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Quantum walks



Continuous-time quantum / random walks
Laplacian of a weighted graph

Let G = (V ,E) be a finite simple graph, with non-negative edge-weights w : E → R+.
The Laplacian is defined as

u , v : Luv = wuv , and Luu = −
∑

v

wuv .

Continuous-time walks

Evolution of the state:

d
dt

pu(t) =
∑
v∈V

Luvpv(t) =⇒ p(t) = etLp(0)

i
d
dt
ψu(t) =

∑
v∈V

Luvψv(t) =⇒ ψ(t) = e−itLψ(0)
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Discrete-time quantum / random walks

Discrete-time Markov-chain on a weighted graph

Transition probability in one step (stochastic matrix)

Pvu = Pr(step to v | being at u) =
wvu∑

v′∈U wv′u
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Discrete-time quantum / random walks
Discrete-time Markov-chain on a weighted graph

Transition probability in one step (stochastic matrix)

Pvu = Pr(step to v | being at u) =
wvu∑

v′∈U wv′u

A unitary implementing the update

U : |0〉|u〉 7→
∑
v∈V

√
Pvu|v〉|u〉

How to erase history? The Szegedy quantum walk operator:

W ′ := U† · SWAP · U

W := U† · SWAP · U((2|0〉〈0| ⊗ I) − I)
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Understanding Szegedy’s quantum walk operator
For simplicity let us assume Puv = Pvu, i.e., the total weight of vertices is constant.

A block-encoding of the Markov chain: (〈0| ⊗ I)W ′(|0〉 ⊗ I) = P

Proof:

〈0|〈u|W ′|0〉|v〉 = 〈0|〈u|U† ·SWAP ·U|0〉|v〉 =

∑
v′∈V

√
Pv′u|v ′〉|u〉

†SWAP

∑
u′∈V

√
Pu′v |u′〉|v〉


Multiple steps of the quantum walk: (〈0| ⊗ I)W k (|0〉 ⊗ I) = Tk (P)

[Tk (x) = cos(k arccos(x)) Chebyshev polynomials: Tk+1(x) = 2xTk (x) − Tk−1(x)]

Proof: Proceed by induction, observe T0(P) = IX, T1(P) = P X

(〈0| ⊗ I)W k+1(|0〉 ⊗ I) = (〈0| ⊗ I)W ′((2|0〉〈0| ⊗ I) − I)W k (|0〉 ⊗ I) =

= (〈0| ⊗ I)W ′(2|0〉︸              ︷︷              ︸
2P

〈0| ⊗ I)W k (|0〉 ⊗ I)︸                  ︷︷                  ︸
Tk (P)

− (〈0| ⊗ I)W k−1(|0〉 ⊗ I)︸                      ︷︷                      ︸
Tk−1(P)
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Are we happy with Chebyshev polynomials?
Linear combination of (non-)unitary mat. [Childs & Wiebe ’12, Berry et al. ’15]

Suppose that V =
∑

k |k 〉〈k | ⊗ Uk , and Q : |0〉 7→
∑

i
√

qi |i〉 for qi ∈ [0, 1], then

(〈0|Q†⊗I)V(Q |0〉⊗I) =



|0〉

Q

• . . .

Q†

0

|0〉 • . . . 0
...

. . .
|0〉 . . . • 0

U U2 . . . U2n−1


=

∑
k

qk Uk

In particular the top-left corner of
∑

k qk W k is
∑

i qk Tk (P).

Corollary: Quantum fast-forwarding (Apers & Sarlette 2018)

We can implement a unitary V such that

(〈0| ⊗ I)V(|0〉 ⊗ I)
ε
≈ P t

with using only O
( √

t log(1/ε)
)

quantum walk steps. (Proof: x t ≈
∑≈√t

k=0 Tk (x))
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Szegedy quantum walk based search
Suppose we have some unknown marked vertices M ⊂ V .

Quadratically faster hitting

Hitting time: expected time to hit a marked vertex starting from the stationary distr.
Starting from the quantum state

∑
v∈V
√
πv |v〉 we can

I detect the presence of marked vertices (M , 0) in time O
(√

HT
)

(Szegedy 2004)

I find a marked vertex in time O
(

1
√
δε

)
(Magniez, Nayak, Roland, Sántha 2006)

I find a marked vertex in time Õ
(√

HT
)

(Ambainis, G, Jeffery, Kokainis 2019)

Starting from arbitrary distributions

Starting from distribution σ on some vertices we can
I detect marked vertices in square-root commute time O

( √
Cσ,M

)
(Belovs 2013)

I find a marked vertex in time Õ
( √

Cσ,M

)
(Piddock; Apers, G, Jeffery 2019)
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Walks on the Johnson graph (Sántha arXiv:0808.0059 )
Vertices: {S ⊂ N : |S | = K }; Edges: {(S,S ′) : |S4S ′| = 2}

Element Distinctness
I Black box: Computes f on inputs corresponding to elements of [n]

I Question: Are there any i , j ∈ [n] × [n] such that f(i) = f(j)?
I Query complexity: O(n2/3) (Ambainis 2003) Ω(n2/3) (Aaronson & Shi 2001)

Triangle Finding [(2014) non-walk algorithm by Le Gall: Õ(n5/4)]
I Black box: For any pair u, v ∈ V × V tells whether there is an edge uv
I Question: Is there any triangle in G?
I Query complexity: O(n13/10) (Magniez, Sántha, Szegedy 2003)

Matrix Product Verification
I Black box: Tells any entry of the n × n matrices A ,B or C.
I Question: Does AB = C hold?
I Query complexity: O(n5/3) (Buhrman, Špalek 2004)
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Block-encodings and

Quantum Singular Value Transformation



Block-encoding
A way to represent large matrices on a quantum computer efficiently

U =

[
A .
. .

]
⇐⇒ A = (〈0|a ⊗ I)U

(
|0〉b ⊗ I

)
.

One can efficiently construct block-encodings of

I an efficiently implementable unitary U,
I a sparse matrix with efficiently computable elements,
I a matrix stored in a clever data-structure in a QRAM,
I a density operator ρ given a unitary preparing its purification.
I a POVM operator M given we can sample from the rand.var.: Tr(ρM),

Implementing arithmetic operations on block-encoded matrices

I Given block-encodings Aj we can implement convex combinations.
I Given block-encodings A ,B we can implement block-encoding of AB.
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Example: Block-encoding sparse matrices
Suppose that A is s-sparse and |Aij | ≤ 1 for all i, j indices.

Given ”sparse-access “ we
can efficiently implement unitaries preparing ”rows“

R : |0〉|0〉|i〉 → |0〉
∑

k

(
√

Aik )∗
√

s
|i〉|k 〉+ |1〉|i〉|garbage〉,

and ”columns“

C : |0〉|0〉|j〉 → |0〉
∑
`

√
A`j
√

s
|`〉|j〉+ |2〉|j〉|garbage〉,

They form a block-encoding of A/s:

〈0|〈0|〈i|R†C |0〉|0〉|j〉= (R |0〉|0〉|i〉)†·(C |0〉|0〉|j〉)=

∑
k

(
√

Aik )∗
√

s
|i〉|k 〉

†∑
`

√
A`j
√

s
|`〉|j〉

 =
Aij

s
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Quantum Singular Value Transformation (QSVT)
Main theorem about QSVT (G, Su, Low, Wiebe 2018)

Let P : [−1, 1]→ [−1, 1] be a degree-d odd polynomial map.

Suppose that

U =

[
A .
. .

]
=

[ ∑
i ςi |wi〉〈vi | .

. .

]
=⇒ UΦ =

[ ∑
i P(ςi)|wi〉〈vi | .

. .

]
,

where Φ(P) ∈ Rd is efficiently computable and UΦ is the following circuit:

Alternating phase modulation sequence UΦ :=

H e−iφ1σz e−iφ2σz · · · e−iφdσz H

U U†

· · ·

· · ·

|0〉⊗a

· · ·

· · ·

· · ·

Simmilar result holds for even polynomials.
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Singular vector transformation and projection
Fixed-point amplitude ampl. (Yoder, Low, Chuang 2014)

Amplitude amplification problem: Given U such that

U|0̄〉 =
√

p|0〉|ψgood〉+
√

1 − p|1〉|ψbad〉, prepare |ψgood〉.

Note that (|0〉〈0| ⊗ I)U(|0̄〉〈0̄|) =
√

p|0, ψgood〉〈0̄|; we can apply QSVT.

Singular vector transformation [Oblivious ampl. ampl. (Berry et al. 2013)]

Given a unitary U, such that

A = (〈0|⊗a
⊗ I)U(|0〉⊗b

⊗ I) =
k∑

i=1

ςi |φi〉〈ψi |

is a singular value decomposition. Transform one copy of a quantum state

|ψ〉 =
k∑

i=i

αi |ψi〉 to |φ〉 =
k∑

i=i

αi |φi〉.

If ςi ≥ δ for all 0 , αi, we can ε-apx. using QSVT with compl. O
(

1
δ

log
(

1
ε

))
.
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Direct implementation of the pseudoinverse (HHL)
Singular value decomposition and pseudoinverse

Suppose A =
∑

i ςi |wi〉〈vi | is a singular value decomposition.
Then the pseudoinverse of A is A+ =

∑
i 1/ςi |vi〉〈wi |

(note A † =
∑

i ςi |vi〉〈wi |).
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I Complexity can be improved to Õ(κ) using variable-time amplitude-amplification.
I Other variants are possible, such as weighted and generalized least-squares.
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The special case of Hermitian matrices
Singular value transf. = eigenvalue transf. [Low & Chuang (2017)]

Let P : [−1, 1]→ [−1, 1] be a degree-d even/odd polynomial map.

If H is Hermitian, then P(H) coincides with the singular value transform.
(Direct corollary: Fast-Forwarding Markov Chains.)

Removing parity constraint for Hermitian matrices

Let P : [−1, 1]→ [−1
2 ,

1
2 ] be a degree-d polynomial map. Suppose that U is an a-qubit

block-encoding of a Hermitian matrix H. We can implement

U′ =

[
P(H) .
. .

]
,

using d times U and U†, 1 controlled U, and O(ad) extra two-qubit gates.
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Optimal block-Hamiltonian simulation

Suppose that H is given as an a-qubit block-encoding, i.e., U =

[
H .
. .

]
.

Complexity of block-Hamiltonians simulation [Low & Chuang (2016)]

Given t , ε > 0, implement a unitary U′, which is ε close to e itH. Can be achieved with
query complexity

O(t + log(1/ε)).

Gate complexity is O(a) times the above.

Proof sketch

Approximate to ε-precision sin(tx) and cos(tx) with polynomials of degree as above.
Then use QSVT and combine even/odd parts.
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Gibbs sampling

Suppose that H is given as U =

[
H .
. .

]
. The goal is to prepare ρ ∝ e−βH.

The basic algorithm (Inspired by Poulin & Wocjan 2009)

I Start with a maximally mixed state I/N, and apply the map e−
β
2 H.

I The new state is proportional to e−
β
2 H

(
I
N

)
e−

β
2 H = e−βH.

I Finally, apply amplitude amplification. Probability of success?

Final algorithm

I Use minimum finding (Dürr & Høyer 1996; van Apeldoorn, G, Gribling, de Wolf
2017) to find an approximation of the ground state energy H0.

I Use the previous procedure but with the map e−
β
2 (H−H0I)

I The final complexity is Õ
(
β
√

N
)
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(
β
√

N
)

14 / 24



Gibbs sampling

Suppose that H is given as U =

[
H .
. .

]
. The goal is to prepare ρ ∝ e−βH.

The basic algorithm (Inspired by Poulin & Wocjan 2009)

I Start with a maximally mixed state I/N, and apply the map e−
β
2 H.

I The new state is proportional to e−
β
2 H

(
I
N

)
e−

β
2 H = e−βH.

I Finally, apply amplitude amplification. Probability of success?

Final algorithm

I Use minimum finding (Dürr & Høyer 1996; van Apeldoorn, G, Gribling, de Wolf
2017) to find an approximation of the ground state energy H0.

I Use the previous procedure but with the map e−
β
2 (H−H0I)

I The final complexity is Õ
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Summarizing the various speed-ups by QSVT

Speed-up Source of speed-up Examples of algorithms

Exponential
Dimensionality of the Hilbert space Hamiltonian simulation

Precise polynomial approximations Improved HHL algorithm

Quadratic

Singular value = square root of probability Grover search

Singular values are easier to distinguish Amplitude estimation

Close-to-1 singular values are more flexible Quantum walks

Some other applications
I Fast QMA amplification, fast quantum OR lemma
I Quantum Machine learning: PCA, principal component regression
I “Non-commutative measurements” (for ground state preparation)
I Fractional queries

I
...
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Quantum algorithms for optimization



Optimization
In general we want to find the best solution minx∈X f(x)

I Unstructured: can be solved with O
(√
|X |

)
queries (Dürr & Høyer 1996)

Discrete structures:
I Finding the shortest path in a graph

O
(
n2

)
(Dijkstra 1956); quantum Õ

(
n3/2

)
(Dürr, Heiligman, Høyer, Mhalla 2004)

I Matching and flow problems:
Polynomial speed-ups, typically based on Grover search

I NP−hard problems:
Quadratic speed-ups for Schöning’s algorithm for 3-SAT (Ampl. ampl.)
Quadratic speed-ups for backtracking (Montanaro 2015)
Polynomial speed-ups for dynamical programming, e.g., TSP 2n → 1.73n

(Ambainis, Balodis, Iraids, Kokainis, Prūsis, Vihrovs 2018)
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Continuous optimization
Convex optimization

I Linear programs, semidefinite programs
SDPs: Õ

(
(
√

n +
√

m )sγ5
)

(Brandão et al., van Apeldoorn et al. 2016-18)

Zero-sum games: Õ
(
(
√

n +
√

m )/ε3
)
, Õ

(
s/ε3.5

)
(Apeldoorn & G 2019)

I Quantum interior point method (Kerenidis & Prakash 2018)
I Polynomial speed-up for estimating volumes of convex bodies

(Chakrabarti, Childs, Hung, Li, Wang, Wu 2019)

Application of the SDP solver: Shadow tomography (Aaronson 2017)

Given n-dimensional quantum state ρ, estimate the probability of acceptance of each
the two-outcome measurements E1, . . . ,Em, to within additive error ε.
I

Õ

(
log4(m) log(n)

ε4

)
copies suffice
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Zero-sum games
Pay-off matrix of Alice is A ∈ Rm×n. Expected pay-off for strategies x, y: xTAy

Algorithm for approximate Nash-equilibrium (Grigoriadis & Khachiyan 1995)

Start with x(0) ← 0 ∈ Rn and y(0) ← 0 ∈ Rm

for t = 1, 2, . . . , Õ
(

1
ε2

)
do

• P(t) ← e−AT x(t)
and Q(t) ← eAy(t)

• p(t) ← P(t)/
∥∥∥P(t)

∥∥∥
1

and q(t) ← Q(t)/
∥∥∥Q(t)

∥∥∥
1

• Sample a ∼ p(t) and b ∼ q(t)

• y(t+1) = y(t) + ε
4ea and x(t+1) = x(t) + ε

4eb

The main taks is Gibbs sampling from a linear-combination of vectors.
For SDPs: we need to Gibbs sample from a linear-combination of matrices.
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Statistics, estimation and stochastic algorithms
I Quadratic speed-up for Monte-Carlo methods O

(
σ
ε

)
(Montanaro 2015)

Generalizes approximate counting (Brassard, Høyer, Mosca, Tapp 1998)

I Testing equality of a distribution on [n] (with query complexity)
To an unknown distribution Õ

(
n1/2

)
(Bravyi, Hassidim, Harrow 2009; G, Li 2019)

To a known distribution Õ
(
n1/3

)
(Chakraborty, Fischer, Matsliah, de Wolf 2010)

I Estimating the (Shannon / von Neumann) entropy of a distribution on [n]

classical distribution: query complexity Õ
(
n1/2

)
(Li & Wu 2017)

density operator: query complexity Õ(n) (G & Li 2019)
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(
n1/3

)
(Chakraborty, Fischer, Matsliah, de Wolf 2010)

I Estimating the (Shannon / von Neumann) entropy of a distribution on [n]

classical distribution: query complexity Õ
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Recommendation systems – Netflix challange

Image source: https://towardsdatascience.com 20 / 24



The assumed structure of preference matrix:
Movies: a linear combination of a small number of features
User taste: a linear weighing of the features

Image source: https://towardsdatascience.com
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Major difficulty: how to input the data?
Data conversion: classical to quantum

I Given b ∈ Rm prepare

|b〉 =
m∑

i=1

bi

‖b‖

I Given A ∈ Rm×n construct quantum circuit (block-encoding)

U =

(
A/‖A‖F .

. .

)
.

How to preserve the exponential advantage?
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Solution: assume QRAM (readable in superposition)

Data structure

∑3
i=0 |bi |

2

∑1
i=0 |bi |

2

b0 b1

∑3
i=2 |bi |

2

b2 b3

Firs prepare:
√∑1

i=0 |bi |
2|0〉+

√∑3
i=2 |bi |

2|1〉

Map
√∑1

i=0 |bi |
2|0〉 7→ |b0||00〉+ |b1||01〉 and

√∑3
i=2 |bi |

2|10〉 7→ |b2||11〉+ |b3||01〉

Add phases to get b0|00〉+ b1|01〉+ b2|10〉+ b3|11〉
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On-line updates to the data structure
Data structure

∑3
i=0 |bi |

2

∑1
i=0 |bi |

2

b0 b1

∑3
i=2 |bi |

2

b2 b3

Cost is about the depth: log(dimension)

More about this in Ewin Tang’s afternoon talk
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