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• Interpret means “to explain or to present in understandable terms” to 
“a human” [Doshi-Velez & Kim, 2017]. 

• “Explanations [can] sort themselves into several distinct types 
corresponding to patterns of  causation, content domains, and 
explanatory stances, all of  which have cognitive consequences” [Keil, 
2011]. 

• An ‘artifact’, derived from a ‘model’, with the goal to provide ‘insights’ 
into the ‘factors’ most ‘relevant’ to the ‘model’ for an end-user. 

“Explanations”
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“Interpretability” AND “Neural Network”
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Inspired by the ‘Fairness’ version 
from mrtz.



• Developer/Researcher: Model Debugging. 

• Safety concerns. 

• Ethical concerns. 

• Trust: Satiate ‘societal’ need for reasoning to trust an automated system 
learned from data.

Some Motivation
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[Challenges for Transparency, Weller 2017, & Doshi-Velez & Kim, 2017 ]



Goals: Model Debugging

7

• Model Debugging: reveal spurious correlations or the kinds of  
inputs that a model is most likely to have undesirable performance.

[Ribeiro+ 2016]



Systematic Subgroup Errors
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[Morales+ 2019]

Gender 
Classification

Predictions



Systematic Subgroup Errors
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• Reveal subsets (non-intuitive) of  the data for which 
the model has bad performance. This can be due to 
data labeling errors or others. 

[Morales+ 2019]

Gender 
Classification

Predictions
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Promise of  Explanations
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• Model Debugging: reveal spurious correlations or the kinds of  
inputs that a model is most likely to have undesirable performance.

Explanation

Husky

Fix



‘Interpretability’ vs ‘Explainability’
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[Wang+ 2015]

Interpretability: Constrained Model Class.



‘Interpretability’ vs ‘Explainability’
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Interpretability: Constrained Model Class.

Post-Hoc Explainability.

Explanation

[Wang+ 2015]

[Ribeiro+ 2015]



• This talk will focus exclusively on post-hoc explanations. 

• Post-hoc explanations ‘purport’ to provide flexibility for the model 
developer/designer.  

Focus
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Perhaps a questionable thing to do!



Saliency/Attribution Maps
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Predictions

Corn

S : Rd ! RC

d = input dimension 
C = number of  output classes



Saliency/Attribution Maps
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Predictions

Explanation

[SVZ’13] 

Corn

E : Rd ! RdEgrad(x) =
@Si

@x



‘Examples’/‘Prototypes’
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Predictions

Dog

Test Point

Training Points

[ Koh & Liang 2017, Yeh, 2018, …]



• Local Explanations: focus on the behavior of  the model around a 
single point. 

• Why is this desirable? 

“Local Explanations”

20



• Difficult to assess quality and model fidelity of  local explanations. 

• Conjecture: local explanations seem to require significant privacy 
tradeoffs.

Key Takeaways

21

Local  
Explanations

Model & Data  
Privacy



• Difficult to assess quality and model fidelity of  local explanations. 

• Conjecture: local explanations seem to require significant privacy 
tradeoffs.
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Gradient/Sensitivity Map
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Predictions

Explanation

[SVZ’13] 

Corn

E : Rd ! RdEgrad(x) =
@Si

@x



Gradient/Sensitivity Map
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Predictions

Explanation

[SVZ’13] 

Corn

E : Rd ! RdEgrad(x) =
@Si

@x

[Google Pair Saliency Codebase]



Smoothgrad
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Predictions

Explanation

Corn

E : Rd ! Rd

[STKVW’17] 



Integrated Gradients
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Predictions

Explanation

Corn

E : Rd ! Rd

[STY’17] 



Several More
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Predictions

Explanation

Corn



Other Learned Kinds
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Predictions

Explanation

Corn

[FV’17] 



Non-Image Settings

29



• Input Perturbation. 

• Localization error in an object 
localization task. 

• Question: can we design 
simple tests to ‘sanity check’ 
the model fidelity attribution 
maps? 

Challenge 1: Assessment
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[Montavon+ 2017]



Sanity Checks for Saliency Maps
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Joint work with



Conjecture: If  a model captures higher level class concepts, then 
saliency maps should change as the model is being randomized. 

Sanity Check 1: Model Randomization
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Conjecture: If  a model captures higher level class concepts, then 
saliency maps should change as the model is being randomized. 

Sanity Check 1: Model Randomization
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Conjecture: If  a model captures higher level class concepts, then 
saliency maps should change as the model is being randomized. 

Sanity Check: Model Randomization



Medical Setting

Guided Backpropagation

Skeletal Radiograph

Age



• Nie et. al. theoretically analyze gradient, guided backpropagation 
(GBP), and deconvnet (DCN) on 1-hidden layer random CNN [Nie+ 
ICML 2018]. 

• In the limit (conv filters), gradient returns iid Gaussian noise, while 
GBP and DCN (w/pooling layer) seek to reconstruct the input.

Analysis & Visual Assessment
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• Gupta et. al. fix this with competition for gradients (CGI).

Fix

37

[Figure from Gupta et. al. 2019.]



• Sanity Checks are useful for ruling out methods, not selecting 
them. 

• Some other recent work that aim to assess:  

• Hooker et. al.  propose to remove and retrain. 

• Adel et. al. propose FSM which ‘quantifies’ information content 
of  a map.  

• Yang et. al. introduce a benchmark (w/ground truth and other 
metrics to assess how well a map captures model behavior. 

• Interactions with end-users [Collaris et. al.]

Sanity Checks Useful?
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• Mean-shift attack by Kindermans & Hooker et. al.

Attacks

39



• ‘Adversarial’ attack on explanations by Ghorbani et. al (2017).

Attacks
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Model Debugging Upshot
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• Reveal subsets (non-intuitive) of  the data for which the model has bad 
performance. This can be due to data labeling errors or others.  

• Difficulty might not be in finding these subgroup in data and not 
interpreting them.

[Morales+ 2019]

Gender 
Classification

Predictions



• Difficult to assess quality and model fidelity of  local explanations. 

• Conjecture: local explanations seem to require significant privacy 
tradeoffs.

Key Takeaways
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Local  
Explanations

Model & Data  
Privacy



Motivation
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Age
Predictive 

Model

Input

Explanation Problematic!



Motivation
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Age
Predictive 

Model

Input

Explanation

Fundamental Law of  
Information Recovery

“Overly accurate answers 
to too many questions will 
destroy privacy in a 
spectacular way.”

Dwork & Roth 2014.



• Tramer et. al. 2017 recover models through prediction APIs. 

• Milli et. al. 2019 should that one can recover models, (even 
misspecified ones) with access to local examples. 

Model Recovery

45

• Membership Inference Attacks [Shokri et. al. 2019].



Privacy ‘Harms’: Examples & Prototypes
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Predictions

Dog

Test Point

Training Points

[ Koh & Liang 2017, Yeh, 2018, …]

• Membership inference attacks are easier for these, and dataset 
reconstruction is easier with diverse point selection.



Privacy ‘Harms’: Maps

47

Predictions

[SVZ’13] 

Corn

• Shokri et. al. also show membership inference attack possible with 
model learned on the norms of  the local explanations.



Can Differential Privacy (DP) Help?
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• One is revealing information about exactly the inputs we would like to 
protect.



DP-SGD 
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• Abadi et. al. (2016) introduced a differentially private version of  SGD 
as well as a moments accountant procedure to track the privacy budget.



Local Explanations & DP?
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• Can DP-trained models help alleviate these concerns?

Input EPS 2 10 21 94



• Difficult to assess quality and model fidelity of  local explanations. 

• Conjecture: local explanations seem to require significant privacy 
tradeoffs. 

• Perhaps global explanations can help, since it fits the theme of  
differential privacy?

Conclusions
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Local  
Explanations

Model & Data  
Privacy


