sqrt{P_{v'v}} |u'\rangle |v\rangle \biggr)
$$

Multiple steps of the quantum walk: $(\langle 0| \otimes l) W^k (|0\rangle \otimes l) = T_k (P)$ $[T_k(x) = \cos(k \arccos(x))$ Chebyshev polynomials: $T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x)$ Proof: Proceed by induction, observe $T_0(P) = I \vee I$, $T_1(P) = P \vee I$

For simplicity let us assume $P_{\mu\nu} = P_{\nu\mu}$, i.e., the total weight of vertices is constant.

A block-encoding of the Markov chain: $(\langle 0 | \otimes I \rangle W' (|0\rangle \otimes I) = P$ Proof:

$$
\langle 0|\langle u| W' |0\rangle |v\rangle = \langle 0|\langle u| U^{\dagger}\cdot \text{SWAP} \cdot U |0\rangle |v\rangle = \left(\sum_{v' \in V} \sqrt{P_{v'u}} |v'\rangle |u\rangle\right)^{\dagger} \text{SWAP}\left(\sum_{u' \in V} \sqrt{P_{u'v}} |u'\rangle |v\rangle\right)
$$

Multiple steps of the quantum walk: $(\langle 0| \otimes l) W^k (|0\rangle \otimes l) = T_k (P)$ $[T_k(x) = \cos(k \arccos(x))$ Chebyshev polynomials: $T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x)$ Proof: Proceed by induction, observe $T_0(P) = I \checkmark$, $T_1(P) = P \checkmark$ $(\langle 0| \otimes I) W^{k+1} (|0\rangle \otimes I) = (\langle 0| \otimes I) W' ((2|0\rangle\langle 0| \otimes I) - I) W^k (|0\rangle \otimes I) =$ $\phi = (\bra{0} \otimes I)W'(2\ket{0}\bra{0} \otimes I)W^{k}(\ket{0}\otimes I) - (\bra{0} \otimes I)W^{k-1}(\ket{0}\otimes I)$ $\overline{z P}$ $2P$ $T_k(P)$ $T_{k-1}(P)$

For simplicity let us assume $P_{\mu\nu} = P_{\nu\mu}$, i.e., the total weight of vertices is constant.

A block-encoding of the Markov chain: $(\langle 0 | \otimes I \rangle W' (|0\rangle \otimes I) = P$ Proof:

$$
\langle 0|\langle u| W' |0\rangle |v\rangle = \langle 0|\langle u| U^\dagger \cdot \text{SWAP} \cdot U |0\rangle |v\rangle = \left(\sum_{v' \in V} \, \sqrt{P_{v'u}} |v'\rangle |u\rangle \right)^\dagger \text{SWAP} \biggl(\sum_{v' \in V} \, \sqrt{P_{v'v}} |u'\rangle |v\rangle \biggr)
$$

Multiple steps of the quantum walk: $(\langle 0| \otimes l) W^k (|0\rangle \otimes l) = T_k (P)$ $[T_k(x) = \cos(k \arccos(x))$ Chebyshev polynomials: $T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x)$ Proof: Proceed by induction, observe $T_0(P) = I \vee I$, $T_1(P) = P \vee I$ $(\langle 0| \otimes I) W^{k+1} (|0\rangle \otimes I) = (\langle 0| \otimes I) W' ((2|0\rangle\langle 0| \otimes I) - I) W^k (|0\rangle \otimes I) =$ $\phi = (\bra{0} \otimes I)W'(2\ket{0}\bra{0} \otimes I)W^{k}(\ket{0}\otimes I) - (\bra{0} \otimes I)W^{k-1}(\ket{0}\otimes I)$ $\overline{z P}$ $2P$ $T_k(P)$ $T_{k-1}(P)$

Linear combination of (non-)unitary mat. [Childs & Wiebe '12, Berry et al. '15]

Suppose that $V=\sum_{k}|k\rangle\!\langle k|\otimes U^{k},$ and $Q:|0\rangle\mapsto \sum_{k}p_{k}$ √ $\overline{q_i}$ i i for $q_i \in [0, 1]$, then

Linear combination of (non-)unitary mat. [Childs & Wiebe '12, Berry et al. '15]

Suppose that $V=\sum_{k}|k\rangle\!\langle k|\otimes U^{k},$ and $Q:|0\rangle\mapsto \sum_{k}p_{k}$ √ $\overline{q_{i}}|i\rangle$ for $q_{i}\in[0,1],$ then

Linear combination of (non-)unitary mat. [Childs & Wiebe '12, Berry et al. '15]

Suppose that $V=\sum_{k}|k\rangle\!\langle k|\otimes U^{k},$ and $Q:|0\rangle\mapsto \sum_{k}p_{k}$ √ $\overline{q_{i}}|i\rangle$ for $q_{i}\in[0,1],$ then

In particular the top-left corner of $\sum_k q_k W^k$ is $\sum_i q_kT_k(P)$.

Linear combination of (non-)unitary mat. [Childs & Wiebe '12, Berry et al. '15]

Suppose that $V=\sum_{k}|k\rangle\!\langle k|\otimes U^{k},$ and $Q:|0\rangle\mapsto \sum_{k}p_{k}$ √ $\overline{q_{i}}|i\rangle$ for $q_{i}\in[0,1],$ then

In particular the top-left corner of $\sum_k q_k W^k$ is $\sum_i q_kT_k(P)$.

Corollary: Quantum fast-forwarding (Apers & Sarlette 2018) We can implement a unitary V such that $(\langle 0| \otimes I) V(|0\rangle \otimes I) \stackrel{\varepsilon}{\approx} P^{t}$

with using only $O\!\!\left(\sqrt{t\log(1/\varepsilon)} \right)$ quantum walk steps.

Linear combination of (non-)unitary mat. [Childs & Wiebe '12, Berry et al. '15]

Suppose that $V=\sum_{k}|k\rangle\!\langle k|\otimes U^{k},$ and $Q:|0\rangle\mapsto \sum_{k}p_{k}$ √ $\overline{q_{i}}|i\rangle$ for $q_{i}\in[0,1],$ then

In particular the top-left corner of $\sum_k q_k W^k$ is $\sum_i q_kT_k(P)$.

Corollary: Quantum fast-forwarding (Apers & Sarlette 2018) We can implement a unitary V such that $(\langle 0| \otimes I) V(|0\rangle \otimes I) \stackrel{\varepsilon}{\approx} P^{t}$

with using only $O(\sqrt{t \log(1/\varepsilon)})$ quantum walk steps. (Proof: $x^t \approx \sum_{k=0}^{\infty} \sqrt{k}$ $\int_{k=0}^{\infty}$ $\mathcal{T}_k(x)$

Szegedy quantum walk based search

Suppose we have some unknown marked vertices $M \subset V$.

Quadratically faster hitting

Hitting time: expected time to hit a marked vertex starting from the stationary distr. Starting from the quantum state $\sum_{\mathsf{v}\in\mathsf{V}}$ $\sqrt{\pi_v}$ $|v\rangle$ we can

- **■** detect the presence of marked vertices (*M* \neq 0) in time *O*(\sqrt{HT}) (Szegedy 2004)
- ► find a marked vertex in time $O\left(\frac{1}{\sqrt{\delta \varepsilon}}\right)$ (Magniez, Nayak, Roland, Sántha 2006)
- ► find a marked vertex in time $\widetilde{O}(\sqrt{HT})$ (Ambainis, **G**, Jeffery, Kokainis 2019)

Szegedy quantum walk based search

Suppose we have some unknown marked vertices $M \subset V$.

Quadratically faster hitting

Hitting time: expected time to hit a marked vertex starting from the stationary distr. Starting from the quantum state $\sum_{\mathsf{v}\in\mathsf{V}}$ $\sqrt{\pi_v}$ $|v\rangle$ we can

- **■** detect the presence of marked vertices (*M* \neq 0) in time *O*(\sqrt{HT}) (Szegedy 2004)
- ► find a marked vertex in time $O\left(\frac{1}{\sqrt{\delta \varepsilon}}\right)$ (Magniez, Nayak, Roland, Sántha 2006)
- ► find a marked vertex in time $\widetilde{O}(\sqrt{HT})$ (Ambainis, **G**, Jeffery, Kokainis 2019)

Starting from arbitrary distributions

Starting from distribution σ on some vertices we can

- \blacktriangleright detect marked vertices in square-root commute time $O\!\big(\sqrt{C_{\sigma, M}}\big)$ (Belovs 2013)
- \blacktriangleright find a marked vertex in time $\widetilde{O}\!\!\left(\sqrt{C_{\sigma,\mathsf{M}}}\right)$ (Piddock; Apers, **G**, Jeffery 2019)

Element Distinctness

- \blacktriangleright Black box: Computes f on inputs corresponding to elements of $[n]$
- \triangleright Question: Are there any $i \neq j \in [n] \times [n]$ such that $f(i) = f(j)$?
- ► Query complexity: $O(n^{2/3})$ (Ambainis 2003) $\Omega(n^{2/3})$ (Aaronson & Shi 2001)

Element Distinctness

- \triangleright Black box: Computes f on inputs corresponding to elements of $[n]$
- \triangleright Question: Are there any $i \neq j \in [n] \times [n]$ such that $f(i) = f(j)$?
- ► Query complexity: $O(n^{2/3})$ (Ambainis 2003) $\Omega(n^{2/3})$ (Aaronson & Shi 2001)

Triangle Finding $[(2014)$ non-walk algorithm by Le Gall: $O(n^{5/4})$]

- **Black box:** For any pair $u, v \in V \times V$ tells whether there is an edge uv
- \triangleright Question: Is there any triangle in G?
- ▶ Query complexity: $O(n^{13/10})$ (Magniez, Sántha, Szegedy 2003)

Element Distinctness

- \triangleright Black box: Computes f on inputs corresponding to elements of $[n]$
- \triangleright Question: Are there any $i \neq j \in [n] \times [n]$ such that $f(i) = f(j)$?
- ► Query complexity: $O(n^{2/3})$ (Ambainis 2003) $\Omega(n^{2/3})$ (Aaronson & Shi 2001)

Triangle Finding $[(2014)$ non-walk algorithm by Le Gall: $O(n^{5/4})$]

- **Black box:** For any pair $u, v \in V \times V$ tells whether there is an edge uv
- \triangleright Question: Is there any triangle in G?
- ▶ Query complexity: $O(n^{13/10})$ (Magniez, Sántha, Szegedy 2003)

Matrix Product Verification

- Black box: Tells any entry of the $n \times n$ matrices A, B or C.

ightharpoonup Does AB = C hold?
- Question: Does $AB = C$ hold?
- ▶ Query complexity: $O(n^{5/3})$ (Buhrman, Špalek 2004)

Block-encodings and

Quantum Singular Value Transformation

A way to represent large matrices on a quantum computer efficiently

$$
U=\left[\begin{array}{cc} A & \cdot \\ \cdot & \cdot \end{array}\right] \quad \Longleftrightarrow \quad A=(\langle 0|^a\otimes I)U(|0\rangle^b\otimes I).
$$

A way to represent large matrices on a quantum computer efficiently

$$
U = \left[\begin{array}{cc} A & \cdot \\ \cdot & \cdot \end{array} \right] \quad \Longleftrightarrow \quad A = (\langle 0|^a \otimes I) U \big(|0\rangle^b \otimes I \big).
$$

A way to represent large matrices on a quantum computer efficiently

$$
U=\left[\begin{array}{cc} A & \cdot \\ \cdot & \cdot \end{array}\right] \iff A=(\langle 0|^a\otimes I)U(|0\rangle^b\otimes I).
$$

One can efficiently construct block-encodings of

 \triangleright an efficiently implementable unitary U,

A way to represent large matrices on a quantum computer efficiently

$$
U=\left[\begin{array}{cc} A & \cdot \\ \cdot & \cdot \end{array}\right] \iff A=(\langle 0|^a\otimes I)U(|0\rangle^b\otimes I).
$$

- \triangleright an efficiently implementable unitary U ,
- \triangleright a sparse matrix with efficiently computable elements,

A way to represent large matrices on a quantum computer efficiently

$$
U = \left[\begin{array}{cc} A & \cdot \\ \cdot & \cdot \end{array} \right] \quad \Longleftrightarrow \quad A = (\langle 0|^a \otimes I) U(|0\rangle^b \otimes I).
$$

- \triangleright an efficiently implementable unitary U,
- \triangleright a sparse matrix with efficiently computable elements,
- \triangleright a matrix stored in a clever data-structure in a QRAM.

A way to represent large matrices on a quantum computer efficiently

$$
U = \left[\begin{array}{cc} A & \cdot \\ \cdot & \cdot \end{array} \right] \quad \Longleftrightarrow \quad A = (\langle 0|^a \otimes I) U(|0\rangle^b \otimes I).
$$

- \triangleright an efficiently implementable unitary U,
- \triangleright a sparse matrix with efficiently computable elements,
- \triangleright a matrix stored in a clever data-structure in a QRAM.
- **E** a density operator ρ given a unitary preparing its purification.

A way to represent large matrices on a quantum computer efficiently

$$
U = \left[\begin{array}{cc} A & \cdot \\ \cdot & \cdot \end{array} \right] \quad \Longleftrightarrow \quad A = (\langle 0|^a \otimes I) U(|0\rangle^b \otimes I).
$$

- \triangleright an efficiently implementable unitary U,
- \triangleright a sparse matrix with efficiently computable elements,
- a matrix stored in a clever data-structure in a QRAM.
- **a** density operator ρ given a unitary preparing its purification.
 E a POVM operator M given we can sample from the rand.var.:
- a POVM operator M given we can sample from the rand.var.: $Tr(\rho M)$,

A way to represent large matrices on a quantum computer efficiently

$$
U = \left[\begin{array}{cc} A & \cdot \\ \cdot & \cdot \end{array} \right] \quad \Longleftrightarrow \quad A = (\langle 0|^a \otimes I) U(|0\rangle^b \otimes I).
$$

One can efficiently construct block-encodings of

- \triangleright an efficiently implementable unitary U,
- \triangleright a sparse matrix with efficiently computable elements,
- \triangleright a matrix stored in a clever data-structure in a QRAM.
- **E** a density operator ρ given a unitary preparing its purification.
- **E** a POVM operator M given we can sample from the rand.var.: Tr(ρM),

Implementing arithmetic operations on block-encoded matrices

- \triangleright Given block-encodings A_i we can implement convex combinations.
- \triangleright Given block-encodings A, B we can implement block-encoding of AB.

Example: Block-encoding sparse matrices

Suppose that A is s-sparse and $|A_{ii}| \leq 1$ for all *i*, *j* indices.
Suppose that A is s-sparse and $|A_{ii}| \le 1$ for all *i*, *j* indices. Given "sparse-access " we can efficiently implement unitaries preparing "rows"

Suppose that A is s-sparse and $|A_{ii}| \le 1$ for all *i*, *j* indices. Given "sparse-access " we can efficiently implement unitaries preparing "rows"

$$
R: |0\rangle|0\rangle|i\rangle \rightarrow |0\rangle \sum_{k} \frac{(\sqrt{A_{ik}})^*}{\sqrt{s}}|i\rangle|k\rangle + |1\rangle|i\rangle|garbage\rangle,
$$

Suppose that A is s-sparse and $|A_{ii}| \leq 1$ for all *i*, *j* indices. Given "sparse-access " we can efficiently implement unitaries preparing "rows"

$$
R: |0\rangle|0\rangle|i\rangle \rightarrow |0\rangle \sum_{k} \frac{(\sqrt{A_{ik}})^*}{\sqrt{s}}|i\rangle|k\rangle + |1\rangle|i\rangle|garbage\rangle,
$$

and "columns"

$$
C\colon |0\rangle |0\rangle |j\rangle \to |0\rangle \sum_{\ell} \frac{\sqrt{A_{\ell j}}}{\sqrt{s}} |\ell\rangle |j\rangle + |2\rangle |j\rangle |garbage\rangle,
$$

Suppose that A is s-sparse and $|A_{ii}| \leq 1$ for all i, j indices. Given "sparse-access " we can efficiently implement unitaries preparing "rows"

$$
R: |0\rangle|0\rangle|i\rangle \rightarrow |0\rangle \sum_{k} \frac{(\sqrt{A_{ik}})^*}{\sqrt{s}}|i\rangle|k\rangle + |1\rangle|i\rangle|garbage\rangle,
$$

and "columns"

$$
C\colon |0\rangle |0\rangle |j\rangle \to |0\rangle \sum_{\ell} \frac{\sqrt{A_{\ell j}}}{\sqrt{s}} |\ell\rangle |j\rangle + |2\rangle |j\rangle |garbage\rangle,
$$

They form a block-encoding of A/s :

 $\langle 0|\langle 0|\langle i|R^\dagger C|0\rangle|0\rangle|j\rangle$

Suppose that A is s-sparse and $|A_{ii}| \leq 1$ for all *i*, *j* indices. Given "sparse-access " we can efficiently implement unitaries preparing "rows"

$$
R: |0\rangle|0\rangle|i\rangle \rightarrow |0\rangle \sum_{k} \frac{(\sqrt{A_{ik}})^*}{\sqrt{s}}|i\rangle|k\rangle + |1\rangle|i\rangle|garbage\rangle,
$$

and "columns"

$$
C\colon |0\rangle |0\rangle |j\rangle \to |0\rangle \sum_{\ell} \frac{\sqrt{A_{\ell j}}}{\sqrt{s}} |\ell\rangle |j\rangle + |2\rangle |j\rangle |garbage\rangle,
$$

They form a block-encoding of A/s :

 $\langle 0|\langle 0|\langle i|R^\dagger C|0\rangle|0\rangle|j\rangle = (R|0\rangle|0\rangle|i\rangle)^\dagger \cdot (C|0\rangle|0\rangle|j\rangle)$

Suppose that A is s-sparse and $|A_{ii}| \leq 1$ for all *i*, *j* indices. Given "sparse-access " we can efficiently implement unitaries preparing "rows"

$$
R: |0\rangle|0\rangle|i\rangle \rightarrow |0\rangle \sum_{k} \frac{(\sqrt{A_{ik}})^*}{\sqrt{s}}|i\rangle|k\rangle + |1\rangle|i\rangle|garbage\rangle,
$$

and "columns"

$$
C\colon |0\rangle |0\rangle |j\rangle \to |0\rangle \sum_{\ell} \frac{\sqrt{A_{\ell j}}}{\sqrt{s}} |\ell\rangle |j\rangle + |2\rangle |j\rangle |garbage\rangle,
$$

They form a block-encoding of A/s :

$$
\langle 0|\langle 0|\langle i|R^\dagger C|0\rangle|0\rangle|j\rangle = \left(R|0\rangle|0\rangle|i\rangle\right)^\dagger \cdot \left(C|0\rangle|0\rangle|j\rangle\right) = \left(\sum_k \frac{(\sqrt{A_{ik}})^*}{\sqrt{s}}|i\rangle|k\rangle\right)^\dagger \left(\sum_\ell \frac{\sqrt{A_{\ell j}}}{\sqrt{s}}|\ell\rangle|j\rangle\right)
$$

Suppose that A is s-sparse and $|A_{ii}| \leq 1$ for all *i*, *j* indices. Given "sparse-access " we can efficiently implement unitaries preparing "rows"

$$
R: |0\rangle|0\rangle|i\rangle \rightarrow |0\rangle \sum_{k} \frac{(\sqrt{A_{ik}})^*}{\sqrt{s}}|i\rangle|k\rangle + |1\rangle|i\rangle|garbage\rangle,
$$

and "columns"

$$
C\colon |0\rangle |0\rangle |j\rangle \to |0\rangle \sum_{\ell} \frac{\sqrt{A_{\ell j}}}{\sqrt{s}} |\ell\rangle |j\rangle + |2\rangle |j\rangle |garbage\rangle,
$$

They form a block-encoding of A/s :

$$
\langle 0|\langle 0|\langle i|R^{\dagger}C|0\rangle|0\rangle|j\rangle=\big(R|0\rangle|0\rangle|i\rangle\big)^{\dagger}\cdot \big(C|0\rangle|0\rangle|j\rangle\big)=\Bigg(\sum_{k}\frac{(\sqrt{A_{ik}})^*}{\sqrt{s}}|i\rangle|k\rangle\Bigg)^{\dagger}\bigg(\sum_{\ell}\frac{\sqrt{A_{\ell j}}}{\sqrt{s}}|\ell\rangle|j\rangle\bigg)=\frac{A_{ij}}{s}
$$

Main theorem about QSVT (G, Su, Low, Wiebe 2018)

Let $P: [-1, 1] \rightarrow [-1, 1]$ be a degree-d odd polynomial map.

Main theorem about QSVT (G, Su, Low, Wiebe 2018)

Let $P: [-1, 1]$ → $[-1, 1]$ be a degree-d odd polynomial map. Suppose that

$$
U = \left[\begin{array}{cc} A & \cdot \\ \cdot & \cdot \end{array} \right] = \left[\begin{array}{cc} \sum_i \varsigma_i |w_i \rangle \langle v_i | & \cdot \\ \cdot & \cdot \end{array} \right]
$$

Main theorem about QSVT (G, Su, Low, Wiebe 2018)

Let $P: [-1, 1]$ → $[-1, 1]$ be a degree-d odd polynomial map. Suppose that

$$
U = \left[\begin{array}{cc} A & \cdot \\ \cdot & \cdot \end{array} \right] = \left[\begin{array}{cc} \sum_i \varsigma_i |w_i \rangle \langle v_i| & \cdot \\ \cdot & \cdot \end{array} \right] \Longrightarrow U_{\Phi} = \left[\begin{array}{cc} \sum_i P(\varsigma_i) |w_i \rangle \langle v_i| & \cdot \\ \cdot & \cdot \end{array} \right],
$$

Main theorem about QSVT (G, Su, Low, Wiebe 2018)

Let $P: [-1, 1]$ → $[-1, 1]$ be a degree-d odd polynomial map. Suppose that

$$
U=\left[\begin{array}{cc} A & . \\ . & . \end{array}\right]=\left[\begin{array}{cc} \sum_i \varsigma_i |w_i \rangle \langle v_i | & . \\ . & . \end{array}\right]\Longrightarrow U_{\Phi}=\left[\begin{array}{cc} \sum_i P(\varsigma_i) |w_i \rangle \langle v_i | & . \\ . & . \end{array}\right],
$$

where $\Phi(\bar{P})\in\mathbb{R}^d$ is efficiently computable and U_Φ is the following circuit:

Main theorem about QSVT (G, Su, Low, Wiebe 2018)

Let $P: [-1, 1]$ → $[-1, 1]$ be a degree-d odd polynomial map. Suppose that

$$
U = \left[\begin{array}{cc} A & \cdot \\ \cdot & \cdot \end{array} \right] = \left[\begin{array}{cc} \sum_i \varsigma_i |w_i \rangle \langle v_i| & \cdot \\ \cdot & \cdot \end{array} \right] \Longrightarrow U_{\Phi} = \left[\begin{array}{cc} \sum_i P(\varsigma_i) |w_i \rangle \langle v_i| & \cdot \\ \cdot & \cdot \end{array} \right],
$$

where $\Phi(\bar{P})\in\mathbb{R}^d$ is efficiently computable and U_Φ is the following circuit:

Alternating phase modulation sequence U_{Φ} :=

Main theorem about QSVT (G, Su, Low, Wiebe 2018)

Let $P: [-1, 1]$ → $[-1, 1]$ be a degree-d odd polynomial map. Suppose that

$$
U=\left[\begin{array}{cc} A & . \\ . & . \end{array}\right]=\left[\begin{array}{cc} \sum_i \varsigma_i |w_i \rangle \langle v_i | & . \\ . & . \end{array}\right]\Longrightarrow U_{\Phi}=\left[\begin{array}{cc} \sum_i P(\varsigma_i) |w_i \rangle \langle v_i | & . \\ . & . \end{array}\right],
$$

where $\Phi(\bar{P})\in\mathbb{R}^d$ is efficiently computable and U_Φ is the following circuit:

Alternating phase modulation sequence U_{Φ} :=

Simmilar result holds for even polynomials.

Singular vector transformation and projection Fixed-point amplitude ampl. (Yoder, Low, Chuang 2014) Amplitude amplification problem: Given U such that √

$$
U|\overline{0}\rangle = \sqrt{p}|0\rangle|\psi_{\text{good}}\rangle + \sqrt{1-p}|1\rangle|\psi_{\text{bad}}\rangle, \quad \text{ prepare } |\psi_{\text{good}}\rangle.
$$

Singular vector transformation [Oblivious ampl. ampl. (Berry et al. 2013)] Given a unitary U, such that

$$
A=(\langle 0|^{ \otimes a} \otimes I)U(|0\rangle^{\otimes b} \otimes I)=\sum_{i=1}^k \varsigma_i |\phi_i \rangle\!\langle \psi_i|
$$

is a singular value decomposition.

Singular vector transformation [Oblivious ampl. ampl. (Berry et al. 2013)] Given a unitary U, such that

$$
A = (\langle 0|^{\otimes a} \otimes I)U(\ket{0}^{\otimes b} \otimes I) = \sum_{i=1}^k \varsigma_i |\phi_i \rangle \langle \psi_i |
$$

is a singular value decomposition. Transform one copy of a quantum state

$$
|\psi\rangle = \sum_{i=i}^k \alpha_i |\psi_i\rangle \quad \text{ to } \quad |\phi\rangle = \sum_{i=i}^k \alpha_i |\phi_i\rangle.
$$

Singular vector transformation [Oblivious ampl. ampl. (Berry et al. 2013)] Given a unitary U, such that

$$
A = (\langle 0|^{\otimes a} \otimes I)U(\ket{0}^{\otimes b} \otimes I) = \sum_{i=1}^k \varsigma_i |\phi_i \rangle \langle \psi_i |
$$

is a singular value decomposition. Transform one copy of a quantum state

$$
|\psi\rangle = \sum_{i=1}^k \alpha_i |\psi_i\rangle \quad \text{ to } \quad |\phi\rangle = \sum_{i=1}^k \alpha_i |\phi_i\rangle.
$$

If $\varsigma_i \geq \delta$ for all 0 $\neq \alpha_i$, we can ε -apx. using QSVT with compl. $O\Big(\frac{1}{\delta}\Big)$ $log(\frac{1}{e})$ \mathcal{L}

Singular value decomposition and pseudoinverse

Suppose $\mathcal{A}=\sum_i\varsigma_i\vert w_i\chi v_i\vert$ is a singular value decomposition. Suppose $A = \sum_i s_i |w_i \rangle |v_i|$ is a singular value decorri
Then the pseudoinverse of A is $A^+ = \sum_i 1/g_i |v_i \rangle |w_i|$

Singular value decomposition and pseudoinverse

Singular value decomposition and pseudoinverse

Singular value decomposition and pseudoinverse

Singular value decomposition and pseudoinverse

Singular value decomposition and pseudoinverse

Suppose $\mathcal{A}=\sum_i\varsigma_i\vert w_i\chi v_i\vert$ is a singular value decomposition. Suppose $A = \sum_i s_i |w_i \rangle v_i$ is a singular value decomposition.
Then the pseudoinverse of A is $A^+ = \sum_i 1/g_i |v_i \rangle w_i$ (note $A^\dagger = \sum_i g_i |v_i \rangle w_i$).

Implementing the pseudoinverse using QSVT

Suppose that U is an a-qubit block-encoding of A, and $||A^+|| \leq \kappa$.

Singular value decomposition and pseudoinverse

Suppose $\mathcal{A}=\sum_i\varsigma_i\vert w_i\chi v_i\vert$ is a singular value decomposition. Suppose $A = \sum_i s_i |w_i \rangle v_i$ is a singular value decomposition.
Then the pseudoinverse of A is $A^+ = \sum_i 1/g_i |v_i \rangle w_i$ (note $A^\dagger = \sum_i g_i |v_i \rangle w_i$).

Implementing the pseudoinverse using QSVT

Suppose that U is an a-qubit block-encoding of A, and $||A^+|| \leq \kappa$.
By OSVT we can implement an s-approximate block-encoding of By QSVT we can implement an ε -approximate block-encoding of

$$
\frac{1}{2\kappa}A^+
$$

using $O\big(\kappa\log\bigl(\frac{1}{\varepsilon}\bigr)\bigl)$ queries to $U.$ Finally amplify the result ($O(\kappa)$ times).

Singular value decomposition and pseudoinverse

Suppose $\mathcal{A}=\sum_i\varsigma_i\vert w_i\chi v_i\vert$ is a singular value decomposition. Suppose $A = \sum_i s_i |w_i \rangle v_i$ is a singular value decomposition.
Then the pseudoinverse of A is $A^+ = \sum_i 1/g_i |v_i \rangle w_i$ (note $A^\dagger = \sum_i g_i |v_i \rangle w_i$).

Implementing the pseudoinverse using QSVT

Suppose that U is an a-qubit block-encoding of A, and $||A^+|| \leq \kappa$.
By OSVT we can implement an s-approximate block-encoding of By QSVT we can implement an ε -approximate block-encoding of

$$
\frac{1}{2\kappa}A^+
$$

using $O\big(\kappa\log\bigl(\frac{1}{\varepsilon}\bigr)\bigl)$ queries to $\,U.$ Finally amplify the result ($O(\kappa)$ times).

- Complexity can be improved to $\widetilde{O}(\kappa)$ using variable-time amplitude-amplification.
- \triangleright Other variants are possible, such as weighted and generalized least-squares.

Singular value transf. = eigenvalue transf. [Low & Chuang (2017)]

Let $P: [-1, 1] \rightarrow [-1, 1]$ be a degree-d even/odd polynomial map.

Singular value transf. = eigenvalue transf. [Low & Chuang (2017)]

Let $P: [-1, 1] \rightarrow [-1, 1]$ be a degree-d even/odd polynomial map. If H is Hermitian, then $P(H)$ coincides with the singular value transform.

Singular value transf. = eigenvalue transf. [Low & Chuang (2017)]

Let $P: [-1, 1] \rightarrow [-1, 1]$ be a degree-d even/odd polynomial map. If H is Hermitian, then $P(H)$ coincides with the singular value transform. (Direct corollary: Fast-Forwarding Markov Chains.)

Singular value transf. = eigenvalue transf. [Low & Chuang (2017)]

Let $P: [-1, 1] \rightarrow [-1, 1]$ be a degree-d even/odd polynomial map. If H is Hermitian, then $P(H)$ coincides with the singular value transform. (Direct corollary: Fast-Forwarding Markov Chains.)

Removing parity constraint for Hermitian matrices

Let $P\colon [-1,1]\to [-\frac{1}{2}]$ hlock-encoding of a 2 block-encoding of a Hermitian matrix H. 1 $\frac{1}{2}$] be a degree-*d* polynomial map. Suppose that U is an *a*-qubit

Singular value transf. = eigenvalue transf. [Low & Chuang (2017)]

Let $P: [-1, 1] \rightarrow [-1, 1]$ be a degree-d even/odd polynomial map. If H is Hermitian, then $P(H)$ coincides with the singular value transform. (Direct corollary: Fast-Forwarding Markov Chains.)

Removing parity constraint for Hermitian matrices

Let $P\colon [-1,1]\to [-\frac{1}{2}]$ hlock-encoding of a 2 block-encoding of a Hermitian matrix H. We can implement 1 $\frac{1}{2}$] be a degree-*d* polynomial map. Suppose that U is an *a*-qubit

$$
U'=\left[\begin{array}{cc}P(H) & \cdot \\ \cdot & \cdot\end{array}\right],
$$

using d times U and U^{\dagger} , 1 controlled U , and $O(ad)$ extra two-qubit gates.

Optimal block-Hamiltonian simulation

Suppose that H is given as an *a*-qubit block-encoding, i.e., $\bm{\mathsf{U}}=$ $\left[\begin{array}{cc} H & \cdot \\ \cdot & \cdot \end{array} \right]$

Optimal block-Hamiltonian simulation

Suppose that H is given as an *a*-qubit block-encoding, i.e., $\bm{\mathsf{U}}=$ $\left[\begin{array}{cc} H & \cdot \\ \cdot & \cdot \end{array} \right]$

Complexity of block-Hamiltonians simulation [Low & Chuang (2016)]

Given *t*, $\varepsilon > 0$, implement a unitary U' , which is ε close to e^{itH} . Can be achieved with
query complexity query complexity

 $O(t + \log(1/\varepsilon))$.

Gate complexity is $O(a)$ times the above.

Optimal block-Hamiltonian simulation

Suppose that H is given as an *a*-qubit block-encoding, i.e., $\bm{\mathsf{U}}=$ $\left[\begin{array}{cc} H & \cdot \\ \cdot & \cdot \end{array} \right]$

Complexity of block-Hamiltonians simulation [Low & Chuang (2016)]

Given *t*, $\varepsilon > 0$, implement a unitary U' , which is ε close to e^{itH} . Can be achieved with
query complexity query complexity

 $O(t + \log(1/\varepsilon))$.

Gate complexity is $O(a)$ times the above.

Proof sketch

Approximate to ε -precision sin(tx) and cos(tx) with polynomials of degree as above. Then use QSVT and combine even/odd parts.

Gibbs sampling

Suppose that H is given as \bm{U} $=$ $\left[\begin{array}{ccc} H & . \ . & . \end{array} \right]$. The goal is to prepare $\rho \propto e^{-\beta H}$

Gibbs sampling

Suppose that H is given as \bm{U} $=$ $\left[\begin{array}{ccc} H & . \ . & . \end{array} \right]$. The goal is to prepare $\rho \propto e^{-\beta H}$

The basic algorithm (Inspired by Poulin & Wocjan 2009)

► Start with a maximally mixed state I/N , and apply the map $e^{-\frac{\beta}{2}H}$.
Suppose that H is given as \bm{U} $=$ $\left[\begin{array}{ccc} H & . \ . & . \end{array} \right]$. The goal is to prepare $\rho \propto e^{-\beta H}$

The basic algorithm (Inspired by Poulin & Wocjan 2009)

- ► Start with a maximally mixed state I/N , and apply the map $e^{-\frac{\beta H}{2}H}$.
- ► The new state is proportional to $e^{-\frac{\beta}{2}H}(\frac{1}{\lambda})$ $\frac{1}{N}\Big)\theta^{-\frac{\beta}{2}H}=\theta^{-\beta H}.$

Suppose that H is given as \bm{U} $=$ $\left[\begin{array}{ccc} H & . \ . & . \end{array} \right]$. The goal is to prepare $\rho \propto e^{-\beta H}$

The basic algorithm (Inspired by Poulin & Wocjan 2009)

- ► Start with a maximally mixed state I/N , and apply the map $e^{-\frac{\beta H}{2}H}$.
- ► The new state is proportional to $e^{-\frac{\beta}{2}H}(\frac{1}{\lambda})$ $\frac{1}{N}\Big)\theta^{-\frac{\beta}{2}H}=\theta^{-\beta H}.$
- \triangleright Finally, apply amplitude amplification. Probability of success?

Suppose that H is given as \bm{U} $=$ $\left[\begin{array}{ccc} H & . \ . & . \end{array} \right]$. The goal is to prepare $\rho \propto e^{-\beta H}$

The basic algorithm (Inspired by Poulin & Wocjan 2009)

- ► Start with a maximally mixed state I/N , and apply the map $e^{-\frac{\beta H}{2}H}$.
- ► The new state is proportional to $e^{-\frac{\beta}{2}H}(\frac{1}{\lambda})$ $\frac{1}{N}\Big)\theta^{-\frac{\beta}{2}H}=\theta^{-\beta H}.$
- \triangleright Finally, apply amplitude amplification. Probability of success?

Final algorithm

■ Use minimum finding (Dürr & Høyer 1996; van Apeldoorn, **G**, Gribling, de Wolf 2017) to find an approximation of the ground state energy H_0 .

Suppose that H is given as \bm{U} $=$ $\left[\begin{array}{ccc} H & . \ . & . \end{array} \right]$. The goal is to prepare $\rho \propto e^{-\beta H}$

The basic algorithm (Inspired by Poulin & Wocjan 2009)

- ► Start with a maximally mixed state I/N , and apply the map $e^{-\frac{\beta H}{2}H}$.
- ► The new state is proportional to $e^{-\frac{\beta}{2}H}(\frac{1}{\lambda})$ $\frac{1}{N}\Big)\theta^{-\frac{\beta}{2}H}=\theta^{-\beta H}.$
- \triangleright Finally, apply amplitude amplification. Probability of success?

Final algorithm

- Use minimum finding (Dürr & Høyer 1996; van Apeldoorn, **G**, Gribling, de Wolf 2017) to find an approximation of the ground state energy H_0 .
- ► Use the previous procedure but with the map $e^{-\frac{\beta}{2}(H-H_0 I)}$ √
- \blacktriangleright The final complexity is $\widetilde{O}\big($ $\overline{\mathsf{N}})$

Summarizing the various speed-ups by QSVT

Summarizing the various speed-ups by QSVT

Some other applications

- \triangleright Fast QMA amplification, fast quantum OR lemma
- ▶ Quantum Machine learning: PCA, principal component regression
- \triangleright "Non-commutative measurements" (for ground state preparation)
- \blacktriangleright Fractional queries

Quantum algorithms for optimization

Optimization

In general we want to find the best solution min_{x∈X} $f(x)$

■ Unstructured: can be solved with $O(\sqrt{|X|})$ queries (Dürr & Høyer 1996)

Optimization

In general we want to find the best solution min_{x∈X} $f(x)$

■ Unstructured: can be solved with $O(\sqrt{|X|})$ queries (Dürr & Høyer 1996)

Discrete structures:

- \blacktriangleright Finding the shortest path in a graph $\mathit{O}\big(n^{\mathsf{Z}}\big)$ (Dijkstra 1956); quantum $\widetilde{\mathit{O}}\big(n^{3/2}\big)$ (Dürr, Heiligman, Høyer, Mhalla 2004)
- \blacktriangleright Matching and flow problems: Polynomial speed-ups, typically based on Grover search

Optimization

In general we want to find the best solution min_{x∈X} $f(x)$

■ Unstructured: can be solved with $O(\sqrt{|X|})$ queries (Dürr & Høyer 1996)

Discrete structures:

- \blacktriangleright Finding the shortest path in a graph $\mathit{O}\big(n^{\mathsf{Z}}\big)$ (Dijkstra 1956); quantum $\widetilde{\mathit{O}}\big(n^{3/2}\big)$ (Dürr, Heiligman, Høyer, Mhalla 2004)
- \blacktriangleright Matching and flow problems:

Polynomial speed-ups, typically based on Grover search

► NP-hard problems:

Quadratic speed-ups for Schöning's algorithm for 3-SAT (Ampl. ampl.) Quadratic speed-ups for backtracking (Montanaro 2015) Polynomial speed-ups for dynamical programming, e.g., TSP $2^n \rightarrow 1.73^n$

(Ambainis, Balodis, Iraids, Kokainis, Prūsis, Vihrovs 2018)

Continuous optimization

Convex optimization

- \blacktriangleright Linear programs, semidefinite programs SDPs: $\widetilde{O}($ (√ $n +$ √ \overline{m})s $\gamma^5\big)$ (Brandão et al., van Apeldoorn et al. 2016-18)
 $\widetilde{\gamma}(\sqrt{n},\sqrt{n})$ and $\widetilde{\gamma}(\sqrt{n},\sqrt{n},\sqrt{n})$ Zero-sum games: $\widetilde{O}(\theta)$ √ $n +$ √ m)/ε³), $\widetilde{O}(s/\varepsilon^{3.5})$ (Apeldoorn & **G** 2019)
Casaridia & Prakaab 2010)
- ▶ Quantum interior point method (Kerenidis & Prakash 2018)
- I Polynomial speed-up for estimating volumes of convex bodies (Chakrabarti, Childs, Hung, Li, Wang, Wu 2019)

Continuous optimization

Convex optimization

 \blacksquare

- \blacktriangleright Linear programs, semidefinite programs SDPs: $\widetilde{O}($ (√ $n +$ √ \overline{m})s $\gamma^5\big)$ (Brandão et al., van Apeldoorn et al. 2016-18)
 $\widetilde{\gamma}(\sqrt{n},\sqrt{n})$ and $\widetilde{\gamma}(\sqrt{n},\sqrt{n},\sqrt{n})$ Zero-sum games: $\widetilde{O}(\theta)$ √ $n +$ √ m)/ε³), $\widetilde{O}(s/\varepsilon^{3.5})$ (Apeldoorn & **G** 2019)
Casaridia & Prakaab 2010)
- ▶ Quantum interior point method (Kerenidis & Prakash 2018)
- \blacktriangleright Polynomial speed-up for estimating volumes of convex bodies (Chakrabarti, Childs, Hung, Li, Wang, Wu 2019)

Application of the SDP solver: Shadow tomography (Aaronson 2017)

Given *n*-dimensional quantum state ρ , estimate the probability of acceptance of each the two-outcome measurements E_1, \ldots, E_m , to within additive error ε .

$$
\widetilde{O}\!\!\left(\frac{\log^4(m)\log(n)}{\varepsilon^4}\right)
$$
 copies suffice

Pay-off matrix of Alice is $A \in \mathbb{R}^{m \times n}$. Expected pay-off for strategies x, y: $x^T A y$

Pay-off matrix of Alice is $A \in \mathbb{R}^{m \times n}$. Expected pay-off for strategies x, y: $x^T A y$

Algorithm for approximate Nash-equilibrium (Grigoriadis & Khachiyan 1995) Start with $x^{(0)} \leftarrow 0 \in \mathbb{R}^n$ and $y^{(0)} \leftarrow 0 \in \mathbb{R}^m$

Pay-off matrix of Alice is $A \in \mathbb{R}^{m \times n}$. Expected pay-off for strategies x, y: $x^T A y$

Algorithm for approximate Nash-equilibrium (Grigoriadis & Khachiyan 1995)

Start with
$$
x^{(0)} \leftarrow 0 \in \mathbb{R}^n
$$
 and $y^{(0)} \leftarrow 0 \in \mathbb{R}^m$
for $t = 1, 2, ..., \widetilde{O}(\frac{1}{\epsilon^2})$ do

•
$$
P^{(t)} \leftarrow e^{-A^T x^{(t)}} \text{ and } Q^{(t)} \leftarrow e^{A y^{(t)}}
$$

•
$$
p^{(t)} \leftarrow P^{(t)}/\|P^{(t)}\|_1
$$
 and $q^{(t)} \leftarrow Q^{(t)}/\|Q^{(t)}\|_1$.

• Sample $a \sim p^{(t)}$ and $b \sim q^{(t)}$

•
$$
y^{(t+1)} = y^{(t)} + \frac{\varepsilon}{4}e_a
$$
 and $x^{(t+1)} = x^{(t)} + \frac{\varepsilon}{4}e_b$

Pay-off matrix of Alice is $A \in \mathbb{R}^{m \times n}$. Expected pay-off for strategies x, y: $x^T A y$

Algorithm for approximate Nash-equilibrium (Grigoriadis & Khachiyan 1995)

Start with
$$
x^{(0)} \leftarrow 0 \in \mathbb{R}^n
$$
 and $y^{(0)} \leftarrow 0 \in \mathbb{R}^m$
for $t = 1, 2, ..., \widetilde{O}(\frac{1}{\epsilon^2})$ do

•
$$
P^{(t)} \leftarrow e^{-A^T x^{(t)}}
$$
 and $Q^{(t)} \leftarrow e^{A y^{(t)}}$

•
$$
p^{(t)} \leftarrow P^{(t)} / ||P^{(t)}||_1
$$
 and $q^{(t)} \leftarrow Q^{(t)} / ||Q^{(t)}||$.

• Sample $a \sim p^{(t)}$ and $b \sim q^{(t)}$

•
$$
y^{(t+1)} = y^{(t)} + \frac{\varepsilon}{4} e_a
$$
 and $x^{(t+1)} = x^{(t)} + \frac{\varepsilon}{4} e_b$

The main taks is Gibbs sampling from a linear-combination of vectors.

Pay-off matrix of Alice is $A \in \mathbb{R}^{m \times n}$. Expected pay-off for strategies x, y: $x^T A y$

Algorithm for approximate Nash-equilibrium (Grigoriadis & Khachiyan 1995)

Start with
$$
x^{(0)} \leftarrow 0 \in \mathbb{R}^n
$$
 and $y^{(0)} \leftarrow 0 \in \mathbb{R}^m$
for $t = 1, 2, ..., \widetilde{O}(\frac{1}{\varepsilon^2})$ do

•
$$
P^{(t)} \leftarrow e^{-A^T x^{(t)}}
$$
 and $Q^{(t)} \leftarrow e^{A y^{(t)}}$

•
$$
p^{(t)} \leftarrow P^{(t)} / ||P^{(t)}||_1
$$
 and $q^{(t)} \leftarrow Q^{(t)} / ||Q^{(t)}||$.

• Sample $a \sim p^{(t)}$ and $b \sim q^{(t)}$

•
$$
y^{(t+1)} = y^{(t)} + \frac{\varepsilon}{4} e_a
$$
 and $x^{(t+1)} = x^{(t)} + \frac{\varepsilon}{4} e_b$

The main taks is Gibbs sampling from a linear-combination of vectors. For SDPs: we need to Gibbs sample from a linear-combination of matrices.

Statistics, estimation and stochastic algorithms

► Quadratic speed-up for Monte-Carlo methods $O(\frac{\sigma}{\varepsilon})$ (Montanaro 2015) Generalizes approximate counting (Brassard, Høyer, Mosca, Tapp 1998)

Statistics, estimation and stochastic algorithms

- ► Quadratic speed-up for Monte-Carlo methods $O(\frac{\sigma}{\varepsilon})$ (Montanaro 2015) Generalizes approximate counting (Brassard, Høyer, Mosca, Tapp 1998)
- \blacktriangleright Testing equality of a distribution on $[n]$ (with query complexity) To an unknown distribution $\widetilde{O}\!\!\left(n^{1/2}\right)$ (Bravyi, Hassidim, Harrow 2009; **G**, Li 2019) To a known distribution $\widetilde{O}\!\!\left(n^{1/3} \right)$ (Chakraborty, Fischer, Matsliah, de Wolf 2010)
- Estimating the (Shannon / von Neumann) entropy of a distribution on $[n]$ classical distribution: query complexity $\widetilde{O}\!\!\left(n^{1/2}\right)$ (Li & Wu 2017) density operator: query complexity $\widetilde{O}(n)$ (**G** & Li 2019)

Statistics, estimation and stochastic algorithms

- ► Quadratic speed-up for Monte-Carlo methods $O(\frac{\sigma}{\varepsilon})$ (Montanaro 2015) Generalizes approximate counting (Brassard, Høyer, Mosca, Tapp 1998)
- \blacktriangleright Testing equality of a distribution on $[n]$ (with query complexity) To an unknown distribution $\widetilde{O}\!\!\left(n^{1/2}\right)$ (Bravyi, Hassidim, Harrow 2009; **G**, Li 2019) To a known distribution $\widetilde{O}\!\!\left(n^{1/3} \right)$ (Chakraborty, Fischer, Matsliah, de Wolf 2010)
- Estimating the (Shannon / von Neumann) entropy of a distribution on $[n]$ classical distribution: query complexity $\widetilde{O}\!\!\left(n^{1/2}\right)$ (Li & Wu 2017) density operator: query complexity $\widetilde{O}(n)$ (**G** & Li 2019)

Recommendation systems – Netflix challange

Image source: https://towardsdatascience.com **20 / 24**

The assumed structure of preference matrix:

Movies: a linear combination of a small number of features User taste: a linear weighing of the features

Image source: https://towardsdatascience.com

Major difficulty: how to input the data?

Data conversion: classical to quantum

► Given $b \in \mathbb{R}^m$ prepare

$$
|b\rangle = \sum_{i=1}^m \frac{b_i}{\|b\|}
$$

Major difficulty: how to input the data?

Data conversion: classical to quantum

► Given $b \in \mathbb{R}^m$ prepare

$$
|b\rangle = \sum_{i=1}^m \frac{b_i}{\|b\|}
$$

► Given $A \in \mathbb{R}^{m \times n}$ construct quantum circuit (block-encoding)

$$
U=\left(\begin{array}{cc} A/\|A\|_F & \cdot \\ \cdot & \cdot \end{array}\right).
$$

How to preserve the exponential advantage?

Data structure

Data structure

Firs prepare: $\sqrt{\sum_{i=0}^1|b_i|^2}|0\rangle+\sqrt{\sum_{i=2}^3|b_i|^2}|1\rangle$ | |

Data structure

Firs prepare: $\sqrt{\sum_{i=0}^1|b_i|^2}|0\rangle+\sqrt{\sum_{i=2}^3|b_i|^2}|1\rangle$ | | Map $\sqrt{\sum_{i=0}^1|b_i|^2}|0\rangle \mapsto |b_0||00\rangle + |b_1||01\rangle$ and |

Data structure

Firs prepare: $\sqrt{\sum_{i=0}^1|b_i|^2}|0\rangle+\sqrt{\sum_{i=2}^3|b_i|^2}|1\rangle$ | | $\textsf{Map}\ \ \sqrt{\sum_{i=0}^1|b_i|^2}|0\rangle \mapsto |b_0||00\rangle+|b_1||01\rangle \text{ and } \ \sqrt{\sum_{i=2}^3|b_i|^2}|10\rangle \mapsto |b_2||11\rangle+|b_3||01\rangle$ |

Data structure

Firs prepare: $\sqrt{\sum_{i=0}^1|b_i|^2}|0\rangle+\sqrt{\sum_{i=2}^3|b_i|^2}|1\rangle$ | | $\textsf{Map}\ \ \sqrt{\sum_{i=0}^1|b_i|^2}|0\rangle \mapsto |b_0||00\rangle+|b_1||01\rangle \text{ and } \ \sqrt{\sum_{i=2}^3|b_i|^2}|10\rangle \mapsto |b_2||11\rangle+|b_3||01\rangle$ | Add phases to get $b_0|00\rangle + b_1|01\rangle + b_2|10\rangle + b_3|11\rangle$

On-line updates to the data structure

Data structure

On-line updates to the data structure

Data structure

Cost is about the depth: log(dimension)

More about this in Ewin Tang's afternoon talk