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I Need combination of K ≥ 2 mutations for benefit

I “Fitness valley/plateau” / “Irreducible complexity”



Why do we care?
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Specific cases: signal-receptor, cancer, . . .
Generally:

I When does evolution get stuck?
I Evolution by fittest mutations or fittest combinations?

I Space of genotypes grows exponentially with K



Problems

Population has to:

1. Produce the combination

2. Fix it (incorporate it into everyone’s genome)



Start with the second problem:

When can a rare combination spread
in a population?



Selection vs recombination

Frequency x � 1 of combination changes because of selection s,
recombination r , etc

ẋ = (s − r)x + r f (mutant allele frequencies) + stochasticity + . . .

⇒
{

if r � s : need f (allele freqs.) & x to get 〈ẋ〉 > 0

if r < s : 〈ẋ〉 > 0 regardless of allele freqs.

(Simplest (K = 2) case: f ≡ product of mutant allele frequencies)



Selection vs recombination: numbers

Rare combination giving s = 1% more offspring/generation can
spread faster than broken up by recombination if genes are within:

I Drosophila/human: 1Mb (∼ 100 genes in Drosophila, ∼ 10
genes in humans)

I Yeast: whole genome??

I HIV within host: whole genome?

I E. coli : whole genome, all of the genes?

I Cancer: whole genome



Selection vs stochasticity
Trajectories of mutant lineages n(t):

Near-critical branching process
I ∼ deterministic increase once n & 1/s
I If alive at t < 1/s, usually n ∼ t descendants
I P(alive at time t) ∼ 1/t for t < 1/s

⇒ pfix(s) ∼ s: If s = 1%, need to produce combo ∼ 100×



Now address first problem:

How can a population find an
adaptation that needs K > 2
mutations to function?



Moderate K : hard but possible?

I Have to do exhaustive search ⇒ impossible for large K
I But what about moderate K?

I Practically important: heterodimers, cancer, drug resistance. . .
I Number of potential genotypes also growing exponentially

I Population sizes, mutation rates, recombination rates vary
over many orders of magnitude – need to know which
parameter combinations are important



Simplest toy model
Focus on K = 2 mutants needed for beneficial combination,
asexual
Population size N
Find the mean time τ for population to acquire combination∗

∗not the relevant statistic for cancer
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Asexual dynamical regimes already complicated
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Focus on “plateau” case: small δ



First guess

Let x2(t) = frequency of double-mutants at time t

I x2(0) = 0, ẋ2(t) = µ2t + sx2

⇒ 1/τ ∼ s/ log(s/µ)

I Cheated: what if Nx2(t) < 1? How can we select on nothing?

⇒ Need Nµ2 � s
I Generally: NµK � K !sK−1



Deterministic for very large population sizes
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Second guess: need to treat double-mutants stochastically

I τ ∼ time to produce first successful double-mutant

I Single-mutant frequency x1(t) ∼ µt, so τ satisfies:

Nµ2τ2 ∼ 1/s

⇒ 1/τ ∼ µ
√
Ns

I Ignored stochasticity in the single-mutants – is this ok?
I Need 〈x1(τ)〉 � fluctuations

I Third guess: treat all mutants stochastically



Single-mutant lineage

Total # of individuals (area) = # of mutational opportunities

Prob(success) ∼ (# double-mutants produced)× pfix(s)

∼ area× µ× pfix(s)



Distribution of total progeny

Prob(success | area) ∼ area× µ× pfix(s)
Critical branching process:

I If alive at t � N, usually n ∼ t descendants
I P(alive at time t) ∼ 1/t for t � N
⇒ P(area > a) ∼ P(alive at time

√
a) ∼ 1/

√
a

I Long-tailed distribution of progeny – large fluctuations

⇒ Prob(success) ∼ 1/
√
µs

Most likely path to success: rare lineage that persists for
t ∼ 1/

√
µs; occurs with prob∼ √µs

⇒ 1/τ ∼ Nµ
√
µs



Most likely path to success: one big lineage
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So wait for one big lineage that persists for t ∼ 1/
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µs;
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K > 2 : 1/τ ∼ (Nµ2)(s/µ)1/2K−1



Range of behaviors over different population sizes
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When is complex adaptation likely?
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I At least medium-sized population: N > 1/
√
µs

I Neutral single mutants: δ <
√
µs

I condition on δ relaxed for larger N



“Numbers”

To be able to “see” combo of two individually neutral point
mutations with s = 0.01, need N > 10/

√
µ

I “neutral”: δ <
√
µ/10

I E. coli : µ ∼ 10−10 ⇒ N & 106 (∼ 1011 in you)

I RNA virus: µ ∼ 10−4 ⇒ N & 103



What about sex?



Sex helps for r , δ < s/2



Putting it all together
K = 2, δ = 10−3, µ = 5 × 10−7
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s=0.05

Complicated, but understandable



Conclusion

I Summary:
I Adaptation can spread without intermediate genotypes if

advantage s > recombination rate r
I Moderately complex adaptation is easy if:

I Population is large (N > 1/
√
µs, N > 1/µ, etc)

I Intermediate genotypes not too deleterious (δ <
√
µs, etc)

I Moderate recombination r . s

I No reason why it shouldn’t be happening in natural
populations

I Questions:
I Effect of sex for K > 2?
I Interaction with simple adaptation?
I Real populations/fitness landscapes?

Thanks for listening!
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