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The Short Integer Solution (SIS) Problem
CVP and dual lattice

o Lattice A\, targett =v + e
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The Short Integer Solution (SIS) Problem
CVP and dual lattice

o Lattice A\, targett =v + e

@ Dual lattice A* = £(D).
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The Short Integer Solution (SIS) Problem

CVP and dual lattice

° ° o Lattice A, targett =v+e
. ° ° @ Dual lattice A* = £(D).
° o ° @ Syndrome of t:
° ° s (D,t) mod 1
° ° = (D,v)+ (D,e) mod 1
° O‘ = (D,e) mod 1.
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The Short Integer Solution (SIS) Problem

CVP and dual lattice

o Lattice A\, targett =v + e

@ Dual lattice A* = £(D).
@ Syndrome of t:

s (D, t) mod 1

(D,v) + (D,e) mod 1
(D, e) mod 1.

@ e belongs to coset

t+A={x:(D,x) =smod 1}

Daniele Micciancio (UCSD)

m]

The SIS Problem and Cryptographic Applicat.

=



/

CVP and dual lattice

The Short Integer Solution (SIS) Problem

o Lattice A\, targett =v + e

@ Dual lattice A* = £(D).
@ Syndrome of t:
s

(D, t) mod 1

(D,v) + (D,e) mod 1
(D, e) mod 1.

@ e belongs to coset
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t+A={x:(D,x) =smod 1}
Problem (Syndrome Decoding)
Find shortest e such that

(D,e) =smod 1
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The Short Integer Solution (SIS) Problem

SIS/LWE as CVP

Candidate OWF

Key: a hard lattice £
Input: x, ||x|| < S
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SIS/LWE as CVP

Candidate OWF

Key: a hard lattice £
Input: x, ||x|| < S
Output: fz(x) = x mod £
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SIS/LWE as CVP

Candidate OWF

Key: a hard lattice £
Input: x, ||x|| < S
Output: fz(x) = x mod £

@ 3 < A\1/2: fr is injective
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SIS/LWE as CVP

Candidate OWF

Key: a hard lattice £
Input: x, ||x|| < S
Output: fz(x) = x mod £

@ 3 < A\1/2: fr is injective
e (> A\1/2: f is not injective
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Candidate OWF

Key: a hard lattice £
Input: x, ||x|| < S
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@ [ > u: fr is surjective
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Candidate OWF

Key: a hard lattice £
Input: x, ||x|| < S
Output: fz(x) = x mod £

@ 3 < A\1/2: fr is injective
e (> A\1/2: f is not injective
@ [ > u: fr is surjective

e (> p: fr(x) is almost uniform
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SIS/LWE as CVP

Candidate OWF

Key: a hard lattice £
Input: x, ||x|| < S
Output: fz(x) = x mod £

@ 3 < A\1/2: fr is injective
e (> A\1/2: f is not injective
@ [ > u: fr is surjective

e (> p: fr(x) is almost uniform

Question

Are these functions cryptographically
hard to invert?
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The Short Integer Solution (SIS) Problem
Ajtai’s one-way function (SIS)

@ Parameters: m,n,q € Z
o Key: A€ Zg*™

@ Input: x € {0,1}™
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Ajtai’s one-way function (SIS)

m
e Parameters: m,n,q € Z ( ? )
o Key: A€ ZZX’"
e Input: x € {0,1}" [
@ Output: fa(x) = Axmod g I A
o F = = £ DA
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The Short Integer Solution (SIS) Problem

Ajtai's one-way function (SIS)

@ Parameters: m,n,q € Z

o Key: A€ Zg*™

@ Input: x € {0,1}™ [ f

o A —> Ax

Output: fa(x) = Ax mod g

— 3

Theorem (A'96)

For m > nlg q, if lattice problems (SIVP) are hard to approximate in the
worst-case, then fa(x) = Ax mod q is a one-way function.

Applications: OWF [A'96], Hashing [GGH'97], Commit [KTX'08], ID
schemes [L'08], Signatures [LM'08,GPV'08,...,DDLL'13] ...
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Cryptographic functions

Definition (Ajtai's function)
fa(x) = Ax mod g where A € Zg*™ and x € {0,1}" J
xe{o,1}"{ 0110100 | (qg=10)
m
145 9 3 0 2 ‘ 2
pm| 4286 2 43 2| Ay cgn
= €7
AcZq 7554780 |1 |77
2 701 46 9 ‘ 1
Cryptanalysis (Inversion)
Given A and y, find x € {0,1}"™ such that Ax =y J
o> <3 =» «=» T @9ac
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Ajtai’s function and lattice problems

Cryptanalysis (Inversion)

Given A and y, find small solution x € {0,1}™ to inhomogeneous linear
system Ax =y (mod q)

Inverting Ajtai's function can be formulated as a lattice problem.
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The Short Integer Solution (SIS) Problem

Ajtai’s function and lattice problems

Cryptanalysis (Inversion)

Given A and y, find small solution x € {0,1}™ to inhomogeneous linear
system Ax =y (mod q)

Inverting Ajtai's function can be formulated as a lattice problem.

e Easy problem: find (arbitrary) integer solution t to system of linear
equations At =y (mod q)
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The Short Integer Solution (SIS) Problem

Ajtai’s function and lattice problems

Cryptanalysis (Inversion)

Given A and y, find small solution x € {0,1}™ to inhomogeneous linear
system Ax =y (mod q)

Inverting Ajtai's function can be formulated as a lattice problem.

e Easy problem: find (arbitrary) integer solution t to system of linear
equations At =y (mod q)
e All solutions to Ax =y are of the form t + A+ where

A(A)={xeZ™: Ax=0 (mod q)}
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The Short Integer Solution (SIS) Problem

Ajtai’s function and lattice problems

Cryptanalysis (Inversion)

Given A and y, find small solution x € {0,1}™ to inhomogeneous linear
system Ax =y (mod q)

Inverting Ajtai's function can be formulated as a lattice problem.

e Easy problem: find (arbitrary) integer solution t to system of linear
equations At =y (mod q)
e All solutions to Ax =y are of the form t + A+ where

A(A)={xeZ™: Ax=0 (mod q)}

o Cryptanalysis problem: find a small vector in t + A+(A)
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The Short Integer Solution (SIS) Problem

Ajtai’s function and lattice problems

Cryptanalysis (Inversion)

Given A and y, find small solution x € {0,1}™ to inhomogeneous linear
system Ax =y (mod q)

Inverting Ajtai's function can be formulated as a lattice problem.

e Easy problem: find (arbitrary) integer solution t to system of linear
equations At =y (mod q)
e All solutions to Ax =y are of the form t + A+ where

A(A)={xeZ™: Ax=0 (mod q)}

o Cryptanalysis problem: find a small vector in t + A+(A)
o Equivalently: find a lattice vector v € AL(A) close to t
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The Short Integer Solution (SIS) Problem

Ajtai’s function and lattice problems

Cryptanalysis (Inversion)

Given A and y, find small solution x € {0,1}" to inhomogeneous linear
system Ax =y (mod q)

Inverting Ajtai's function can be formulated as a lattice problem.
e Easy problem: find (arbitrary) integer solution t to system of linear
equations At =y (mod q)
e All solutions to Ax =y are of the form t + A+ where

A(A)={xeZ™: Ax=0 (mod q)}

o Cryptanalysis problem: find a small vector in t + A+(A)

o Equivalently: find a lattice vector v € A-(A) close to t
Inverting Ajtai’s function is an average case instance of the Closest Vector
Problem where the lattice is chosen according to AL(A)
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The Short Integer Solution (SIS) Problem

Ajtai’s function: collision resistance

o The kernel set AL(A) is a lattice
A(A)={z€Z™: Az=0 (mod q)}

e Collisions Ax = Ay (mod g) can be represented by a single vector
z=x—-ye€ {-1,0,1} such that

z= x— Yy

Daniele Micciancio (UCSD) The SIS Problem and Cryptographic Applicat: Jan 2020 9/41



The Short Integer Solution (SIS) Problem

Ajtai’s function: collision resistance

o The kernel set AL(A) is a lattice
A(A)={z€Z™: Az=0 (mod q)}

e Collisions Ax = Ay (mod g) can be represented by a single vector
z=x—-ye€ {-1,0,1} such that

Az = Ax — Ay =0 mod g

Daniele Micciancio (UCSD) The SIS Problem and Cryptographic Applicat: Jan 2020 9/41



The Short Integer Solution (SIS) Problem

Ajtai’s function: collision resistance

o The kernel set AL(A) is a lattice
A(A)={z€Z™: Az=0 (mod q)}

e Collisions Ax = Ay (mod g) can be represented by a single vector
z=x—-ye€ {-1,0,1} such that

Az = Ax — Ay =0 mod g

o Collisions are lattice vectors z € A+(A) with small norm
lIz|loo = max; |z;| = 1.
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The Short Integer Solution (SIS) Problem

Ajtai’s function: collision resistance

o The kernel set AL(A) is a lattice
A(A)={z€Z™: Az=0 (mod q)}

e Collisions Ax = Ay (mod g) can be represented by a single vector
z=x—-ye€ {-1,0,1} such that

Az = Ax — Ay =0 mod g

o Collisions are lattice vectors z € A+(A) with small norm
|z||cc = max;|zj| = 1.

@ ... there is a much deeper and interesting relation between breaking
fa and lattice problems.
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© Average Case Hardness
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Average Case Hardness

Provable security (from average case hardness)
Example 1: (Rabin) modular squaring

o fy(x) =x>mod N, where N =p - q

@ Inverting fy is at least as hard as factoring N

All N's

All fy's
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Average Case Hardness

Example 1: (Rabin) modular squaring

Provable security (from average case hardness)

o fy(x) =x>mod N, where N =p - q

@ Inverting fy is at least as hard as factoring N
Theorem

factor

fn is cryptographically hard to invert, provided most N = p - g are hard to
All N's

All fy's
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Average Case Hardness

Example 2: Ajtai's function

Provable security (from average case hardness)

e fa(x) = Ax mod ¢

e Finding collisions in fa is as hard as ¢o-SVP in A(A)

All A(A)'s

All fa's
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Average Case Hardness

Example 2: Ajtai's function
e fa(x) = Ax mod ¢

Provable security (from average case hardness)

e Finding collisions in fa is as hard as ¢o-SVP in A(A)
Theorem

fa is collision resistant, provided {~,-SVP is hard for most lattices A(A)

All A(A)'s All fa's
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Average-case Complexity
Average-case complexity depends on input distribution
Example (Factoring problem)

Given a number N, output a, b > 1 such that N = ab
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Average Case Hardness

Average-case Complexity

Average-case complexity depends on input distribution

Example (Factoring problem)
Given a number N, output a, b > 1 such that N = ab

Factoring can be easy on average

if N is uniformly random, then N =2 - % with probability 50%!

[} = =
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Average Case Hardness

Average-case Complexity

Average-case complexity depends on input distribution

Example (Factoring problem)
Given a number N, output a, b > 1 such that N = ab

Factoring can be easy on average

if N is uniformly random, then N =2 - % with probability 50%!

o Factoring N = pq is believed to be hard when p, g are randomly
chosen primes

o How do we know A+ (A) is a hard distribution for SVP?

Daniele Micciancio (UCSD) The SIS Problem and Cryptographic Applicat: Jan 2020 13 /41




Average Case Hardness

Provable security (from worst case hardness)

@ Any fixed lattice £ is mapped to a random A

e Finding collisions in fa allows to find (relatively) short vectors in L.

£ §§<
All latti rd fa's
a Z/ﬁ A
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Provable security (from worst case hardness)

@ Any fixed lattice £ is mapped to a random A

e Finding collisions in fa allows to find (relatively) short vectors in L.

E*§

All lattices

—
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Provable security (from worst case hardness)

@ Any fixed lattice £ is mapped to a random A

e Finding collisions in fa allows to find (relatively) short vectors in £
Theorem (Ajtai,...,Micciancio&Regev)

v = n) for some L

fa is collision resistant, provided SIVP is hard to approximate (within

L"'§

All lattices

—
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Blurring a lattice
Consider a lattice A, and

o
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Blurring a lattice
Consider a lattice A, and add noise to each
lattice point until the entire space is covered.

° O =
° o *
° - ¢ -
° A ¢ .
° = ¢ -
q
» O * .
. & ¢ -
o °
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Average Case Hardness

Blurring a lattice

Consider a lattice A, and add noise to each ]
lattice point until the entire space is covered. o .
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Average Case Hardness

Blurring a lattice

Consider a lattice A, and add noise to each =« ]
lattice point until the entire space is covered. | o .
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Average Case Hardness

Blurring a lattice

Consider a lattice A, and add noise to each

. -
° [ ]
lattice point until the entire space is covered. o C “
[ ] O ° N
[ ] ~ ¢ .
How much noise is needed? . h . .
r
vl < Vi An/2 . ve—a®
° © S .
@ Each point in a € R” can be written i . .
a=v+rwhereve Land|r| =~ v\, o ° h
L]
° o
° . ° .
X o ¢ ‘
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Blurring a lattice

Consider a lattice A, and add noise to each
lattice point until the entire space is covered.

Increase the noise until the space is uniformly
covered.

How much noise is needed?

vl < V- An/2

@ Each point in a € R” can be written
a=v+rwhereve L and |r]| = /n\,.

[m] = = =
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Blurring a lattice

Consider a lattice A, and add noise to each
lattice point until the entire space is covered.

Increase the noise until the space is uniformly
covered.

How much noise is needed?

vl < V- An/2

@ Each point in a € R” can be written
a=v+rwhereve L and |r]| = /n\,.
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Blurring a lattice

Consider a lattice A, and add noise to each
lattice point until the entire space is covered.

Increase the noise until the space is uniformly
covered.

How much noise is needed?

vl < V- An/2

@ Each point in a € R” can be written
a=v+rwherev e L and [[r| & /nA,.
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Average Case Hardness

Blurring a lattice

Consider a lattice A, and add noise to each
lattice point until the entire space is covered.

Increase the noise until the space is uniformly
covered.

How much noise is needed?

vl < V- An/2

@ Each point in a € R” can be written
a=v+rwherev e L and [[r| & /nA,.
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Average Case Hardness

Blurring a lattice

Consider a lattice A, and add noise to each
lattice point until the entire space is covered.

Increase the noise until the space is uniformly
covered.

How much noise is needed? [MR]

¥l < (log n) - v/n - An/2

@ Each point in a € R” can be written
a=v+rwherev e L and [[r| & /nA,.
e a € R"/A is uniformly distributed.

=] F
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Average Case Hardness

Blurring a lattice

Consider a lattice A, and add noise to each
lattice point until the entire space is covered.

Increase the noise until the space is uniformly
covered.

How much noise is needed? [MR]

Irl| < (log ) - v/ - An/2

@ Each point in a € R” can be written
a=v+rwherev e L and [[r| & /nA,.

e a € R"/A is uniformly distributed.

@ Think of R" =~ %/\ [GPV'07]

o =) = = £ DA
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Security of Ajtai’s function (sketch)
@ Generate random points a; = v; + r;, where
e v; is a random lattice point

o r; is a random error vector of length ||r;|| = /n\,
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Security of Ajtai’s function (sketch)

@ Generate random points a; = v; + r;, where

e v; is a random lattice point
o r; is a random error vector of length ||r;|| &~ /n\,

e A =ay,...,an] is distributed almost uniformly at random in R"*™,
qg=n%Y, m= 0(nlogq) = O(nlogn), so
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Average Case Hardness

Security of Ajtai’s function (sketch)

@ Generate random points a; = v; + r;, where

e v; is a random lattice point
o r; is a random error vector of length ||r;|| = /n\,
e A =ay,...,an] is distributed almost uniformly at random in R"*™,
qg=n%Y, m= 0(nlogq) = O(nlogn), so
o if we can break Ajtai's function fa, then
o we can find a vector z € {—1,0,1}™ such that

Za,-z,- =0

Jan 2020 16 /41
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Security of Ajtai’s function (sketch)

@ Generate random points a; = v; + r;, where

e v; is a random lattice point
e r; is a random error vector of length [|r;|| = /nA,

e A =[ay,...,apy] is distributed almost uniformly at random in R"™*™,

qg=n%Y, m= 0(nlogq) = O(nlogn), so
o if we can break Ajtai's function fa, then
o we can find a vector z € {—1,0,1}™ such that

Z(V,‘ + I’,')Z,' = Za,-z,- =0

@ Rearranging the terms yields a lattice vector

ZV,’Z,‘ = —ZI’,’Z,‘
of length at most || > rizi|| &~ \/m - max||r;|| = n- \,
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Efficiency and RingSIS

© Efficiency and RingSIS
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Ajtai’'s connection
Theorem (A'96)

For large enough m, n, q, the function fp is collision resistant
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SCENZENNNIESISI  Small modulus

Ajtai’'s connection

Theorem (A'96) J

For large enough m, n, q, the function fp is collision resistant

e Original proof required g = n°() to be a large polynomial
e Improved to g ~ n*® in [MR'04]

e Further improved in [GPV'08] to g &~ n, making seemingly optimal
use of known techniques

@ Question: How can we prove hardness for smaller values of g?
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SCENZENNNIESISI  Small modulus

Ajtai’'s connection

Theorem (A'96)
For large enough m, n, q, the function fp is collision resistant J
e Original proof required g = n°() to be a large polynomial
e Improved to g ~ n?® in [MR'04]
e Further improved in [GPV'08] to g &~ n, making seemingly optimal
use of known techniques
@ Question: How can we prove hardness for smaller values of g?

Theorem (MP'13)

If one can break fa for some \/n < q < n, then one can also break it for
larger ¢ = q¢, ¢ > 1.
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Reducing g in SIS (proof sketch, toy version)

e For simplicity, assume fp takes binary inputs x € {0,1}™.
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Small modulus
Reducing g in SIS (proof sketch, toy version)

e For simplicity, assume fp takes binary inputs x € {0,1}™.

e Say we can solve SIS for some n,m, q. | A'(Z*™)
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Small modulus
Reducing g in SIS (proof sketch, toy version)

e For simplicity, assume fp takes binary inputs x € {0,1}™.

e Say we can solve SIS for some n,m, q. | A'(Z*"™)

e We solve SIS with parameters n, m?, g as follows:
2
Az
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Small modulus
Reducing g in SIS (proof sketch, toy version)

e For simplicity, assume fp takes binary inputs x € {0,1}™.

e Say we can solve SIS for some n,m, q. | A'(Z*™)

e We solve SIS with parameters n, m?, g as follows:
2
Az

A, A, e A,
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SCENZENNNIESISI  Small modulus

Reducing g in SIS (proof sketch, toy version)

e For simplicity, assume fp takes binary inputs x € {0,1}™.

@ Say we can solve SIS for some n, m, q.

A'(Z2<m)

e We solve SIS with parameters n, m?, g as follows:

n ITI2
A (Z3™)

A

A;

1+ gA7

>+ qA3

o Al A € Z*™ for all i

Al + gAl,
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Reducing g in SIS (toy version, cont.)

A (ZD™)

1+ qA]

>+ qA;

A+ gAl
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Reducing g in SIS (toy version, cont.)

A (ZD™)

1+ qA]

>+ qA3

A+ gAl

e Find SIS(n,m,q) collisions Ajz; =4 0, z; € {0, £1}
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Reducing g in SIS (toy version, cont.)

A (ZD™)

LY

2+ qA;

Al + gA},
o Compute b; = %(Af- + gA))z;

e Find SIS(n,m,q) collisions Ajz; =4 0, z; € {0, £1}
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Small modulus
Reducing g in SIS (toy version, cont.)

A (ZD™)

1+ qA]

>+ qA;

e Find SIS(n,m,q) collisions Ajz; =, 0, z; € {0, £1}

A+ gAl

e Compute b; = %(Af- + qA?)z; = %(Af-z,') + H{(ATz) € Zg

Daniele Micciancio (UCSD) The SIS Problem and Cryptographic Applicat:
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Small modulus
Reducing g in SIS (toy version, cont.)

A (ZD™)

b, b, ... b,,

e Find SIS(n,m,q) collisions Ajz; =4 0, z; € {0, £1}
e Compute b; = %(Af- + qAz; = %(Af-z,') + 3(A]z)) € 23
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Small modulus
Reducing g in SIS (toy version, cont.)

A (ZD™)

by

by

e Find SIS(n,m,q) collisions Ajz; =4 0, z; € {0, £1}

e Compute b; = %(Af- + qAz; = %(Af-z,') + 3(A]z) € 2§
@ Solve SIS(n,m,q) instance B = [by, ...

Daniele Micciancio (UCSD) The SIS Problem and Cryptographic Applicat:
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Small modulus
Reducing g in SIS (toy version, cont.)

A (ZD™)

b, b, ... b,,

Find SIS(n,m,q) collisions A’z; =, 0, z; € {0, +1}

Compute b; = ¢ (A} + gA])z; = - (Ajzi) + L(A]z;) € Z§
Solve SIS(n,m,q) instance B = [by,...,bp] to find collision w
Output collision A(w ® z,) =,2 0

(W®R2z,)= (W1 -21,..., Wm-2zm) € {~1,0,+1}™

Daniele Micciancio (UCSD) The SIS Problem and Cryptographic Applicat: Jan 2020 20/41



Small modulus
Reducing g in SIS (toy version, cont.)

A (ZD™)

b, b, ... b,,

e Find SIS(n,m,q) collisions Ajz; =4 0, z; € {0, £1}
e Compute b; = %(Af- + qAz; = %(Af-z,') + 3(A]z) € 2§
@ Solve SIS(n,m,q) instance B = [by,...,by] to find collision w

@ Output collision A(w ® z,) =, 0

(W®R2z,)= (W1 -21,..., Wm-2zm) € {~1,0,+1}™

@ Actual proof used discrete gaussian sampling (DGS < DGS)
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Efficiency of Ajtai’'s function

o g =n°Y, m=0(nlogn) > nlog,q
o Eg,n==64 qg=2% m=1024
@ fa maps 1024 bits to 512.

— 33—
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Ll
Efficiency of Ajtai’s function

o g =n°Y, m=0(nlogn) > nlog,q
o Eg,n==64 qg=28 m=1024

0/1 |
@ fa maps 1024 bits to 512. m
o Key size: T
nmlog g = O(n?log? n) = 2'9 = 64KB l...q n
e Runtime: nm = O(n?log n) = 21° J

arithmetic operations
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Ll
Efficiency of Ajtai’s function

@ Source of inefficiency: quadratic dependency in n

qg=n%Y, m= 0O(nlogn) > nlog, q
E.g, n=164 q=2% m=1024

fa maps 1024 bits to 512.

Key size:

nmlog g = O(n?log? n) = 2'9 = 64KB
Runtime: nm = O(n?log n) = 216
arithmetic operations

Usable, but inefficient

Problem

Can we do better than O(n?) complexity?

Q
— 35—
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Efficient lattice based hashing
Idea

Use structured matrix

D LR
Al) — ag) ag’) ‘ ag)
A=[AQ) | | A/ : : :
where A() ¢ Zg*" is circulant a) af,ill aﬁ’)
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Efficiency and RingSIS BRLEEINEYAES

Efficient lattice based hashing

Idea ) . .
ag') N ()]

. dn ds

Use structured matrix a(i) a(i) a(i)
Al — 2 1 3
A=[AD | | Al : :

where A() ¢ ZZX" is circulant ag,') 3521 3gi)

@ Proposed by [M02], where it is proved that fp is one-way under
plausible complexity assumptions

e Similar idea first used by NTRU public key cryptosystem (1998), but
with no proof of security

@ Wishful thinking: finding short vectors in A}(A) is hard, and
therefore fp is collision resistant

Daniele Micciancio (UCSD) The SIS Problem and Cryptographic Applicat: Jan 2020 22 /41



Can you find a collision? (mod 10)

1 43 8|6 49 0|26 453 271
8 1 4 3/06 4 9(526 4|13 27
3814906 445267132
4 3 8 1/4 9 0¢6(6 4522713
oy <3 =» «=» = Wac
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ldea Lattice
Can you find a collision? (mod 10)

100 -1j-1 110|001 1(1 0 -10

143 8(6 49 0(26 45|32 71 5
8 1 4 3/0 6 4 9|5 26 4|1 3 2 7 4
381 4|9 06 4|45 26|71 3 2 8
4 38 1|4 9 06|6 45 227 1 3 6
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ldea Lattice
Can you find a collision? (mod 10)

LS S S A I Y SO S O Y O SR S A I S O A ¢

1 438|649 0|26 453 271 0
8 1 4 306 49526 4|13 27 0
3814906 4(452¢6|7132 0
4 38 1(4 9 066 45 22713 0
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Efficiency and RingSIS BRLEEINEYAES

Can you find a collision? (mod 10)

1111111111111 111
1 43 86 49 026453 271
8 1 4 3/06 4 9(526 4|13 27
3814906 445267132
4 3 8 1/4 9 0¢6(6 4522713
6 9 7 3
6 9 7 3
6 9 7 3
6 9 7 3

ox"—l:(x—l).(x"—1+..._|_1)
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Efficiency and RingSIS BRLEEINEYAES

Can you find a collision? (mod 10)

111 1{-1 -1 -1 -1{0 OO Of1 1 11
1 4 3 8/6 4 9 026 45|32 71 0
81 4 3|0 6 4 9|52 6 4|1 3 27 0
38149 0 6 4|45 2 6|71 3 2 0
4 3814 9 0 6|6 45 2|2 7 1 3 0
6 9 7 3
6 9 7 3
+1x 6 —1x 9 +0 x 7 +1x 3
6 9 7 3

ox"—l:(x—l).(x"—1+..._|_1)
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Efficiency and RingSIS REEEINERIES

Remarks about proofs of security

@ This function is essentially the compression function of hash function
LASH, modeled after NTRU

@ You can still “prove” security based on average case assumption:
Breaking the above hash function is as hard as finding short vectors in
a random lattice A(JAM)] .. |A(m/M))

@ ...but we know the function is broken: The underlying random
lattice distribution is weak!

@ Conclusion: Assuming that a problem is hard on average-case is a
really tricky business!
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Efficiency and RingSIS BRLEEINEYAES

Can you find a collision now? (mod 10)

L O S S I S Y Y A O S O I A O
1 4 3 8/6 4 9 0|2 6 -4 5|3 -2 -7 -1
8§ 1 4 3/0 6 4 95 2 6 4|1 3 -2 -7
381 4/9 0 6 445 2 6|7 1 3 -2
4 3 114 9 0 6(6 4 5 22 7 1 3
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Efficiency and RingSIS BRLEEINEYAES

Can you find a collision now? (mod 10)

7?7 7 7|77 7 7|77 7 7|2 7 7 2
1 4 3 8/6 4 9 0]2 6 4 5|3 2 7 -1
8 1 4 3|06 4 952 6 41 3 2 7
38 1 4/9 06 445 2 671 3 -2
4 3 8 1|49 0 6/6 4 5 2|27 1 3

Theorem (trivial)

Finding collisions on the average is at least as hard as finding short vectors
in the corresponding random lattices

Daniele Micciancio (UCSD) The SIS Problem and Cryptographic Applicat: Jan 2020 25/41



Efficiency and RingSIS BRLEEINEYAES

Can you find a collision now? (mod 10)

7?7 7 7|77 7 7|77 7 7|2 7 7 2
1 4 3 8/6 4 9 0]2 6 4 5|3 2 7 -1
8 1 4 3|06 4 952 6 41 3 2 7
38 1 4/9 06 445 2 671 3 -2
4 3 8 1|49 0 6/6 4 5 2|27 1 3

Theorem (trivial)

Finding collisions on the average is at least as hard as finding short vectors
in the corresponding random lattices

v

Theorem (LM'07,PR'07)

Provably collision resistant, assuming the worst case hardness of
approximating SVP and SIVP over anti-cyclic lattices.

o x" 4 1 is irreducible (for n = 2)
Jan 2020  25/41



Efficiency and RingSIS REEEINERIES

Efficiency of anti-cyclic hashing

Key size: (m/n) - nlogq = m-logq = O(n) bits
Anti-cyclic matrix-vector multiplication can be computed in
quasi-linear time O(n) using FFT

The resulting hash function can also be computed in O(n) time

For appropriate choice of parameters, this can be very practical
(SWIFFT [LMPR])

The hash function is linear: A(x +y) = Ax + Ay

This can be a feature rather than a weakness
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Efficiency and RingSIS REEEINERIES

|deal Lattices and Algebraic number theory

@ Isomorphism: AY¢ < Z[X]/(X" — 1)
@ Cyclic SIS:

far e (U1, u) = > ai(X) - u(X)  (mod X" — 1)

where a;, uj € R = Z[X]/(X" —1).

e More generally, use R = Z[X]/p(X) for some monic polynomial
p(X) € Z[X]

e If p(X) is irreducible, then finding collisions to f, for random a is as
hard as solving lattice problems in the worst case in ideal lattices

@ Can set R to the ring of integers of K = Q[X]/p(X).
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Cryptographic Applications

@ Cryptographic Applications
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SIS: Properties and Applications

@ Properties:
@ Compression
© Regularity
© Homomorphism
@ Applications:
© Collision Resistant Hashing
© Commitment Schemes
© Digital Signatures
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SIS Property: Compression
SIS Function

Aczrm  xe{0,1}m,

fa(x) = Ax mod q € Zg

Main security parameter: n. (Security largely independent of m.)
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15 Eonyzi= e
SIS Property: Compression

SIS Function
Ac Zng' X € {0, 1}’”' fA(X) =Axmodq € Zg J

Main security parameter: n. (Security largely independent of m.)

(%)

m bits nlog g bits

@ fa: m bits — nlg g bits.

Daniele Micciancio (UCSD) The SIS Problem and Cryptographic Applicat: Jan 2020 30/41



15 Eonyzi= e
SIS Property: Compression

SIS Function
A c Zng' X € {0, ].}m, fA(X) — AX mod q c Zg

Main security parameter: n. (Security largely independent of m.)

@ fa: m bits — nlg g bits.
e When (m > nlgq), fa is a @
compression function.

m bits nlog g bits
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15 Eonyzi= e
SIS Property: Compression

SIS Function
AczZym, xe{0,1}7, fa(x) = Ax mod g € Zj

Main security parameter: n. (Security largely independent of m.)

@ fa: m bits — nlg g bits.

e When (m > nlgq), fa is a @
compression function.
e E.g., m=2nlgq: m bits nlog g bits

fa: {0,1}™ — {0,1}™/2,
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15 Eonyzi= e
SIS Property: Compression

SIS Function
AczZym, xe{0,1}7, fa(x) = Ax mod g € Zj

Main security parameter: n. (Security largely independent of m.)

@ fa: m bits — nlg g bits.

e When (m > nlgq), fa is a @
compression function.
e E.g., m=2nlgq: m bits nlog g bits

fa: {0,1}™ — {0,1}™/2.
Ajtai's theorem requires (m > nlgq)

Daniele Micciancio (UCSD) The SIS Problem and Cryptographic Applicat: Jan 2020
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(Eg, X =Y?%and f4: Y2 = Y))

Collision Resistant Hashing
Keyed function family f4: X — Y with |[X| > |Y/]
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Cryptographic Applications

Collision Resistant Hashing

Keyed function family f4: X — Y with |[X| > |Y/]
(Eg, X =Y?%and f4: Y2 = Y))
Definition (Collision Resistance)

Finding x; # x2 € X such that fa(x1) = fa(x2) is hard. J

=] & = E E DA
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Cryptographic Applications 1: Compression and Hashing

Co

llision Resistant Hashing

Keyed function family f4: X — Y with |[X| > |Y/|
(Eg, X =Y?%and f4: Y2 = Y))

Definition (Collision Resistance)
Finding x1 # x2 € X such that fa(x1) = fa(x2) is hard.

Classic application: Merkle Trees

Leaves are user data @

Each internal node is the hash of its

children a a
Root r commits to all y1,...,yn

Each y; can be shown to be

consistent with r by revealing log(n) @ @ @ Q

values

Daniele Micciancio (UCSD) The SIS Problem and Cryptographic Applicat: Jan 2020
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SIS Application: Collision Resistant Hashing
Definition (Collision Resistance)

fa: X = Y. No adversary, given a random A, can efficiently find
x # x" € X such that fa(x) = fa(x)
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SIS Application: Collision Resistant Hashing

Definition (Collision Resistance)

fa: X = Y. No adversary, given a random A, can efficiently find
x # x" € X such that fa(x) = fa(x)

Theorem

If fa: {0, £1}" — Zg is one-way, then fa: {0,1}™ — Zg is collision
resistant.

[} = =
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15 Eonyzi= e
SIS Application: Collision Resistant Hashing

Definition (Collision Resistance)

fa: X = Y. No adversary, given a random A, can efficiently find
x # x" € X such that fa(x) = fa(x)

Theorem
If fa: {0, £1}" — Zg is one-way, then fa: {0,1}™ — Zg is collision
resistant.

@ Assume can find collisions to fa
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15 Eonyzi= e
SIS Application: Collision Resistant Hashing

Definition (Collision Resistance)

fa: X = Y. No adversary, given a random A, can efficiently find
x # x" € X such that fa(x) = fa(x)

Theorem
If fa: {0, £1}" — Zg is one-way, then fa: {0,1}™ — Zg is collision
resistant.

@ Assume can find collisions to fa

@ Goal: Given random A and y, find fa(x) =y
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15 Eonyzi= e
SIS Application: Collision Resistant Hashing

Definition (Collision Resistance)

fa: X = Y. No adversary, given a random A, can efficiently find
x # x" € X such that fa(x) = fa(x)

Theorem
If fa: {0, £1}" — Zg is one-way, then fa: {0,1}™ — Zg is collision
resistant.

@ Assume can find collisions to fa
@ Goal: Given random A and y, find fa(x) =y

e Add y to random column a} = a; +y.
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15 Eonyzi= e
SIS Application: Collision Resistant Hashing

Definition (Collision Resistance)

fa: X = Y. No adversary, given a random A, can efficiently find
x # x" € X such that fa(x) = fa(x)

Theorem
If fa: {0, £1}" — Zg is one-way, then fa: {0,1}™ — Zg is collision
resistant.

@ Assume can find collisions to fa

@ Goal: Given random A and y, find fa(x) =y
e Add y to random column a} = a; +y.

e Find collision for A”: A’x = A’x’
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15 Eonyzi= e
SIS Application: Collision Resistant Hashing

Definition (Collision Resistance)

fa: X = Y. No adversary, given a random A, can efficiently find
x # x" € X such that fa(x) = fa(x)

Theorem

If fa: {0, £1}" — Zg is one-way, then fa: {0,1}™ — Zg is collision
resistant.

@ Assume can find collisions to fa

@ Goal: Given random A and y, find fa(x) =y
e Add y to random column a} = a; +y.

e Find collision for A”: A’x = A’x’

o If x'=1and x; =0, then A(x —x') =y
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SIS Property: Regularity
f: X — Yisregularif all y € Y have same |[f~1(y)|.
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A € Z*m,

SIS Property: Regularity
f: X — Yisregularif all y € Y have same |[f~1(y)|.
SIS Function

x € {0,1}™,

fa(x) = Ax mod q € Zg
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2: Regularity and Commitment Schemes
SIS Property: Regularity
f: X — Yisregularif all y € Y have same |f~1(y)|.

SIS Function
Aczym, xe{0,1}7, fa(x) = Axmod q € Zg J

Pairwise independence:

e Fix x3 # x2 € {0,1}™, fa
@ Random A @

e fa(x1) and fa(x2) are

independent. m bits nlog q bits
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2: Regularity and Commitment Schemes
SIS Property: Regularity
f: X — Yisregularif all y € Y have same |f~1(y)|.

SIS Function
Aczym, xe{0,1}7, fa(x) = Axmod q € Zg J

Pairwise independence:

e Fix x3 # x2 € {0,1}™, fa
@ Random A @

e fa(x1) and fa(x2) are

independent. m bits nlog q bits
Lemma (Leftover Hash Lemma)
Pairwise Indepencence + Compression —> Regular J
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2: Regularity and Commitment Schemes
SIS Property: Regularity
f: X — Yisregularif all y € Y have same |f~1(y)|.

SIS Function
Aczrm  xe{0,1}",  fa(x) = Axmod g € Z" J

Pairwise independence:

e Fix x3 # x2 € {0,1}™, fa
@ Random A @

e fa(x1) and fa(x2) are

independent. m bits nlog q bits
Lemma (Leftover Hash Lemma)
Pairwise Indepencence + Compression —> Regular J

fa: (U({0,1}")) ~ U(Zg) maps uniform to uniform.
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Perfectly Hiding Commitments
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Perfectly Hiding Commitments
o Analogy:

o Lock message in a box
o Give box, keep key

o Later: give key to open box
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2: Regularity and Commitment Schemes
Perfectly Hiding Commitments

o Analogy:
o Lock message in a box
o Give box, keep key
o Later: give key to open box
@ Implementation
o Randomized function C(m; r)
o Commit(m): give c = C(m; r) for random r <— $
o Open: reveal m,r such that C(m;r) = c.
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2: Regularity and Commitment Schemes
Perfectly Hiding Commitments

o Analogy:
o Lock message in a box
o Give box, keep key
o Later: give key to open box
@ Implementation
o Randomized function C(m; r)
o Commit(m): give c = C(m; r) for random r <— $
o Open: reveal m,r such that C(m;r) = c.
@ Security properties:
o Hiding: ¢ = C(m;$) is independent of m
e Binding: hard to find m # m’ and r,r" such that C(m; r) = C(m’; r").
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SIS Application: Commitment

@ Choose A1, Ay at random
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SIS Application: Commitment
@ Choose A1, Ay at random

@ message m € {0,1}™ and randomness r € {0,1}™
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2: Regularity and Commitment Schemes
SIS Application: Commitment

@ Choose A1, Ay at random
@ message m € {0,1}™ and randomness r € {0,1}™

o Commitment: C(m,r) = fia, a,)(M,r) = Aym + Aor.
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2: Regularity and Commitment Schemes
SIS Application: Commitment

Choose A1, Ay at random
message m € {0,1}™ and randomness r € {0,1}"

Commitment: C(m,r) = fija, a,)(M,r) = Aym + Ayr.

Hiding Property: C(m) hides the message because
Aor = fp,(r) = U(Zg)
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2: Regularity and Commitment Schemes
SIS Application: Commitment

Choose A1, Ay at random
message m € {0,1}™ and randomness r € {0,1}"

Commitment: C(m,r) = fia, a,)(M,r) = Aym + Aor.

Hiding Property: C(m) hides the message because

Aar = fp,(r) = U(Zg)

e Binding Property: Finding (m,r) # (m’, r') such that
C(m,r) = C(m’,r") breaks the collision resistance of fia; a,]
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SIS Property: (Approximate) Linear Homomorphism
SIS Function
Aczrxm,

x € {0,1}™,

fa(x) = Ax mod q € Zg
@ The SIS function is linearly homomorphic:

fA(Xl) + fA(XQ) = fA(Xl + Xg)
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& (i) PR BT
SIS Property: (Approximate) Linear Homomorphism

SIS Function
A S ngm, X &€ {0, 1}m, fA(X) = Ax mod q = Z?]

@ The SIS function is linearly homomorphic:

fA(Xl) + fA(XQ) = fA(Xl + X2)

@ Homomorphism is only approximate:

o If x1,x, are small, then also x; + x5 is small
e However, x; + xo can be slightly larger than x1, x>
o Domain of fa is not closed under +
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& (i) PR BT
SIS Property: (Approximate) Linear Homomorphism

SIS Function
A S ngm, X &€ {0, 1}m, fA(X) = Ax mod q = Z?]

@ The SIS function is linearly homomorphic:

fA(Xl) + f/_\(Xg) = fA(Xl + X2)

@ Homomorphism is only approximate:

o If x1,x, are small, then also x; + x5 is small
e However, x; + xo can be slightly larger than x1, x>
o Domain of fa is not closed under +

@ fa is also key-homomorphic:
fA1(x) + fAz (X) = f/-\1+/-\2 (X)
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sl s
(One-Time) Digital Signatures

o Digital Signature Scheme:

o Key Generation Algorithm: (pk, sk) < KeyGen
o Signing Algorithm: Sign(sk,m) = o
o Verification Algorithm: Verify(pk, m, o)
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© Adversary wins if Verify(m’,o') and m # m’.

Daniele Micciancio (UCSD) The SIS Problem and Cryptographic Applicat: Jan 2020

37/41



sl s
(One-Time) Digital Signatures

o Digital Signature Scheme:
o Key Generation Algorithm: (pk, sk) < KeyGen
e Signing Algorithm: Sign(sk, m) = o
o Verification Algorithm: Verify(pk, m, o)
@ (One-Time) Security:
@ Generate keys (pk, sk) «+ KeyGen
@ Adversary m < Adv(pk) chooses message query
© .. .receives signature o + Sign(s, m),
@ ...and outputs forgery (m’,0’) < Adv(o).
© Adversary wins if Verify(m’,o') and m # m’.
@ General Signatures: Adversary is allowed an arbitrary number of
signature queries
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SIS Application: One-Time Signatures
o Extend fp to matrices X = [x1,...,x/]:

fa(X) = [fa(x1), ..., fa(x;)] = AX

(mod q)
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SIS Application: One-Time Signatures

o Extend fp to matrices X = [x1,...,x/]:

fa(X) = [fa(x1), ..., fa(x;)] = AX (mod q)

@ Key Generation:

o Public Parameter: SIS function key A
o Secret Key: sk = (X, x) two (small) inputs to fa
o Public Key: pk = (Y = fa(X),y = fa(x)) image of sk under fa
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o Message: short vector m € {0,1}/

o Sign(sk,m) = Xm + x, linear combination of secret key

Daniele Micciancio (UCSD) The SIS Problem and Cryptographic Applicat: Jan 2020

38 /41



& (i) PR BT
SIS Application: One-Time Signatures

o Extend fa to matrices X = [x1,...,x/]:

fa(X) = [fa(x1), ..., fa(x;)] = AX (mod q)

@ Key Generation:

o Public Parameter: SIS function key A
o Secret Key: sk = (X, x) two (small) inputs to fa
o Public Key: pk = (Y = fa(X),y = fa(x)) image of sk under fa

o Message: short vector m € {0,1}/
o Sign(sk,m) = Xm + x, linear combination of secret key

o Verify(pk,m, o) uses homomoprhic properties to check that

fA(O') = fA(Xm + X) = fA(X)m + fA(X) =Ym+y
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Cryptographic Applications 3: Linearity and Digital Signatures

One-time signatures from anti-cyclic lattices

Fix hash function key A = [A(1)| .. |A(’"/”)]

Definition (Secret signing key) Definition (Public verif. key)
x = [, x(m/n) X = ha(x) =3 AOxO)

y = [y(1)7 e 7y(m/n)] Y = ha(y)=> A(i)y(i)
e Signing m € {0,1}":
o] = x(’)M+y() m —-m, - —my
o = (01,---,0m/n) M — my m —m3

@ Verification:
mnp, Mp—1 --- mi

Check if ha(c) = XM + Y
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Cryptographic Applications 3: Linearity and Digital Signatures

Efficiency and security

o Key generation, signing and verifying all require just 1 or 2 hash
function computations in O(n) time

@ Secret key, public key and signature size are also é(n) bits

Theorem (Lyubashevsky&Micciancio)

The one-time signature scheme is secure based on the worst-case hardness
of approximating SVP/SIVP on anti-cyclic lattices within a factor v = n?

e Forgery (M, 0): ha(c) = XM+ Y
@ Use x,y to sign M: ha(o’) = XM+ Y
o If 0 # ¢/, then ha(c) = XM + Y = ha(o’) is a collision!
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3: Linearity and Digital Signatures
That's all folks!

Later today:
o LWE: injective version of SIS, many more applications
@ RingLWE: efficient version of LWE
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