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Policy gradient methods in RL

* Widely used in practice
* Directly optimize quantity of interest
 Easily handle continuous and discrete states and actions
* Apply to any differential policy parametrization

* Coarse-grained understanding in theory
e Converge to a stationary point under sufficient smoothness

Can we sharpen our understanding of when and how well
do policy gradient methods work?
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Questions of interest

* When do policy gradient methods find a globally optimal policy with
tabular parameterizations?

 What is the effect of function approximation on these guarantees?

* How does using finitely many samples effect convergence?
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Main challenges

* The underlying maximization problem is typically non-concave
* Poor exploration leads to bad stationary points

* Role of function approximation tricky to quantify
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MDP Preliminaries

* Discounted Markov Decision Process (S,A,7,P,y)
* Policym:S — A(A)

 State distribution of a policy

4T, (s) = (1=7) ) y*Pri(s, = s Iso)
t=0

* Value functions of a policy
V7 (so) = Esg~az [r(s,a)]and Q7 (s,a) = E[r(s,a) +yV"(s') | s, a]
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Policy parameterizations

* Policy class Il = {mg: 6 € 0O}.

. o - - One parameter per
* Policy optimization: max|[V™(p) = E;._,[V"(s)]] state action, always
contains optimal

mell

policy
* Example: Softmax parameterization

® = R>4 and mg(als) « exp(bs )

* In general, Il need not contain the best unconstrained policy
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Policy gradient algorithm

* Given a distribution u over states
* Can be different from p for better exploration

* First-order updates on value of policy m

Orir = 0; + VIO (W)

* Policy gradient theorem [Williams ‘92, Sutton et al., ‘99]

VoV () = E, gm0 [Vologme(als) Q™ (s,a)]

* Can be estimated using trajectories from mg
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Policy gradient example: Softmax parameterization

e Advantage function of

A™(s,a) = Q" (s,a) — Ea~7'c('|S) [Qn(s: a)]

* Policy gradients (PG) for softmax: Favor actions with
a large advantage
avV™e(u) 1

_ g T
- ) AT
30, =y d,” (s)mg(als)A™e (s, a)

Stationary if better
actions are not
explored
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Convergence of policy gradients for softmax

Suppose the initial distribution u satisfies u(s) > 0 for all
(1-y)?

s €S5.Usingn < , we have for all states s:

VO (s) > V*(s) ast — oo

2> Converges as all states, actions have non-zero probability under softmax
$Can be slow as optimal policy is deterministic, 8 grow to oo
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Entropy regularization

* Vanilla policy gradient slow to converge when probabilities are small

* Entropy regularization:

max |L;(0) = V™ (u) — %2 KL(Unif, g (- IS))

geRSA
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Entropy regularized PG

* Vanilla policy gradient slow to converge when probabilities are small

* Entropy regularization:

) _
max |L,(0) == V™ (u) + S_AE log g (als)
s,a |

geRSA

* Different from more commonly used entropy of

* Entropy regularized PG updates
Oty1 =0t +nVgLy(6;)
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Convergence of Entropy regularized PG

Distribution mismatch ratio:

y .4 (s)
(79310 = 10357, o5

For appropriate choices of 4,7 and for any state distribution p we have

( SA M(ﬂ*,p;u)>

Vo) — VO () —
minV*(p) =V (p) =0 L 77

t<T
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Convergence of Entropy regularized PG

For appropriate choices of 4,17 and for any state distribution p we have

( SA M(ﬂ*,p;u))
(1-y)3 VT

U () — VD () —
minV*(p) =V~ (p) =0

1 1

* poly (S’A’E’E) convergence when distribution mismatch is small

 Counterexamples without dependence on M (1t*, p; i)
* Exploration matters in PG even with exact gradients
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Can we do better?

Algorithm Iteration complexity

PG for softmax Asymptotic
Entropy-regularized PG for softmax S2%A? N 5
— M(1", p; 1)
(1—y)%e

 Policy gradients (PG) for softmax:

avrTe(u)
00; 4 1 - 14

d:fe (s)mg(als)A™e (s, a)

 Distribution mismatch arises as PG depends on probability of visiting s
under



A natural solution

* Let us consider the Natural Policy Gradient algorithm [Kakade, 2001]
* Uses Fisher information based preconditioner

e Simple form for softmax parameterization:

01 =0 + LA(O and 14 (als) o« m(als) eXp(nA“))

1—y
* Updates do not depend on d™¢(s)

* Like multiplicative weights, but in a non-concave maximization setting
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Convergence of Natural Policy Gradients

Using u = p and 8, = 0, settingn = (1 — y)*log A4, for all t we have
2
V*(p) — VB (p) <
(p) (p) LT

* Dimension free convergence, no dependence on §, A
* No dependence on distribution mismatch coefficient

e Similar results for approximate policy iteration in Even-Dar et al.,
[2009] and [Geist et al. [2019]
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Proof ideas

* Performance difference lemma:

! 1 !
V7 (so) = V™ (o) = 1= Fs~af©Eancis) [A™ (s, a)]

* Linearize regret using above lemma instead of concavity
* Yields - rate almost immediately by multiplicative weights analysis

7
* Lower bound per-step improvement for fast rate
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Recap so far

Algorithm Iteration complexity

PG for softmax Asymptotic
Entropy-regularized PG for softmax S?A? X ,
6 -2 M(T[ P ‘Ll)
(1 —y)Ce
NPG for softmax ; 1
(1—p)°T

We now study NPG with restricted policy parameterizations
which need not contain the optimal policy
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Restricted parameterizations
* Policy class Il = {mg: 6 € O}

* Want a policy T € Il to minimize

Tlg . T
max V"0 (p) — V" (p)

* Example (linear softmax):
g (als) x exp(0T¢s,) ¢Psq € R ford < SA
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A closer look at Natural Policy Gradient

* NPG performs the update:
F(0) = Esa~nylgo(s a)ge(s, a)'] where gg(s,a) = Vglogmg(als)
8t+1 = Qt + nF(Qt)Tvev(t) Compatible function

approximation loss [Sutton

et al., 99]

* Ordinary least squares solution under the loss:

L(w;0) = Es,a~n9 [(A™0(s,a) —w - gg(s, a))z]
* Example for linear softmax:
2
L(W; 0) — Es,a~7t9 [(ATFG (S; a) —W- ¢S,a) ]
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A natural update rule

* Pick any w; € argmin,, L(w; 6;)
° Update 9t+1 — Ht + nwe

e Similar to Natural Actor Critic [Peters and Schaal, 2008]
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Assumptions on policies

Policy Smoothness: Vylog mg(als) is B Lipschitz continuous for all s, a
Bounded updates: “Wt” < W for all iterations t
Bounded approximation error: L(w;; 8;) < eapx for all iterations ¢

Minimum action probabilities: u(als) = pyin foralls, a
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Convergence of NPG for smooth policies

e let 8 = argmax V™ (p).Set n =/2logA /BW?2T

min V7" (1) — VO ()

t<T
W2BlogA 1 [ M(mg-, p; )
< + 3 EapX
1—-y T \1(1—]/) Pmin
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Convergence of NPG for smooth policies

W2BlogA 1 M (mtg~, p; 1)

Regret(u,T) < +
5 1 — )4 \/T \ (1 — V)Bpmin

€apx

e Slower rate than the tabular case
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Convergence of NPG for smooth policies

Wy2B8logA 1 N M (mg+, p; 1)
1 — )4 \/T \ (1 — V)Bpmin

Regret(u, T) < €apx

e Slower rate than the tabular case
e Distribution mismatch coefficient strikes back
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Convergence of NPG for smooth policies

W.2BlogA 1 N M (mtg~, p; 1)
1 — )4 \/T \ (1 — V)Bpmin

Regret(u, T) < €apx

e Slower rate than the tabular case
e Distribution mismatch coefficient strikes back

 Effect of function approximation captured using min compatible
function approximation loss
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Extension to finite samples
* Approximately minimize L(w; 8;) using samples
* Easy to obtain unbiased gradients

* Regret in loss minimization adds to €apx

* We show convergence guarantees using averaged SGD
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Summary and other results

* Finite-time convergence analysis of policy gradient methods

* Distribution mismatch coefficient captures role of exploration
* Assumption on algorithm, but not MDP dynamics

* Also analyze some projected policy gradient methods in the paper
* E.g.:mg(als) = O, as long as parameters lie in the simplex

* Characterize relevant notions of policy class expressivity
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Looking ahead

* Empirical validation of theoretical prescriptions
e KL vs. reverse KL, Actor-critic vs. Natural actor critic,...

* How do variance reduction techniques help?

* Sharper problem-dependent quantities instead of distribution
mismatch coefficient

* Design of good exploratory distributions u
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Thank You!
http://arxiv.org/abs/1908.00261



http://arxiv.org/abs/1908.00261

8y 24 : : _ €(1-y)
Let ) = o TS Starting from any 6, using A = (T ) and
n = ﬁi, for any state distribution p we have
A
o ) 320 S2A? . .
minV*(p) — V' (p) < e whenever T M(r™, p; 1)

>
t<T — (1 —1y)be€?
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