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Phenotypic variation in the population is
often normally distributed
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A substantial portion of this variation is
heritable
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An additive model explains these
observations

P=Xg+ Xe= 5, [XM+ XP] + X¢

Fisher 1918

Xg & Xg — genetic & environmental
contributions
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additive genetic contribution at Q - m
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If we assume that Xg ~ N(0,V¢) and
the X;s are i.i.d over many loci then I _
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An example: height

The top 20 loci in the genome underlying
Height variation.
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An additive model explains these
observations

Defining the (narrow sense)
heritability as:

h’ Y

Yo+

One can show that:
E(P,|P, =x)=h"x

Fisher 1918
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The heritability for most traits is substantial (0.1-0.9)

« Examples from humans (from Byars et al. PNAS 2009):
Height: h2 = 0.84
Weight: h2 = 0.52
Total Cholesterol: h2 = 0.61
Age at menopause: h? = 0.47
Age at menarche: h?2 = 0.62

Morphological traits

Drosophila — morphological traits (REF. 107 [l Only one environment reported

Daphnia — body size (REF. 108 [l Better environment

] Poorer environment

Altantic salmon — marine-stage weight (REF. 109

)
)
)
Atlantic salmon — freshwater-stage weight (REF. 109)
Birds — tarsus length (REF. 10)

Birds — tarsus length (REF. 110) |
)
)
) |
) |

Animal species in the wild — morphological (REF. 111
Cattle — yearling weight (REF. 112

Human — height Finland born 1947-57 (REF. 113,
Human — height Finland born <1929 (REF. 113,

Fitness traits

Drosophila — life-history traits (REF. 107) |
Daphnia — clutch size (REF. 108

Rainbow Trout — alevin survival (REF. 114

Cattle — bull fertility (REF. 112

)
)
( )
Cattle — calving success (REF. 112)
( )
Pigs — number of piglets born alive (REF. 115)

)

Animal species in the wild — life-history traits (REF. 111
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Genome Wide Association Studies
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More than 180 SNPs associated with

height

Genetic Investigation of
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Missing heritability

Genetic Investigation of
Anthropometric Traits

More than 183,000
individuals

Over 2.5 Million SNPs
180 height affecting loci

But, explains only
~10% of the heritable
variation in height

O30

0.25

Height associated

GNJ 0.20 / variants
2 0.15
-Ié)—)' . %%
= 0.10 ) ol
LIJ ® o .’ . 8 . ..

0.05| Sl .t l!!.t.! X 'l‘

Power limit
0.00 - - - -
0.0 0.1 0.2 0.3 0.4 0.5

Minor allele frequency




Genetic architecture

The number of ALL the variants and their joint distribution of
frequencies and effect sizes
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Genetic architecture

The number of ALL the variants and their joint distribution of
frequencies and effect sizes

With limited power in GWAS, we

can look at:

* The discovered number and
distribution.

* AND the explained heritability.
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Genetic archi

0.5~
A Schizophrenia
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While preliminary, we already see
differences in:

« Explained variance

« Number discovered

And

« The distribution

Ripke et al, Nature Genetics 45, 1150 (2013)
Lango Allen et al, Nature 467, 832 (2010)
Speliotes et al, Nature 42, 937 (2010)
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Genetic architecture:
some questions

How is the genetic
architecture shaped by
population genetic
processes? A model.

Can we use models to
inform mapping study
design?

Can we use the results of
mapping studies to learn
about the forces that shape
quantitative genetic
variation? Inference.

What about adaptation?
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The distribution of selection effects and pleiotropy are
key determinants of architecture:

Frequency spectrum
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Pleiotropy is key to relating selection
and effect size




Some requirements from a model for genetic
architecture

Variable degree of pleiotropy.

« Ideally, this would arise from a description of a multi-
dimensional phenotype.

 Selection on a variant should derive from the selection on
phenotypes.

« We would like to be able to calculate measures of
interest, e.g. the density of variance and variants as a
function of frequency and effect size...



Fisher’'s geometric model:
phenotype

« The phenotype is represented by a point in an n-dimensional
Euclidian space. Each dimension corresponds to a trait.

The dynamic will be affected by all
traits, but we will focus on the Trait 2
architecture of a single trait (1) and
the dimension will parameterize the
degree of pleiotropy.

Trait 1
Optimum




Fisher’'s geometric model:
fitness

The phenotype is represented by a point in an n-dimensional
Euclidian space. Each dimension corresponds to a trait.
Fitness is a function of the distance from the origin (stabilizing
selection).

We assume that absolute fitness is

r

W(r) = Exp (— 2\;) Trait 2

where w determines the strength of

selection and incorporates the r

environmental contribution.

Trait 1

Optimum



Fisher’'s geometric model:
mutation

The phenotype is represented by a point in an n-dimensional Euclidian
space. Each dimension corresponds to a trait.

Fitness is a function of the distance from the origin (stabilizing selection).

We assume that absolute fitness is W (r) = Exp (— rz )

w2
We assume an infinite-sites model, where
mutations affecting the trait appear in the Trait 2

population at a rate of 2NU. a
Mutations sizes a? are drawn from a gamma r
distribution, while their direction distribution

is isotropic.

Trait 1
Optimum




Fisher’'s geometric model:
population dynamic

The phenotype is represented by a point in an n-dimensional Euclidian

space. Each dimension corresponds to a trait.

Fitness is a function of the distance from the origin (stabilizing selection).

We assume that absolute fithess is W (r) = Exp (— - )

2w?2
We assume an infinite-sites model, where

mutations affecting the trait appear in the

_ Trait 2
population at a rate of 2NU.
Mutations sizes a? are drawn from a gamma a
distribution, while their direction distribution r
is isotropic.
Wright-Fisher sampling with viability
selection, mutation, free-recombination, and A .
Mendel ; Trait 1
endelian segregation. Optimum




Fisher’'s geometric model:
genotype to phenotype

The genetic component of the trait for can be separated into the segregating

and fixed and component r =7 + .

Segregating: If there are L segregating sites then

the phenotypic contribution for individual j is
L .
;1 Trait 2
rs = 2 i a4,
l=1

where g;; = 0,1 or 2 is the number of mutant

alleles carried by individual i/ at site / and a; is
the phenotypic effect of the mutation at locus /

(specifically, a homozygote).

Trait 1

Fixed: We do bookkeeping. Optimum



Some requirements from a model for genetic
architecture

Variable degree of pleiotropy.

« Ideally, this would arise from a description of a multi-
dimensional phenotype.

« Selection on a variant should derive from the selection on
phenotypes.

« We would like to be able to calculate measures of
interest, e.g. the density of variance and variants as a
function of frequency and effect size...



The steady state distribution of phenotypes in
the population is simple

Under sensible conditions (1>U>1/2N), it is normal around the
origin:

1 2

f(T') — ( 2)2 exp <_ %);
2TT0“)?2

where o2<w?2 .,

Intuition:

« Normal: ris a sum over i.i.d. contributions over many loci

2

« Mean at optimum (V(||7]]) = ZVXI ): Q

"o

Lande (1976) (An Ornstein-Uhlenbeck process)




The dynamic of a segregating variant follows
(the first two moments)

Consider a mutations with effect size a and frequency g

The distribution of its phenotypic background is

1 X +qa)
f(le.0) = gt (-5 )

The expected fitness of the three genotypes is therefore

Wy, = Lf(X|a,q)w(X)

It follows that

E(4q) = — p(Woo_W01)+Q(W01_W11)~_ a’ ( _l)
q) = —pq W ~ T a2 P11 73
and

Pq
A N —
v(4q) 2N

Now we can use the diffusion to calculate summaries of interest



Two notes on the first moment

ra(a—3)
a2 P\ 7

E(4q) = -

This is the standard under-dominant form (Robertson 1961).
 The reason isn't heterozygote disadvantage but rather
selection to reduce the phenotypic variance 2 a?pqg.

« The selection coefficient s is a2/2w2. This is why Na2/w? is a
natural unit for mutation size.



The relationship between selection

coefficients and effect sizes
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peaked

wide

C,2(s)=1/3

=3

C.%(s)

The effects of pleiotropy and selection
on genetic architecture (2Ns=3)
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peaked

wide

C,2(s)=1/3

=3

C.%(s)

effect size

effect size

Simulated GWAS:
Study size 10K & explained variance is 20%
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The effects of pleiotropy and selection on
genetic architecture (2Ns=3): density of variance
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The effects of pleiotropy and selection on
genetic architecture (2Ns=3): density of variance
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Genetic archi
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While preliminary, we already see
differences in:

« Explained variance

« Number discovered

And

« The distribution

Ripke et al, Nature Genetics 45, 1150 (2013)
Lango Allen et al, Nature 467, 832 (2010)
Speliotes et al, Nature 42, 937 (2010)
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Summary and future directions

We solved an intuitive model for how pleiotropy and the
distribution of selection coefficients affect architecture.

Other models for architecture (solution, robustness,
apparent and balancing selection).

Inference (implication to mapping and to understanding
genetic variation).

Polygenic adaptation.
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Polygenic adaptation
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Figure 1. (a) Allele frequencies, (b) trait mean and (c) genetic variance plotted against time. A population is iitially at equili-
brium with stabilizing selection s= 0.05 towards z,,, =0 acting on an additive trait, with n=100 loci of effect y=1; the
mutation rate is u = 0.002 per locus, which maintains a genetic variance of v = 4nuys = 16. The optimum then shifts abruptly
t0 Zgpe = 20, and the mean responds almost immediately (b). The variance increases abruptly (c) as, the allele frequencies at all
the ‘=" loci increase substantially (d). However, this new state is unstable, and slight variations in the initial conditions cause
some loci to shift down, and some to shift up. As a result, the genetic variance returns to its original value. The lower row
shows snapshots of allele frequencies at times (d) 0, (e) 800 and (f) 3000 generations.

From de Vladar & Barton (2010)



