The dynamics of complex adaptation

Daniel Weissman

Mar. 20, 2014

People

- \blacktriangleright Michael Desai, Marc Feldman, Daniel Fisher
- ▶ Joanna Masel, Meredith Trotter: Yoav Ram
- \triangleright Other relevant work: Nick Barton, Shahin Rouhani: Lin Chao. Dan Weinreich; Freddy Christiansen, Sally Otto, Aviv Bergman; Rick Durrett, Deena Schmidt, Jason Schweinsberg; Lilach Hadany; Rutger Hermsen, Terry Hwa; Yoh Iwasa, Natalia Komarova, Franziska Michor, Martin Nowak; Michael Lynch; Yannis Michalakis, Monty Slatkin; Richard Neher, Boris Shraiman; Erik van Nimwegen, James Crutchfield; Maria Serra, Patsy Haccou; Arjan de Visser, Su-Chan Park, Kavita Jain, Joachim Krug;...

Complex adaptation

- ▶ Need combination of $K \geq 2$ mutations for benefit
- \blacktriangleright "Fitness valley/plateau" / "Irreducible complexity"

Why do we care?

Specific cases: signal-receptor, cancer, ... Generally:

- \triangleright When does evolution get stuck?
- \blacktriangleright Evolution by fittest mutations or fittest combinations?
	- \triangleright Space of genotypes grows exponentially with K

Problems

Population has to:

- 1. Produce the combination
- 2. Fix it (incorporate it into everyone's genome)

Start with the second problem:

When can a rare combination spread in a population?

Frequency $x \ll 1$ of combination changes because of selection s, recombination r, etc

$$
\dot{x} = (s - r)x + rf(\text{mutant allele frequencies}) + \text{stochasticity} + \dots
$$
\n
$$
\Rightarrow \begin{cases} \text{if } r \gg s : & \text{need } f(\text{allele freqs.}) \gtrsim x \text{ to get } \langle \dot{x} \rangle > 0\\ \text{if } r < s : & \langle \dot{x} \rangle > 0 \text{ regardless of allele freqs.} \end{cases}
$$

(Simplest ($K = 2$) case: $f \equiv$ product of mutant allele frequencies)

Selection vs recombination: numbers

Rare combination giving $s = 1\%$ more offspring/generation can spread faster than broken up by recombination if genes are within:

- \triangleright Drosophila/human: 1Mb (\sim 100 genes in Drosophila, \sim 10 genes in humans)
- \blacktriangleright Yeast: whole genome??
- \blacktriangleright HIV within host: whole genome?
- \blacktriangleright E. coli: whole genome, all of the genes?
- \blacktriangleright Cancer: whole genome

Selection vs stochasticity

Trajectories of mutant lineages $n(t)$:

Near-critical branching process

- $\triangleright \sim$ deterministic increase once $n \geq 1/s$
- **If alive at** $t < 1/s$ **, usually** $n \sim t$ **descendants**
- ► P(alive at time t) $\sim 1/t$ for $t < 1/s$

 \Rightarrow $p_{fix}(s) \sim s$: If s = 1%, need to produce combo ~ 100×

Now address first problem:

How can a population find an adaptation that needs $K > 2$ mutations to function?

Moderate K : hard but possible?

- \triangleright Have to do exhaustive search \Rightarrow impossible for large K
- \blacktriangleright But what about moderate K ?
	- \blacktriangleright Practically important: heterodimers, cancer, drug resistance...
	- \triangleright Number of potential genotypes also growing exponentially
- \triangleright Population sizes, mutation rates, recombination rates vary over many orders of magnitude – need to know which parameter combinations are important

Simplest toy model

Focus on $K = 2$ mutants needed for beneficial combination, asexual Population size N Find the mean time τ for population to acquire combination^{*}

[∗]not the relevant statistic for cancer

Asexual dynamical regimes already complicated ^N ⁼ ¹ I dynamical regimes already complic

n "plateau" case: sma $^{\prime}$ Focus on "plateau" case: small δ

First guess

Let $x_2(t)$ = frequency of double-mutants at time t

$$
\blacktriangleright x_2(0) = 0, x_2(t) = \mu^2 t + s x_2
$$

$$
\Rightarrow\ 1/\tau \sim s/\log(s/\mu)
$$

- ▶ Cheated: what if $Nx_2(t) < 1$? How can we select on nothing?
- \Rightarrow Need $N\mu^2 \gg s$
	- ► Generally: $N\mu^{K} \gg K!s^{K-1}$

Deterministic for very large population sizes s $\frac{1}{2}$ ministic for very large popula Deterministic $\frac{1}{2}$ for $\overline{\nu}$ lar po opulation si n 1/s (1911) (1911) (1911) (1911) (1911) (1911) (1911) (1911) (1911) (1911) (1911) (1911) (1911) (1911) (1911) 1

age of single-mutants, δ_1 Selective disadvantage of single-mutants, δ_1 Second guess: need to treat double-mutants stochastically

- \blacktriangleright $\tau \sim$ time to produce first successful double-mutant
- \triangleright Single-mutant frequency $x_1(t) \sim \mu t$, so τ satisfies:

$$
N\mu^2\tau^2\sim 1/s
$$

$\Rightarrow 1/\tau \sim \mu\sqrt{\mathsf{Ns}}$

- I Ignored stochasticity in the *single*-mutants is this ok?
	- \blacktriangleright Need $\langle x_1(\tau) \rangle \gg$ fluctuations
- \triangleright Third guess: treat all mutants stochastically

Single-mutant lineage

Time in generations

Total $#$ of individuals (area) = $#$ of mutational opportunities

Prob(success) \sim (# double-mutants produced) \times $p_{fix}(s)$ \sim area $\times \mu \times p_{fix}(s)$

Distribution of total progeny

Prob(success | area) \sim area $\times \mu \times p_{fix}(s)$ Critical branching process:

- **►** If alive at $t \ll N$, usually $n \sim t$ descendants
- ► P(alive at time t) $\sim 1/t$ for $t \ll N$
- ⇒ P(area > a) ∼ P(alive at time \sqrt{a}) ~ 1/ \sqrt{a}

 \triangleright Long-tailed distribution of progeny – large fluctuations \Rightarrow Prob(success) $\sim 1/\sqrt{\mu s}$

Most likely path to success: rare lineage that persists for $t \sim 1/\sqrt{\mu s}$; occurs with prob $\sim \sqrt{\mu s}$

 $\Rightarrow 1/\tau \sim N \mu \sqrt{\mu s}$

Most likely path to success: one big lineage

Prob(success | area) ∼ area × μ s; Prob(area > a)∼ 1/ $\sqrt{\lambda}$ So wait for one big lineage that persists for $t \sim 1/\sqrt{\mu s}$; occurs with prob $\sim \sqrt{\mu s}$

$$
\Rightarrow 1/\tau \sim N\mu\sqrt{\mu s}
$$

: $1/\tau \sim (N\mu^2)(s/\mu)^{1/2^{K-1}}$

 $K > 2$

Range of behaviors over different population sizes 1 f behaviors over different population sizes $\frac{1}{2}$ of be $\frac{1}{2}$ or behaviors over different $\frac{1}{2}$ nunge or being م*زب*رد طو $\overline{\mathsf{s}}$ er rere ent populat of behaviors over different population siz 1

age of single-mutants, δ_1 Selective disadvantage of single-mutants, δ_1

When is complex adaptation likely? \times ada ation li lplex adaptation likely $\check{\mathsf{r}}$

Selective disadvantage of single-mutants, δ_1 2µ0µ1s

- ion: $N > 1$. $1/\sqrt{2}$ edium-sized population: $N > 1/\sqrt{2}$ s eu ndium-sized non At least medium-sized population: $N > 1/\sqrt{\mu s}$
- $\sqrt{\mu}$ • Neutral single mutants: $\delta < \sqrt{\mu s}$
	- condition on δ relaxed for larger N

"Numbers"

To be able to "see" combo of two individually neutral point mutations with $s=0.01$, need $\dot{N}>10/\sqrt{\mu}$

• "neutral":
$$
\delta < \sqrt{\mu}/10
$$

▶ E. coli:
$$
\mu \sim 10^{-10} \Rightarrow N \gtrsim 10^6 \ (\sim 10^{11} \text{ in you})
$$

▶ RNA virus:
$$
\mu \sim 10^{-4} \Rightarrow N \gtrsim 10^3
$$

What about sex?

Sex helps for $r, \delta < s/2$

Putting it all together

$$
K=2, \delta=10^{-3}, \mu=5\times10^{-7}
$$

Complicated, but understandable

Conclusion

- \blacktriangleright Summary:
	- \triangleright Adaptation can spread without intermediate genotypes if advantage $s >$ recombination rate r
	- \triangleright Moderately complex adaptation is easy if:
		- ► Population is large $(N > 1/\sqrt{\mu s}, N > 1/\mu$, etc)
		- Intermediate genotypes not too deleterious ($\delta < \sqrt{\mu s}$, etc)
		- \blacktriangleright Moderate recombination $r \leq s$
	- \triangleright No reason why it shouldn't be happening in natural populations
- \triangleright Questions:
	- Fffect of sex for $K > 2$?
	- Interaction with simple adaptation?
	- \blacktriangleright Real populations/fitness landscapes?

Thanks for listening!