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Outline

Main quantum tricks and techniques

» Quantum Fourier Transform

» The SWAP test

> Unitaries as representations

» Quantum simulation

» Dissipative & stochastic state preparation

» Quantum walks, Grover search
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Quantum Fourier Transform



Discrete & Quantum Fourier Transform (QFT)
QFT over Zy
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Discrete & Quantum Fourier Transform (QFT)
QFT over Zy
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1 1 w w? ... w1
DFT = QFTw = —— 1 o ot PN herew = ¥,
-i wl\.l—1 w2(;\l—1) . w(N—1‘)(N—1)

In particular QF Ty : |j) — Y- 0e ¥ |k, and QFT, =

For N = 2", QFTy can be implemented using O(nlog(n)) two-qubit gates.
(The same construction as in FFT, which has complexity O(Nlog(N)) = O(2"n).)
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The Deutsch-Jozsa algorithm (1992)

Problem

» Given a Boolean function f: {0,1}" — {0, 1} decide whether it is constant (0 or 1)
or balanced (50% 0 and 1).

> The function is given as an oracle Oy: [x)|b) — [x)|b & f(x)).
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The Deutsch-Jozsa algorithm (1992)

Problem

» Given a Boolean function f: {0,1}" — {0, 1} decide whether it is constant (0 or 1)
or balanced (50% 0 and 1).

> The function is given as an oracle Oy: [x)|b) — [x)|b & f(x)).

o {7,
=)

Take away message

> Constructive interference can be used as a computational resource
» Studying problems in a black-box setting gives useful insights
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The Bernstein-Vazirani algorithm (1992)
Problem

» Given a Boolean function f: {0, 1}" — {0, 1} so that f(x) = s - x (mod 2); find s.
> The function is given as an oracle Os: |x)|b) — |x)|b & f(x)).
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The Bernstein-Vazirani algorithm (1992)

Problem

> Given a Boolean function f: {0,1}" — {0, 1} so that f(x) = s - x (mod 2); find s.

> The function is given as an oracle Os: |x)|b) — |x)|b & f(x)).

0)°

O

1=

Take away message

» Shows the power of Fourier transform (over the group Z5)
» (+1 Phase kickback is a surprising and useful quantum effect)
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Jordan’s quantum algorithm for gradients (2004)

A generalization of the Bernstein-Vazirani algorithm (Z, ~» Zy)

> Given a function f: Z; — Z so that f(x) = s - x (mod K); find s.
> The function is given as a phase oracle Us: [x) — e% ®|x) = e2"¥ |x).
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Jordan’s quantum algorithm for gradients (2004)

A generalization of the Bernstein-Vazirani algorithm (Z, ~» Zg)

> Given a function f: Zj — Z so that f(x) = s - x(mod K); find s.

» The function is given as a phase oracle Us: [x) — e i) IX) = €% |x).

0)2" —{ QFTE" (QFT, )"

(Recall: QFTk: |j) —» = Z[ 0 6‘2’”%%))

Jordan’s algorithm (Zx ~» R)

> For a differentiable function f: R” — R we have f(xo + dx) ~ f(Xo) + Vf - 5,
» Discretize R and run the above algorithm for large enough K (resolution is ~ l)

2mf(x0) 2ni( Vf 6)()

foto|5,) ~ ek e~ & |5, with one evaluation of f

2ni

» Implement U;: |04) — e®
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Generalizations and applications of Jordan’s algorithm

Convex functions

> Have at least one subgradient at every point
» Around most points can be well approximated by a linear function
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Generalizations and applications of Jordan’s algorithm

Convex functions

> Have at least one subgradient at every point
» Around most points can be well approximated by a linear function

Separating hyperplanes Tl

Exponential speed-up for finding ~
separating hyperplanes (2018): “.a.
» Apeldoorn, G, Gribling, de Wolf
» Chakrabarti, Childs, Li, Wu

Gradient computation for variational gauntum circits (QAOA)
> % Quadratic speed-up for computing the gradient (G, Arunachalam, Wiebe 2017)
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Phase estimation (Z] ~» Zn)

Phase estimation problem
Given U = Y, ey, Xy,1] and an eigenstate |i/;) output A.
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Phase estimation (Z; ~» Zon)

Phase estimation problem
Given U = 3, ey, Xy, and an eigenstate |y,) output A.

0 (AP - L
00 —{H} — QFT; [
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Phase estimation (Z; ~» Zon)

Phase estimation problem
Given U = 3, ey, Xy, and an eigenstate |y,) output A.

QFT, [

2275 IkXklgUK

o 2] e (2= QFT;]
0y = D W)y [Z ez’”*k|k>]|w> =T R 27D
k=0 k=0
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The Hidden subgroup problem (HSP) (Zon ~» G)

Problem

» Input: Oracle access to a function f: G — S for some group G and (finite) set S
> Promise: There is a subgroup H < G such that f(x) = f(y) iff x 'y e H
» Goal: Find H (and a system of its generators)
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The Hidden subgroup problem (HSP) (Zon ~» G)

Problem

» Input: Oracle access to a function f: G — S for some group G and (finite) set S
> Promise: There is a subgroup H < G such that f(x) = f(y) iff x 'y € H
» Goal: Find H (and a system of its generators)

Algorithm for solving the problem — Kitaev (1995)

ﬁ deG |g> -]

10)

Or

Works well for Abelian groups

» Samples a uniformly random character / irrep. of G that is trivial on H
» One can find a generator system of H after a few repetitions

» We can implement QFTg efficiently
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Some examples of the Abelian HSP
Simon’s problem
> Function: f: {0,1}" — {0, 1} (the group is Z7)
» Subgroup: {0, s}, i.e., f(x) = f(y) iff x — y € {0, s}
> Output: s
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Some examples of the Abelian HSP

Simon’s problem
> Function: f: {0,1}" — {0, 1} (the group is Z7)
» Subgroup: {0, s}, i.e., f(x) = f(y) iff x — y € {0, s}
> Output: s

Period finding (and Shor’s algorithm)
» Function: f: Z — Zy (in Shor’s algorithm f(x) = a* mod N for some a)
» Subgroup: p-Z,ie, f(x) =f(y)iffx—yep-Z
> Output: p

Discrete log (for given v, A find a such that A = y?)
» Function: f: Zy x Zy — Zy mapping (x,y) = y*A™ mod N
> Subgroup: ((a, 1)), i.e., f(x,y) = f(x’,y’) iff dc € Zy: (x =X,y —y’) = (ac, c)
> Output: a
For more info see, e.g., Ronald de Wolf’s lecture notes: arXiv:1907.09415 9/20



More advanced algorithms based on Abelian HSPs

» Solving Pell's equation (Hallgren 2002)
X? —dy? =1

Solving the principal ideal problem (Hallgren 2002)
Period finding over R and R"

Computing the unit group of number fields
Breaking elliptic curve based cryptography
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More advanced algorithms based on Abelian HSPs

» Solving Pell's equation (Hallgren 2002)
X? —dy? =1

» Solving the principal ideal problem (Hallgren 2002)
» Period finding over R and R”

» Computing the unit group of number fields

» Breaking elliptic curve based cryptography

See Sean Hallgren’s talk on Thursday for more on this direction!
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The non-Abelian HSP

What works and what does not
» QFTg is somewhat harder to define and implement
» Unclear how to efficiently recover the subgroup
» However, the same algorithm is actually query efficient (Barnum & Knill 2002)
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The non-Abelian HSP

What works and what does not

>

>
>
>

QFTg is somewhat harder to define and implement
Unclear how to efficiently recover the subgroup
However, the same algorithm is actually query efficient (Barnum & Knill 2002)

Some cases can be solved efficiently, e.g., normal subgroups (Hallgren, Russell,
Ta-Shma 2000), solvable groups (Watrous 2001), nil-2 groups (Ivanyos,
Sanselme, Santha 2007), and certain semidirect product p-groups of constant
nilpotency class (lvanyos, Santha 2015)

Kuperberg’s algorithm (2003) solves HSP in the dihedral group in time
O(gvlog(G))
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The non-Abelian HSP

What works and what does not
» QFTg is somewhat harder to define and implement
» Unclear how to efficiently recover the subgroup
» However, the same algorithm is actually query efficient (Barnum & Knill 2002)
>

Some cases can be solved efficiently, e.g., normal subgroups (Hallgren, Russell,
Ta-Shma 2000), solvable groups (Watrous 2001), nil-2 groups (Ivanyos,
Sanselme, Santha 2007), and certain semidirect product p-groups of constant
nilpotency class (lvanyos, Santha 2015)

> Kuperberg’s algorithm (2003) solves HSP in the dihedral group in time
O(gvlog(G))

Important example: Graph isomorphism (i.e., deciding whether G ~ G’)
» Group: S,,, Function: permute the vertices of GU G’
> Subgroup: Automorphisms of GU G’
» Output: whether there is a generator interchanging vertices of G and G’
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The SWAP test



A simpler algorithm for graph isomorphism

Prepare a uniform superposition

s(G))
s(G'))

> Let o) o Dges,

> Let |y¥q) oc Dlges,
> Observe that

1 ifG=2@
0 otherwise

(Wolyr1) Z{
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A simpler algorithm for graph isomorphism

Prepare a uniform superposition

s(G))
s(G'))

> Let o) o Dges,

> Let |y¥q) oc Dlges,
> Observe that

1 ifG=2@
0 otherwise

Wolvr1) I{

The SWAP test
[+ —T—B

o) —
vy AOWAP L

The probability of getting outcome + is

1 1
> + §|<l//o|lﬁ1>|2
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Unitaries as representations



Towards approximating the Jones polynomial

The Hadamard test
I+

)
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Towards approximating the Jones polynomial

The Hadamard test
I+

)

The probability of getting outcome + is

5+ pRe((WiUW))
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The probability of getting outcome + is

1 1
5T ERG(WIUIW)

A link is a collection of loops embedded into R3,
in a possibly intertwined way. A link invariant is
a quantity associated to links that is invariant
under smooth transformations of the
embedding.
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A braid is a collection of parallel \
strands, where adjacent strands

are allowed to cross under or over

each other. One can get a link by
connecting the bottom and top

ends of the strands. 1

14/20



A braid is a collection of parallel
strands, where adjacent strands
are allowed to cross under or over
each other. One can get a link by
connecting the bottom and top
ends of the strands.

Braids form a group under the
operation of concatenation. The
Jones polynomial of various links
formed by a braid can be
expressed in terms of the
Temperley-Lieb algebra — a
representation of the braid group.
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\ Braids form a group under the

A braid is a collection of parallel operation of concatenation. The

strands, where adjacent strands Jones polynomial of various links
are allowed to cross under or over formed by a braid can be

each other. One can get a link by expressed in terms of the
connecting the bottom and top Temperley-Lieb algebra — a

ends of the strands. 1 representation of the braid group.

» For a root of unity €™/, the relevant representation is unitary; the corresponding
value of the Jones polynomial can be approx. evaluated via estimating (¥|U|y).
This (BQP-complete) algorithm is due to Aharonov, Jones, and Landau (2006).
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\ Braids form a group under the

A braid is a collection of parallel operation of concatenation. The

strands, where adjacent strands Jones polynomial of various links
are allowed to cross under or over formed by a braid can be

each other. One can get a link by expressed in terms of the
connecting the bottom and top Temperley-Lieb algebra — a

ends of the strands. 1 representation of the braid group.

» For a root of unity €™/, the relevant representation is unitary; the corresponding
value of the Jones polynomial can be approx. evaluated via estimating (¥|U|y).
This (BQP-complete) algorithm is due to Aharonov, Jones, and Landau (2006).

» Witten showed that the Jones polynomial is closely related to topological
quantum field theory (TQFT).

» Friedman, Kitaev, Larsen, and Wang (2001) showed that quantum computers can
efficiently simulate TQFTs.
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Quantum simulation



(Dynamical) Hamiltonian simulation

Time-independent Hamiltonians

Schrédinger’s equation (7 = 1) for time-independent quantum systems:

d , .
) = —iHW) = (1)) = e ™y (0))

Recap — matrix functions

Any Hermitian matrix H can be diagonalised using some unitary V such that
H= VDV = 3, 2|AXAl.
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Recap — matrix functions
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(Dynamical) Hamiltonian simulation

Time-independent Hamiltonians

Schrédinger’s equation (7 = 1) for time-independent quantum systems:

d , .
) = —iHW) = (1)) = e ™y (0))

Recap — matrix functions

Any Hermitian matrix H can be diagonalised using some unitary V such that
H= VDV = Y, A|AX1|. Forany f: R — C we can define

f(H) := VIF(D)V = )" f(A)IAXAl

A

Wait a minute, don’t we build quantum computers using Hamiltonian simulation???
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Product formula approach (Lloyd 1996)

Time-independent local Hamiltonians

LetH = Z,’f:1 Hk, where each term Hy acts on a constant (say 2) number of qubits.
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Product formula approach (Lloyd 1996)

Time-independent local Hamiltonians

LetH = Z,’f:1 Hk, where each term Hy acts on a constant (say 2) number of qubits
WLOG. assume Yk : ||H|| < 1. We can approximate the time-evolution by

e = (e ) = (e F e Y 4 O(UK)Z)-

r
Choosing r = ©((tK)?/&) guarantees an e-approximation.
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Product formula approach (Lloyd 1996)

Time-independent local Hamiltonians

LetH = Z,’f:1 Hk, where each term Hy acts on a constant (say 2) number of qubits.

WLOG. assume Yk : |[|[Hk|| < 1. We can approximate the time-evolution by

r

e = (e ) = (e F e Y 4 O(UK)Z)-

Choosing r = ©((tK)?/&) guarantees an e-approximation.

(Query) Optimal Hamiltonian simulation of sparse matrices
> :

» Quantum Signal Processing (QSP): (Low & Chuang 2016)

O(tlIHllmaxs + log(1/¢))

For a recent survey see: Childs, Maslov, Nam, Ross, Su —arXiv:1711.10980
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More generalizations and improvements

A few more recent generic results (without being exhaustive)
» Time-dependent sparse Hamiltonians: (Berry, Child, Su, Wang, Wiebe 2019)

s [ Il e)

» Quantum chemistry: (Babbush, Berry, McClean, Neven 2019)
5(N%n%), with N : #plane wave orbitals, n : #electrons
> Lattice Hamiltonians: (Haah, Hastings, Kothari, Low: QIP’19)

O(nt)

> ..., multi-product formulas, interaction picture simulation, ...
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More generalizations and improvements

A few more recent generic results (without being exhaustive)
» Time-dependent sparse Hamiltonians: (Berry, Child, Su, Wang, Wiebe 2019)

s [ Il e)

» Quantum chemistry: (Babbush, Berry, McClean, Neven 2019)
5(N1§n%), with N : #plane wave orbitals, n : #electrons
> Lattice Hamiltonians: (Haah, Hastings, Kothari, Low: QIP’19)

O(nt)

> ..., multi-product formulas, interaction picture simulation, ...

Simulating quantum field theory? See Preskill’s recent survey: arXiv:1811. 10085

17/20



Dissipative & stochastic
state preparation



Ground state preparation of frustration-free Hamiltonians
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Ground state preparation of frustration-free Hamiltonians

The resampling algorithm

while not all constraints checked do
e pick an unchecked constraint and check (measure) it

e if unsatisfied then
randomly resample all adjacent (qu)bits
mark all adjacent constraints as unchecked
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Ground state preparation of frustration-free Hamiltonians

The resampling algorithm

while not all constraints checked do
e pick an unchecked constraint and check (measure) it
e if unsatisfied then

randomly resample all adjacent (qu)bits
mark all adjacent constraints as unchecked

» Ground state preparation by dissipation (Verstraete, Wolf, Cirac 2008)
» Efficient version in the classical version (Moser & Tardos 2009)
» Efficient commuting quantum Lovasz Local Lemma

(Sattath & Arad; Schwarz, Cubitt, Verstraete — 2013)

» Efficient non-commuting version for uniformly gapped systems (G & Sattath 2016)
A loosely related result

> Quant. Metropolis samp. (Temme, Osborne, Vollbrecht, Poulin, Verstraete 2009)
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Quantum walks



Continuous-time quantum / random walks

Laplacian of a weighted graph

Let G = (V, E) be a finite simple graph, with non-negative edge-weights w: E — R,.
The Laplacian is defined as

utv:L, —w,,andL, — —Z Wyy.
Vv
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Let G = (V, E) be a finite simple graph, with non-negative edge-weights w: E — R,.
The Laplacian is defined as

utv:L, —w,,andL, — —Z Wyy.
Vv

Continuous-time walks
Evolution of the state:

Sol) =Y Lapl) = p(t) = e"p(0)
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Continuous-time quantum / random walks

Laplacian of a weighted graph

Let G = (V, E) be a finite simple graph, with non-negative edge-weights w: E — R,.
The Laplacian is defined as

utv:L, —w,,andL, — —Z Wyy.
Vv

Continuous-time walks
Evolution of the state:

So =D Lenl) = p(t) = e"p(0)

7%

i) = 3 Lalt) = u(t) = e4(0)

veV
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Exponential speedup by a quantum walk
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Childs, Cleve, Deotto, Farhi, Gutmann, and Spielman: quant-ph/0209131



