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419

- “Explanations [can] sort themselves into several distinct types
corresponding to patterns of causation, content domains, and
explanatory stances, all of which have cognitive consequences™ [Keil,

2011].

>

- An ‘artifact’, derived trom a ‘model’; with the goal to provide ‘insights
into the ‘factors’ most ‘relevant’ to the ‘model’ for an end-usetr.



“Interpretability” AND “Neural Network”

Interpretability & DNN Papers
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Some Motivation

[Challenges for Transparency, Weller 2017, & Doshi-Velez & Kim, 2017 |

» Developer/Researcher: Model Debugging.

* Safety concerns.

« FEthical concerns.

- Trust: Satiate ‘societal’ need for reasoning to trust an automated system
learned from data.



Goals: Model Debugging

- Model Debugging: reveal spurious correlations or the kinds of

inputs that a model 1s most likely to have undesirable performance.

(a) Husky classified as wolf (b) Explanation

[Ribeiro+ 2010]



Systematic Subgroup Etrors

[Morales+ 2019]




Systematic Subgroup Etrors

[Morales+ 2019]

Predictions

' Gender
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 Reveal subsets (non-intuitive) of the data for which
the model has bad performance. This can be due to
data labeling errors or others.
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Promise of Explanations

* Model Debugging: reveal spurious correlations or the kinds of
inputs that a model is most likely to have undesirable performance.

e r Husky
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Promise of Explanations

- Model Debugging: reveal spurious correlations or the kinds of
inputs that a model 1s most likely to have undesirable performance.

Rl = r Husky

Fix

v

Explanation
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‘Interpretability’ vs ‘Explainability’

Interpretability: Constrained Model Class.

Falling Rule Lists

Conditions

Probability Support

IF

ELSE IF
ELSE IF
ELSE IF
ELSE IF
ELSE IF
ELSE

IrregularShape AND Age > 60 THEN malignancy risk is

SpiculatedMargin AND Age > 45 THEN malignancy risk is
[lIDefinedMargin AND Age > 60 THEN malignancy risk is
IrregularShape THEN malignancy risk is
LobularShape AND Density > 2  THEN malignancy risk is
RoundShape AND Age > 60 THEN malignancy risk is

THEN malignancy risk is

85.22%
78.13%
69.23%
63.40%
39.68%
26.09%
10.38%

Table 1: Falling rule list for mammographic mass dataset.
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69.23%
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39.68%
26.09%
10.38%

Table 1: Falling rule list for mammographic mass dataset.

Post-Hoc Explainability.
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230
64
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153
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46
366

[Ribeiro+ 2015]

[Wang+ 2015]



Focus

- This talk will focus exclusively on post-hoc explanations.

» Post-hoc explanations ‘purport’ to provide flexibility for the model

developer/designert.
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Focus

- This talk will focus exclusively on post-hoc explanations.

» Post-hoc explanations ‘purport’ to provide flexibility for the model
developer/designert.

Perhaps a questionable thing to do!

Please Stop Explaining Black Box Models for
High-Stakes Decisions

Cynthia Rudin
Duke University
cynthia@cs.duke.edu

(RO)



Saliency/Attribution Maps

Predictions

TS r Corn
v

q . d% C

d = input dimension
C = number of output classes
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Saliency/Attribution Maps

Predictions

TS r Corn

Explanation

v

Gradient

E :RY s R

[SVZ°13]
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‘Examples’/‘Prototypes’

Test Point

Predictions

CF o

Training Points

[ Koh & Liang 2017, Yeh, 2018, ...]
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“Local Explanations”

+ Local Explanations: focus on the behavior of the model around a

single point.

* Why is this desirable?

20



Key Takeaways

- Ditficult to assess quality and model fidelity of local explanations.

» Conjecture: local explanations seem to require significant privacy

tradeoffs.
Local Model & Data
Explanations Privacy
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Key Takeaways

 Difficult to assess quality and model fidelity of local explanations.

» Conjecture: local explanations seem to require significant privacy
tradeofts.

Model & Data
Privacy

Local
Explanations
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Gradient/Sensitivity Map

Predictions

TS r Corn

Explanation
Gradient
05;
Egrad(@) = % E :RY —» R

[SVZ°13]
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Gradient/Sensitivity Map

Predictions

TS r Corn

Explanation
Gradient
05;
Egrad(@) = % E :RY —» R

[SVZ13]
self.gradients node = tf.gradients(y, X)[©@] [Google Pair Saliency Codebase]
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Smoothgrad

Predictions

TS r Corn

Explanation

v

SmoothGrad

E :RY s R

[STKVW’17]
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Integrated Gradients

Predictions

TS r Corn

Explanation

v

Integrated
Gradients

Fia(z) = (z — 7) x /0 0S(z +ac;(:1: — I) 2

[STY’17]
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Several More

Predictions
= F Corn
Explanation
Guided Pattern

LIME SHAP Gradient SmoothGrad DeConvNet BackProp PatternNet Attribution
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Deep Integrated Edge
Taylor Grad-Input Gradients LRP-EPS LRP-PA LRP-PB Detector
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Other Learned Kinds

Predictions

= F Corn

Explanation

[FV’17]
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Non-Image Settings

Using attribution to decode binding mechanism in
neural network models for chemistry

Kevin McCloskey®', Ankur Taly*', Federico Monti®®, Michael P. Brenner®‘, and Lucy J. Colwell*¢

3Google Research, Mountain View, CA 94043; PInstitute of Computational Science, Universita della Svizzera Italiana, CH-6900 Lugano, Switzerland; “School
of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; and “Department of Chemistry, Cambridge University, Cambridge CB2
1EW, United Kingdom

Edited by Michael L. Klein, Institute of Computational Molecular Science, Temple University, Philadelphia, PA, and approved April 29, 2019 (received for
review December 4, 2018)

Fig. 1. An example of per-atom model attributions visualized for a
molecule. Each atom is colored on a scale from red to blue in proportion
to its attribution score, with red being the most positive and blue being the
most negative.
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Challenge 1: Assessment

* Input Perturbation.

» Localization error in an object
localization task.

comparing

"pixel-flipping" procedure explanation

| . .

examples heatmaps techniques

* Question: can we design I o

. . —xs.ensitivity
simple tests to ‘sanity check’ ..E Q 4 = simple Tl
the model fidelity attribution . . .(2’

(1)

maps? 4
7R

@), ! -

. . (1) compute current heatmap 0 é 16 15 20

(2) remove most relevant features # features removed

|Montavon+ 2017]
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Sanity Checks for Saliency Maps

Joint work with

31



Sanity Check 1: Model Randomization

Conjecture: If a model captures higher level class concepts, then
saliency maps should change as the model 1s being randomized.

Cascading randomization
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Sanity Check 1: Model Randomization

Conjecture: If a model captures higher level class concepts, then
saliency maps should change as the model 1s being randomized.

Cascading randomization
from top to bottom layers
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Sanity Check: Model Randomization

Conjecture: If a model captures higher level class concepts, then
saliency maps should change as the model 1s being randomized.
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Skeletal Radiograph

Medical Setting

v

Guided Backpropagation

- Age




Analysis & Visual Assessment

» Nie et. al. theoretically analyze gradient, guided backpropagation
(GBP), and deconvnet (IDCN) on 1-hidden layer random CNN [Nie+
ICML 2018].

* In the limit (conv filters), gradient returns 1id Gaussian noise, while
GBP and DCN (w/pooling layer) seek to reconstruct the input.
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Fix

Gupta et. al. fix this with competition for gradients (CGI).

Layerwise Randomization for CGI versus Gradient © Input

CaGl

Gradient © Input

original convl_2 conv2_2 conv3_ 4

conv4 4 conv5_4 fc2 softmax

[Figure from Gupta et. al. 2019.]
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Sanity Checks Usetul?

Sanity Checks are useful for ruling out methods, not selecting
them.

« Some other recent work that aim to assess:

- Hooker et. al. propose to remove and retrain.

- Adel et. al. propose FSM which ‘quantifies’ information content
of a map.

* Yang et. al. introduce a benchmark (w/ground truth and other
metrics to assess how well a map captures model behavior.

» Interactions with end-users [Collaris et. al.]
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Attacks

*  Mean-shift attack by Kindermans & Hooker et. al.

"Cat"astrophic Attribution Failure

MNIST + Constant Shift
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Attacks

* ‘Adversarial” attack on explanations by Ghorbani et. al (2017).

Simple Gradient DeepLIFT Integrated Gradients

“Llama” : Confidence 55.4 _ Feature-Importance Map  “Monarch” : Confidence 99.9 Feature-Importance Map “Llama" : Confidence 71.1 __ Feature-Importance Map

%0
»
" L
Yy
Wy
23 200
’ “ 100 s W °

Feature-Importance Map

.

Original

Feature-Importance Map

Perturbed
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Model Debugging Upshot

[Morales+ 2019]

‘ -
2 \ "
= ' ' Gender
X h | . .
N Classification

Predictions
Mﬂﬂs:h

=
%

- Reveal subsets (non-intuitive) of the data for which the model has bad
performance. This can be due to data labeling errors or others.

- Ditficulty might not be in finding these subgroup in data and not

interpreting them.
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Key Takeaways

- Ditficult to assess quality and model fidelity of local explanations.

* Conjecture: local explanations seem to require significant privacy
tradeoffs.

Model & Data
Privacy

Local
Explanations
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Motivation

Input

Age

Predictive

Model

Explanation Problematic!
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Motivation

: Input Fundamental Law of

: 1 Information Recover

. “Overly accurate answers
Age to 100 many questions will

destroy privacy in a
spectacular way.”

—l

Em— Dwork & Roth 2014.
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Model Recovery

»+ Tramer et. al. 2017 recover models through prediction APlIs.

» Milli et. al. 2019 should that one can recover models, (even
misspecified ones) with access to local examples.

Theorem 1 (informal). Assuming the rows of the weight matrix A are linearly independent, our
algorithm recovers a functionally equivalent model from O(hlog h) input gradient queries and function
evaluations with high probability.

* Membership Inference Attacks [Shokti et. al. 2019].



Privacy ‘Harms’: Examples & Prototypes

* Membership inference attacks are easier for these, and dataset
reconstruction is easier with diverse point selection.

Predictions

e F Dog

Training Points

Liang 2017, Yeh, 2018, ...]
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Privacy ‘Harms’: Maps

» Shokri et. al. also show membership inference attack possible with
model learned on the norms of the local explanations.

Predictions

T r Corn

i

v

Gradient




Can Differential Privacy (DP) Help?

One 1s revealing information about exactly the inputs we would like to
protect.

Definition 1. A randomized mechanism M: D — R with
domain D and range R satisfies (g, d)-differential privacy if

for any two adjacent inputs d,d’ € D and for any subset of
outputs S C R it holds that

Pr[M(d) € S] < e° Pr[M(d') € S] + .
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DP-SGD

» Abadi et. al. (2016) introduced a ditferentially private version of SGD

as well as a moments accountant procedure to track the privacy budget.

Algorithm 1 Differentially private SGD (Outline)

Input: Examples {z1,...,zn}, loss function L(0) =
= 3. L(0,z;). Parameters: learning rate 7, noise scale
o, group size L, gradient norm bound C.

Initialize 6y randomly
for t € [T] do
Take a random sample L: with sampling probability
L/N
Compute gradient
For each ¢ € L, compute g¢(xi) < Vo, L(0:, ;)
Clip gradient
g:(z:) + g¢(z:)/ max (1, 18e(zill2)
Add noise
g < 1 (22, 8e(zi) + N(0,0%C1))
Descent
Or+1 < 0: — mét
Output 6r and compute the overall privacy cost (g, 6)
using a privacy accounting method.
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Local Explanations & DP?

* Can DP-trained models help alleviate these concerns?

Privacy vs Local Explanability
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Conclusions

» Difficult to assess quality and model fidelity of local explanations.

- Conjecture: local explanations seem to require signiticant privacy
tradeotts.

» Perhaps global explanations can help, since it fits the theme of

differential privacy?

TL.ocal
Explanations

Model & Data
Privacy
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