Analyzing Optimization and Generalization in Deep Learning via Trajectories of Gradient Descent

Nadav Cohen

Institute for Advanced Study −→ Tel Aviv University

Frontiers of Deep Learning Workshop

Simons Institute for the Theory of Computing

15 July 2019

Outline

1 [Optimization and Generalization in Deep Learning via Trajectories](#page-1-0)

[Case Study: Linear Neural Networks](#page-15-0)

- **[Trajectory Analysis](#page-21-0)**
- **•** [Optimization](#page-33-0)
- **•** [Generalization](#page-69-0)

Optimization

Fitting training data by minimizing an objective (loss) function

Generalization

Controlling gap between train and test errors, e.g. by adding regularization term/constraint to objective

Classical Machine Learning

Theme: make sure objective is convex!

Classical Machine Learning

Optimization

- Single global minimum, efficiently attainable
- Choice of algorithm affects only speed of convergence

Classical Machine Learning

Optimization

- Single global minimum, efficiently attainable
- Choice of algorithm affects only speed of convergence

Generalization

Bias-variance trade-off:

Classical Machine Learning

Optimization

- Single global minimum, efficiently attainable
- Choice of algorithm affects only speed of convergence

Generalization

Bias-variance trade-off:

Deep Learning (DL)

Theme: allow objective to be non-convex

Deep Learning (DL)

Optimization

- Multiple minima, a-priori not efficiently attainable
- Variants of gradient descent (GD) somehow reach global min

Deep Learning (DL)

Optimization

- Multiple minima, a-priori not efficiently attainable
- Variants of gradient descent (GD) somehow reach global min

Generalization

- Some global minima generalize well, others don't
- With typical data, solution found by GD often generalizes well
- No bias-variance trade-off regularization implicitly induced by GD

Theme: allow objective to be non-convex

Optimization

- Multiple minima, a-priori not efficiently attainable
- Variants of gradient descent (GD) somehow reach global min

Generalization

- Some global minima generalize well, others don't
- With typical data, solution found by GD often generalizes well
- No bias-variance trade-off regularization implicitly induced by GD

Analysis via Trajectories of Gradient Descent

Perspective

Language of classical learning theory may be insufficient for DL

Analysis via Trajectories of Gradient Descent

Perspective

- Language of classical learning theory may be insufficient for DL
- Need to carefully analyze course of learning, i.e. trajectories of GD!

Analysis via Trajectories of Gradient Descent

Perspective

- Language of classical learning theory may be insufficient for DL
- Need to carefully analyze course of learning, i.e. trajectories of GD!

Case will be made via deep linear neural networks

Outline

1 [Optimization and Generalization in Deep Learning via Trajectories](#page-1-0)

2 [Case Study: Linear Neural Networks](#page-15-0)

- **[Trajectory Analysis](#page-21-0)**
- **•** [Optimization](#page-33-0)
- **•** [Generalization](#page-69-0)

Sources

On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization

Arora $+ C +$ Hazan (alphabetical order) International Conference on Machine Learning (ICML) 2018

A Convergence Analysis of Gradient Descent for Deep Linear Neural Networks

Arora $+ C +$ Golowich $+ H$ u (alphabetical order) International Conference on Learning Representations (ICLR) 2019

Implicit Regularization in Deep Matrix Factorization

Arora $+ C + Hu + Lu$ (alphabetical order)

Preprint 2019

Collaborators

Sanjeev Arora Elad Hazan

Google

Yuping Luo Wei Hu Noah Golowich

Linear Neural Networks

Linear neural networks (LNN) are fully-connected neural networks with linear (no) activation

$$
\mathbf{x} \longrightarrow W_1 \longrightarrow W_2 \longrightarrow \cdots \longrightarrow W_N \longrightarrow \mathbf{y} = W_1 \cdots W_2 W_1 \mathbf{x}
$$

Linear Neural Networks

Linear neural networks (LNN) are fully-connected neural networks with linear (no) activation

$$
\mathbf{x} \longrightarrow W_1 \longrightarrow W_2 \longrightarrow \cdots \longrightarrow W_N \longrightarrow \mathbf{y} = W_N \cdots W_2 W_1 \mathbf{x}
$$

LNN realize only linear mappings, but are highly non-trivial in terms of optimization and generalization

Linear Neural Networks

Linear neural networks (LNN) are fully-connected neural networks with linear (no) activation

$$
\mathbf{x} \longrightarrow W_1 \longrightarrow W_2 \longrightarrow \cdots \longrightarrow W_N \longrightarrow \mathbf{y} = W_N \cdots W_2 W_1 \mathbf{x}
$$

LNN realize only linear mappings, but are highly non-trivial in terms of optimization and generalization

Studied extensively as surrogate for non-linear neural networks:

- [Saxe et al. 2014](https://arxiv.org/pdf/1312.6120.pdf)
- [Kawaguchi 2016](https://papers.nips.cc/paper/6112-deep-learning-without-poor-local-minima.pdf)
- [Advani & Saxe 2017](https://arxiv.org/pdf/1710.03667.pdf)
- **•** [Hardt & Ma 2017](https://openreview.net/pdf?id=ryxB0Rtxx)
- [Laurent & Brecht 2018](http://proceedings.mlr.press/v80/laurent18a/laurent18a.pdf)
- [Gunasekar et al. 2018](https://papers.nips.cc/paper/8156-implicit-bias-of-gradient-descent-on-linear-convolutional-networks.pdf)
- **Ji** & Telgarsky 2019
- **•** [Lampinen & Ganguli 2019](https://openreview.net/pdf?id=ryfMLoCqtQ)

Outline

1 [Optimization and Generalization in Deep Learning via Trajectories](#page-1-0)

2 [Case Study: Linear Neural Networks](#page-15-0)

- [Trajectory Analysis](#page-21-0)
- **[Optimization](#page-33-0)**
- **•** [Generalization](#page-69-0)

Gradient Flow

Gradient flow (GF) is a continuous version of GD (step size \rightarrow 0):

$$
\tfrac{d}{dt} \boldsymbol{\alpha}(t) = - \nabla f(\boldsymbol{\alpha}(t)) \hspace{0.3cm}, \hspace{0.1cm} t \in \mathbb{R}_{>0}
$$

Gradient Flow

Gradient flow (GF) is a continuous version of GD (step size \rightarrow 0):

$$
\tfrac{d}{dt} \boldsymbol{\alpha}(t) = - \nabla f(\boldsymbol{\alpha}(t)) \hspace{0.3cm}, \hspace{0.1cm} t \in \mathbb{R}_{>0}
$$

Admits use of theoretical tools from differential geometry/equations

$$
\mathbf{x} \longrightarrow W_1 \longrightarrow W_2 \longrightarrow \cdots \longrightarrow W_N \longrightarrow \mathbf{y} = W_N \cdots W_2 W_1 \mathbf{x}
$$

$$
\mathbf{x} \longrightarrow W_1 \longrightarrow W_2 \longrightarrow \cdots \longrightarrow W_N \longrightarrow \mathbf{y} = W_N \cdots W_2 W_1 \mathbf{x}
$$

Loss $\ell(\cdot)$ for linear model induces **overparameterized objective** for LNN: $\phi(W_1, \ldots, W_N) := \ell(W_N \cdots W_2 W_1)$

$$
\mathbf{x} \longrightarrow W_1 \longrightarrow W_2 \longrightarrow \cdots \longrightarrow W_N \longrightarrow \mathbf{y} = W_N \cdots W_2 W_1 \mathbf{x}
$$

Loss $\ell(\cdot)$ for linear model induces **overparameterized objective** for LNN: $\phi(W_1, \ldots, W_N) := \ell(W_N \cdots W_2 W_1)$

Definition

Weights $W_1 \dots W_N$ are ${\sf balanced\,\, if}\,\, W_{j+1}^\top W_{j+1} = W_j W_j^\top\,$, $\forall j.$

$$
\mathbf{x} \longrightarrow W_1 \longrightarrow W_2 \longrightarrow \cdots \longrightarrow W_N \longrightarrow \mathbf{y} = W_N \cdots W_2 W_1 \mathbf{x}
$$

Loss $\ell(\cdot)$ for linear model induces **overparameterized objective** for LNN: $\phi(W_1, \ldots, W_N) := \ell(W_N \cdots W_2 W_1)$

Definition

Weights $W_1 \dots W_N$ are ${\sf balanced\,\, if}\,\, W_{j+1}^\top W_{j+1} = W_j W_j^\top\,$, $\forall j.$ ↑ Holds approximately under \approx 0 init, exactly under residual (I_d) init

$$
\mathbf{x} \longrightarrow W_1 \longrightarrow W_2 \longrightarrow \cdots \longrightarrow W_N \longrightarrow \mathbf{y} = W_N \cdots W_2 W_1 \mathbf{x}
$$

Loss $\ell(\cdot)$ for linear model induces **overparameterized objective** for LNN: $\phi(W_1, \ldots, W_N) := \ell(W_N \cdots W_2 W_1)$

Definition

Weights $W_1 \dots W_N$ are ${\sf balanced\,\, if}\,\, W_{j+1}^\top W_{j+1} = W_j W_j^\top\,$, $\forall j.$ ↑ Holds approximately under \approx 0 init, exactly under residual (I_d) init

Claim

Trajectories of GF over LNN preserve balancedness: if $W_1 \ldots W_N$ are balanced at init, they remain that way throughout GF optimization

Question

How does **end-to-end matrix** $W_{1\cdot N} = W_N \cdots W_1$ move on GF trajectories?

Linear Neural Network Equivalent Linear Model

Gradient flow over $\phi(W_1, ..., W_N)$?

Question

How does **end-to-end matrix** $W_{1\cdot N} = W_N \cdots W_1$ move on GF trajectories?

Linear Neural Network Equivalent Linear Model

gradient flow over *(W1:N)*

Theorem

If $W_1 \ldots W_N$ are balanced at init, $W_{1 \ldots N}$ follows **end-to-end dynamics**:

$$
\frac{d}{dt} \text{vec}\left[W_{1:N}(t)\right] = -P_{W_{1:N}(t)} \cdot \text{vec}\left[\nabla \ell(W_{1:N}(t))\right]
$$

where $P_{W_{1:N}(t)}$ is a preconditioner (PSD matrix) that "reinforces" $W_{1:N}(t)$

 $\frac{c}{d}$

 $\frac{c}{d}$

Question

How does **end-to-end matrix** $W_{1\cdot N} = W_N \cdots W_1$ move on GF trajectories?

Linear Neural Network Equivalent Linear Model

gradient flow over *(W1:N)*

Theorem

If $W_1 \ldots W_N$ are balanced at init, $W_{1 \ldots N}$ follows **end-to-end dynamics**:

$$
\frac{d}{dt} \text{vec}\left[W_{1:N}(t)\right] = -P_{W_{1:N}(t)} \cdot \text{vec}\left[\nabla \ell(W_{1:N}(t))\right]
$$

where $P_{W_{1:N}(t)}$ is a preconditioner (PSD matrix) that "reinforces" $W_{1:N}(t)$

$$
P_{W_{1:N}(t)} \cdot \text{vec}\left[\nabla \ell\big(W_{1:N}(t)\big)\right] = \\ \text{vec}\left[\sum_{j=1}^{N}\left[W_{1:N}(t)W_{1:N}(t)^{\top}\right]^{\frac{N-j}{N}} \cdot \nabla \ell\big(W_{1:N}(t)\big) \cdot \left[W_{1:N}(t)^{\top}W_{1:N}(t)\right]^{\frac{j-1}{N}}\right] \\ \text{Nadv Cohen (IAS \rightarrow TAU)} \qquad \text{Analyzing DL via Trajectories of GD} \qquad DL Workshop, Simons, Jul'19 \qquad 15 / 36 \text{ V.}
$$

Question

How does **end-to-end matrix** $W_{1\cdot N} = W_N \cdots W_1$ move on GF trajectories?

Linear Neural Network Equivalent Linear Model

gradient flow over *(W1:N)*

Theorem

If $W_1 \ldots W_N$ are balanced at init, $W_{1 \ldots N}$ follows **end-to-end dynamics**:

$$
\frac{d}{dt} \text{vec}\left[W_{1:N}(t)\right] = -P_{W_{1:N}(t)} \cdot \text{vec}\left[\nabla \ell(W_{1:N}(t))\right]
$$

where $P_{W_{1:N}(t)}$ is a preconditioner (PSD matrix) that "reinforces" $W_{1:N}(t)$

Adding (redundant) linear layers to classic linear model induces preconditioner promoting movement in directions already taken!

Outline

1 [Optimization and Generalization in Deep Learning via Trajectories](#page-1-0)

2 [Case Study: Linear Neural Networks](#page-15-0)

• [Trajectory Analysis](#page-21-0)

• [Optimization](#page-33-0)

• [Generalization](#page-69-0)

[Case Study: Linear Neural Networks](#page-34-0) [Optimization](#page-34-0)

Classic Approach: Characterization of Critical Points

Prominent approach for analyzing optimization in DL (in spirit of classical learning theory) is via critical points in the objective

Classic Approach: Characterization of Critical Points

Prominent approach for analyzing optimization in DL (in spirit of classical learning theory) is via critical points in the objective

Result (cf. [Ge et al. 2015;](http://proceedings.mlr.press/v40/Ge15.pdf) [Lee et al. 2016\)](http://proceedings.mlr.press/v49/lee16.pdf)

If: **(1)** there are no poor local minima; and **(2)** all saddle points are strict, then GD converges to global min
Classic Approach: Characterization of Critical Points

Prominent approach for analyzing optimization in DL (in spirit of classical learning theory) is via critical points in the objective

Result (cf. [Ge et al. 2015;](http://proceedings.mlr.press/v40/Ge15.pdf) [Lee et al. 2016\)](http://proceedings.mlr.press/v49/lee16.pdf)

If: **(1)** there are no poor local minima; and **(2)** all saddle points are strict, then GD converges to global min

Motivated by this, many 1 studied the validity of (1) and/or (2)

1 & Vidal 2015; [Kawaguchi 2016;](https://papers.nips.cc/paper/6112-deep-learning-without-poor-local-minima.pdf) [Soudry & Carmon 2016;](https://arxiv.org/pdf/1605.08361.pdf) [Safran & Shamir 2018](http://proceedings.mlr.press/v80/safran18a/safran18a.pdf)

Classic Approach: Characterization of Critical Points

Prominent approach for analyzing optimization in DL (in spirit of classical learning theory) is via critical points in the objective

Result (cf. [Ge et al. 2015;](http://proceedings.mlr.press/v40/Ge15.pdf) [Lee et al. 2016\)](http://proceedings.mlr.press/v49/lee16.pdf)

If: **(1)** there are no poor local minima; and **(2)** all saddle points are strict, then GD converges to global min

Motivated by this, many 1 studied the validity of (1) and/or (2)

Limitation: deep (\geq 3 layer) models violate (2) (consider all weights = 0)!

1 e.g. [Haeffele & Vidal 2015;](https://arxiv.org/pdf/1506.07540.pdf) [Kawaguchi 2016;](https://papers.nips.cc/paper/6112-deep-learning-without-poor-local-minima.pdf) [Soudry & Carmon 2016;](https://arxiv.org/pdf/1605.08361.pdf) [Safran & Shamir 2018](http://proceedings.mlr.press/v80/safran18a/safran18a.pdf) Nadav Cohen (IAS \rightarrow TAU) [Analyzing DL via Trajectories of GD](#page-0-0) DL Workshop, Simons, Jul'19 17 / 36

Trajectory analysis revealed implicit preconditioning on end-to-end matrix:

$$
\frac{d}{dt} \text{vec}\left[W_{1:N}(t)\right] = -P_{W_{1:N}(t)} \cdot \text{vec}\left[\nabla \ell(W_{1:N}(t))\right]
$$

Trajectory analysis revealed implicit preconditioning on end-to-end matrix:

$$
\frac{d}{dt} \text{vec}\left[W_{1:N}(t)\right] = -P_{W_{1:N}(t)} \cdot \text{vec}\left[\nabla \ell(W_{1:N}(t))\right]
$$

 $P_{W_{1:N}(t)}$ \succ 0 when $W_{1:N}(t)$ has full rank

Trajectory analysis revealed implicit preconditioning on end-to-end matrix:

$$
\frac{d}{dt} \text{vec}\left[W_{1:N}(t)\right] = -P_{W_{1:N}(t)} \cdot \text{vec}\left[\nabla \ell(W_{1:N}(t))\right]
$$

 $P_{W_{1:N}(t)}$ > 0 when $W_{1:N}(t)$ has full rank \implies loss decreases until: (1) $\nabla \ell(W_{1:N}(t)) = 0$ **or** (2) $W_{1:N}(t)$ is singular

Trajectory analysis revealed implicit preconditioning on end-to-end matrix:

$$
\frac{d}{dt} \text{vec}\left[W_{1:N}(t)\right] = -P_{W_{1:N}(t)} \cdot \text{vec}\left[\nabla \ell(W_{1:N}(t))\right]
$$

 $P_{W_{1:N}(t)}$ \succ 0 when $W_{1:N}(t)$ has full rank \implies loss decreases until: (1) $\nabla \ell(W_{1:N}(t)) = 0$ **or** (2) $W_{1:N}(t)$ is singular

 $\ell(\cdot)$ is typically convex \implies (1) means global min was reached

Trajectory analysis revealed implicit preconditioning on end-to-end matrix:

$$
\frac{d}{dt} \text{vec}\left[W_{1:N}(t)\right] = -P_{W_{1:N}(t)} \cdot \text{vec}\left[\nabla \ell(W_{1:N}(t))\right]
$$

 $P_{W_{1\cdot N}(t)}$ \succ 0 when $W_{1\cdot N}(t)$ has full rank \implies loss decreases until: (1) $\nabla \ell(W_{1:N}(t)) = 0$ **or** (2) $W_{1:N}(t)$ is singular

 $\ell(\cdot)$ is typically convex \implies (1) means global min was reached

Corollary

Assume $\ell(\cdot)$ is convex and LNN is init such that:

 \bigcirc $\ell(W_{1\cdot N}) < \ell(W)$ for any singular W

2 $W_1 \ldots W_N$ are balanced

Corollary

Assume $\ell(\cdot)$ is convex and LNN is init such that:

- \bigcirc $\ell(W_{1:N}) < \ell(W)$ for any singular W
- 2 $W_1 \ldots W_N$ are balanced

Corollary

Assume $\ell(\cdot)$ is convex and LNN is init such that:

- \bigcirc $\ell(W_{1\cdot N}) < \ell(W)$, $\forall W$ *s.t.* $\sigma_{min}(W) = 0$
- 2 $W_1 \ldots W_N$ are balanced

Corollary

Assume $\ell(\cdot)$ is convex and LNN is init such that:

$$
\bullet \ \ell(W_{1:N}) < \ell(W) \quad, \forall W \ \text{s.t.} \ \sigma_{min}(W) = 0
$$

$$
\bullet \ \ W_{j+1}^\top W_{j+1} = W_j W_j^\top \ , \forall j
$$

Corollary

Assume $\ell(\cdot)$ is convex and LNN is init such that:

- \bigcirc $\ell(W_{1:N}) < \ell(W)$, $\forall W$ *s.t.* $\sigma_{min}(W) = 0$
- $\mathbf{D} \ \|\mathcal{W}_{j+1}^{\top} \mathcal{W}_{j+1} \mathcal{W}_{j} \mathcal{W}_{j}^{\top} \|_{\mathit{F}} = 0 \ \ \ , \forall j$

Theorem

Assume $\ell(\cdot)$ is convex and LNN is init such that:

- \bigcirc $\ell(W_{1:N}) < \ell(W)$, $\forall W$ *s.t.* $\sigma_{min}(W) = 0$
- $\mathbf{P} \ \|\mathcal{W}_{j+1}^{\top} \mathcal{W}_{j+1} \mathcal{W}_{j} \mathcal{W}_{j}^{\top} \|_{\mathit{F}} = \mathbf{0} \ \ , \forall j$

Theorem

Assume $\ell(\cdot) = \ell_2$ loss and LNN is init such that:

- \bullet $\ell(W_{1\cdot N}) < \ell(W)$, $\forall W$ *s.t.* $\sigma_{min}(W) = 0$
- $\mathbf{P} \ \|\mathcal{W}_{j+1}^{\top} \mathcal{W}_{j+1} \mathcal{W}_{j} \mathcal{W}_{j}^{\top} \|_{\mathit{F}} = \mathbf{0} \ \ , \forall j$

Theorem

Assume $\ell(\cdot) = \ell_2$ loss and LNN is init such that:

- \bigcirc $\ell(W_{1\cdot N}) < \ell(W)$, $\forall W$ *s.t.* $\sigma_{min}(W) < c$
- $\mathbf{P} \ \|\mathcal{W}_{j+1}^{\top} \mathcal{W}_{j+1} \mathcal{W}_{j} \mathcal{W}_{j}^{\top} \|_{\mathit{F}} = \mathbf{0} \ \ , \forall j$

Theorem

Assume $\ell(\cdot) = \ell_2$ loss and LNN is init such that:

- \bigcirc $\ell(W_{1\cdot N}) < \ell(W)$, $\forall W$ *s.t.* $\sigma_{min}(W) < c$
- $\mathbf{2} \ \|\boldsymbol{W}_{\!j+1}^\top \boldsymbol{W}_{\!j+1} \boldsymbol{W}_{\!j} \boldsymbol{W}_{\!j}^\top \|_F \leq \mathcal{O}(\epsilon^2) \ \ , \forall j$

Theorem

Assume $\ell(\cdot) = \ell_2$ loss and LNN is init such that:

- \bigcirc $\ell(W_{1\cdot N}) < \ell(W)$, $\forall W$ *s.t.* $\sigma_{min}(W) < c$
- $\mathbf{2} \ \|\boldsymbol{W}_{\!j+1}^\top \boldsymbol{W}_{\!j+1} \boldsymbol{W}_{\!j} \boldsymbol{W}_{\!j}^\top \|_F \leq \mathcal{O}(\epsilon^2) \ \ , \forall j$

Then, GD with step size $\eta \leq \mathcal{O}(c^4)$ gives: loss(iteration t) $\leq e^{-\Omega(c^2\eta t)}$

Theorem

Assume $\ell(\cdot) = \ell_2$ loss and LNN is init such that:

- \bigcirc $\ell(W_{1\cdot N}) < \ell(W)$, $\forall W$ *s.t.* $\sigma_{min}(W) < c$
- $\mathbf{2} \ \|\boldsymbol{W}_{\!j+1}^\top \boldsymbol{W}_{\!j+1} \boldsymbol{W}_{\!j} \boldsymbol{W}_{\!j}^\top \|_F \leq \mathcal{O}(\epsilon^2) \ \ , \forall j$

Then, GD with step size $\eta \leq \mathcal{O}(c^4)$ gives: loss(iteration t) $\leq e^{-\Omega(c^2\eta t)}$

Claim

Our assumptions on init:

Theorem

Assume $\ell(\cdot) = \ell_2$ loss and LNN is init such that:

- \bigcirc $\ell(W_{1\cdot N}) < \ell(W)$, $\forall W$ *s.t.* $\sigma_{min}(W) < c$
- $\mathbf{2} \ \|\boldsymbol{W}_{\!j+1}^\top \boldsymbol{W}_{\!j+1} \boldsymbol{W}_{\!j} \boldsymbol{W}_{\!j}^\top \|_F \leq \mathcal{O}(\epsilon^2) \ \ , \forall j$

Then, GD with step size $\eta \leq \mathcal{O}(c^4)$ gives: loss(iteration t) $\leq e^{-\Omega(c^2\eta t)}$

Claim

Our assumptions on init:

Are necessary (violating any of them can lead to divergence)

Theorem

Assume $\ell(\cdot) = \ell_2$ loss and LNN is init such that:

- \bigcirc $\ell(W_{1\cdot N}) < \ell(W)$, $\forall W$ *s.t.* $\sigma_{min}(W) < c$
- $\mathbf{2} \ \|\boldsymbol{W}_{\!j+1}^\top \boldsymbol{W}_{\!j+1} \boldsymbol{W}_{\!j} \boldsymbol{W}_{\!j}^\top \|_F \leq \mathcal{O}(\epsilon^2) \ \ , \forall j$

Then, GD with step size $\eta \leq \mathcal{O}(c^4)$ gives: loss(iteration t) $\leq e^{-\Omega(c^2\eta t)}$

Claim

Our assumptions on init:

- Are necessary (violating any of them can lead to divergence)
- For out dim 1, hold with const prob under random "balanced" init

Theorem

Assume $\ell(\cdot) = \ell_2$ loss and LNN is init such that:

- \bigcirc $\ell(W_{1:N}) < \ell(W)$, $\forall W$ *s.t.* $\sigma_{min}(W) \leq c$
- $\mathbf{2} \ \|\boldsymbol{W}_{\!j+1}^\top \boldsymbol{W}_{\!j+1} \boldsymbol{W}_{\!j} \boldsymbol{W}_{\!j}^\top \|_F \leq \mathcal{O}(\epsilon^2) \ \ , \forall j$

Then, GD with step size $\eta \leq \mathcal{O}(c^4)$ gives: loss(iteration t) $\leq e^{-\Omega(c^2\eta t)}$

Claim

Our assumptions on init:

- Are necessary (violating any of them can lead to divergence)
- For out dim 1, hold with const prob under random "balanced" init

Guarantee of efficient (linear rate) convergence to global min! Most general guarantee to date for GD efficiently training deep net.

Effect of Depth on Optimization

[Case Study: Linear Neural Networks](#page-59-0) [Optimization](#page-59-0)

Effect of Depth on Optimization

Viewpoint of classical learning theory:

Convex optimization is easier than non-convex

[Case Study: Linear Neural Networks](#page-60-0) [Optimization](#page-60-0)

Effect of Depth on Optimization

Viewpoint of classical learning theory:

Convex optimization is easier than non-convex

• Hence depth complicates optimization

[Case Study: Linear Neural Networks](#page-61-0) [Optimization](#page-61-0)

Effect of Depth on Optimization

Viewpoint of classical learning theory:

Convex optimization is easier than non-convex

• Hence depth complicates optimization

Our trajectory analysis reveals: not always true...

Discrete version of end-to-end dynamics for LNN:

 $vec[W_{1:N}(t+1)] \leftrightarrow vec[W_{1:N}(t)] - \eta \cdot P_{W_{1:N}(t)} \cdot vec[\nabla \ell(W_{1:N}(t))]$

Discrete version of end-to-end dynamics for LNN:

 $vec[W_{1:N}(t+1)] \leftrightarrow vec[W_{1:N}(t)] - \eta \cdot P_{W_{1:N}(t)} \cdot vec[\nabla \ell(W_{1:N}(t))]$

Claim

 $∀p > 2$, $∃$ settings where $\ell(·) = \ell_p$ loss $(i.e. \; \ell(W) = \frac{1}{m} \sum_{i=1}^{m} ||W \mathbf{x}_i - \mathbf{y}_i||^p_p$ p) and disc end-to-end dynamics reach global min arbitrarily faster than GD

Discrete version of end-to-end dynamics for LNN:

 $vec[W_{1:N}(t+1)] \leftrightarrow vec[W_{1:N}(t)] - \eta \cdot P_{W_{1:N}(t)} \cdot vec[\nabla \ell(W_{1:N}(t))]$

Claim

 $∀p > 2$, $∃$ settings where $\ell(·) = \ell_p$ loss $(i.e. \; \ell(W) = \frac{1}{m} \sum_{i=1}^{m} ||W \mathbf{x}_i - \mathbf{y}_i||^p_p$ p) and disc end-to-end dynamics reach global min arbitrarily faster than GD

Experiment

Discrete version of end-to-end dynamics for LNN:

 $vec[W_{1:N}(t+1)] \leftrightarrow vec[W_{1:N}(t)] - \eta \cdot P_{W_{1:N}(t)} \cdot vec[\nabla \ell(W_{1:N}(t))]$

Claim

 $∀p > 2$, $∃$ settings where $\ell(·) = \ell_p$ loss $(i.e. \; \ell(W) = \frac{1}{m} \sum_{i=1}^{m} ||W \mathbf{x}_i - \mathbf{y}_i||^p_p$ p) and disc end-to-end dynamics reach global min arbitrarily faster than GD

Experiment

Regression problem from [UCI ML Repository](http://archive.ics.uci.edu/ml/index.php) ; *`*⁴ loss

Discrete version of end-to-end dynamics for LNN:

 $vec[W_{1:N}(t+1)] \leftrightarrow vec[W_{1:N}(t)] - \eta \cdot P_{W_{1:N}(t)} \cdot vec[\nabla \ell(W_{1:N}(t))]$

Claim

 $∀p > 2$, $∃$ settings where $\ell(·) = \ell_p$ loss $(i.e. \; \ell(W) = \frac{1}{m} \sum_{i=1}^{m} ||W \mathbf{x}_i - \mathbf{y}_i||^p_p$ p) and disc end-to-end dynamics reach global min arbitrarily faster than GD

Experiment

Regression problem from [UCI ML Repository](http://archive.ics.uci.edu/ml/index.php) ; *`*⁴ loss

Discrete version of end-to-end dynamics for LNN:

 $vec[W_{1:N}(t+1)] \leftrightarrow vec[W_{1:N}(t)] - \eta \cdot P_{W_{1:N}(t)} \cdot vec[\nabla \ell(W_{1:N}(t))]$

Claim

 $∀p > 2$, $∃$ settings where $\ell(·) = \ell_p$ loss $(i.e. \; \ell(W) = \frac{1}{m} \sum_{i=1}^{m} ||W \mathbf{x}_i - \mathbf{y}_i||^p_p$ p) and disc end-to-end dynamics reach global min arbitrarily faster than GD

Experiment

Regression problem from [UCI ML Repository](http://archive.ics.uci.edu/ml/index.php) ; *`*⁴ loss

Depth can speed-up GD, even without any gain in expressiveness, and despite introducing non-convexity!

Outline

1 [Optimization and Generalization in Deep Learning via Trajectories](#page-1-0)

2 [Case Study: Linear Neural Networks](#page-15-0)

- **[Trajectory Analysis](#page-21-0)**
- **•** [Optimization](#page-33-0)
- **•** [Generalization](#page-69-0)

Setting: Matrix Completion

Matrix completion: recover matrix given subset of entries

Setting: Matrix Completion

Matrix completion: recover matrix given subset of entries

Can be viewed as classification (regression) problem:

Setting: Matrix Completion

Matrix completion: recover matrix given subset of entries

Can be viewed as classification (regression) problem:

Standard Assumption

Matrix to recover (ground truth) is low-rank

Setting: Matrix Completion

Matrix completion: recover matrix given subset of entries

Can be viewed as classification (regression) problem:

Standard Assumption

Matrix to recover (ground truth) is low-rank

Classical Result (cf. [Candes & Recht 2008\)](https://statweb.stanford.edu/~candes/papers/MatrixCompletion.pdf)

Nuclear norm minimization (convex program) perfectly recovers ("almost any") low-rank matrix if observations are sufficiently many

Two-Layer Network ←→ Matrix Factorization

Matrix completion via two-layer LNN:

• Parameterize ground truth as W_2W_1

$$
\begin{array}{c|c|c|c|c|c} \hline 4 & ? & ? & 4 \\ \hline ? & 5 & 4 & ? \\ \hline ? & 5 & ? & ? \end{array} = \begin{array}{c|c|c|c} \mathbf{W_2} & * & \mathbf{W_1} \end{array}
$$

Two-Layer Network ←→ Matrix Factorization

Matrix completion via two-layer LNN:

• Parameterize ground truth as W_2W_1

$$
\begin{array}{c|c|c|c|c|c|c|c|c} \hline 4 & ? & ? & 4 \\ \hline ? & 5 & 4 & ? \\ \hline ? & 5 & ? & ? \end{array} = \begin{array}{c|c|c|c} W_2 & * & W_1 & * \\ \hline \end{array}
$$

• Known as **matrix factorization** (MF)

Two-Layer Network ←→ Matrix Factorization

Matrix completion via two-layer LNN:

• Parameterize ground truth as W_2W_1

$$
\begin{array}{c|c|c|c|c|c|c|c|c} \hline 4 & ? & ? & 4 \\ \hline ? & 5 & 4 & ? \\ \hline ? & 5 & ? & ? \end{array} = \begin{array}{c|c|c|c} \hline w_2 & * & w_1 \end{array}
$$

• Known as matrix factorization (MF)

Empirical Phenomenon

GD (with step size $\ll 1$ and init ≈ 0) over MF recovers low-rank matrices, even when shared dim of W_1 , W_2 doesn't constrain rank!

Two-Layer Network ←→ Matrix Factorization

Matrix completion via two-layer LNN:

• Parameterize ground truth as W_2W_1

$$
\begin{array}{c|c|c|c|c|c|c|c|c} \hline 4 & ? & ? & 4 \\ \hline ? & 5 & 4 & ? \\ \hline ? & 5 & ? & ? \end{array} = \begin{array}{c|c|c|c} \hline w_2 & * & w_1 \end{array}
$$

• Known as **matrix factorization** (MF)

Empirical Phenomenon

GD (with step size $\ll 1$ and init ≈ 0) over MF recovers low-rank matrices, even when shared dim of W_1 , W_2 doesn't constrain rank!

Conjecture [\(Gunasekar et al. 2017\)](https://papers.nips.cc/paper/7195-implicit-regularization-in-matrix-factorization.pdf)

GD (with step size $\ll 1$ and init ≈ 0) over MF converges to solution with min nuclear norm (among those fitting observations)

Two-Layer Network ←→ Matrix Factorization

Matrix completion via two-layer LNN:

• Parameterize ground truth as W_2W_1

$$
\begin{array}{c|c|c|c|c|c|c|c|c} \hline 4 & ? & ? & 4 \\ \hline ? & 5 & 4 & ? \\ \hline ? & 5 & ? & ? \end{array} = \begin{array}{c|c|c|c} \hline w_2 & * & w_1 \end{array}
$$

• Known as **matrix factorization** (MF)

Empirical Phenomenon

GD (with step size $\ll 1$ and init ≈ 0) over MF recovers low-rank matrices, even when shared dim of W_1 , W_2 doesn't constrain rank!

Conjecture [\(Gunasekar et al. 2017\)](https://papers.nips.cc/paper/7195-implicit-regularization-in-matrix-factorization.pdf)

GD (with step size $\ll 1$ and init ≈ 0) over MF converges to solution with min nuclear norm (among those fitting observations)

[Gunasekar et al. 2017](https://papers.nips.cc/paper/7195-implicit-regularization-in-matrix-factorization.pdf) proved conjecture for a certain restricted setting

N-Layer Network ←→ "Deep Matrix Factorization"

Matrix completion via N-layer LNN:

• Parameterize ground truth as $W_N \cdots W_2W_1$

= *W²* * *W¹* ? ? 4 5 5 ? ? 4 ? ? ? 4 *W^N* * *

N-Layer Network ←→ "Deep Matrix Factorization"

Matrix completion via N-layer LNN:

• Parameterize ground truth as $W_N \cdots W_2W_1$

$$
\frac{4}{?}\frac{?}{5}\frac{?}{4}\frac{?}{?} =
$$

$$
\frac{?}{?}\frac{?}{5}\frac{?}{?}\frac{?}{?} =
$$

$$
W_N = * * * W_2 * W_1
$$

We refer to this as **deep matrix factorization** (DMF)

 N -Layer Network \longleftrightarrow "Deep Matrix Factorization"

Matrix completion via N-layer LNN:

• Parameterize ground truth as $W_N \cdots W_2W_1$

= *W²* * *W¹* ? ? 4 5 5 ? ? 4 ? ? ? 4 *W^N* * *

We refer to this as **deep matrix factorization** (DMF)

Experiment

Completion of low-rank matrix via GD over DMF

 N -Layer Network \longleftrightarrow "Deep Matrix Factorization"

Matrix completion via N-layer LNN:

• Parameterize ground truth as $W_N \cdots W_2W_1$

$$
\frac{4}{?}\frac{?}{5}\frac{?}{4}\frac{?}{?} =
$$

$$
\frac{?}{?}\frac{?}{5}\frac{?}{?}\frac{?}{?}
$$

We refer to this as **deep matrix factorization** (DMF)

Experiment

Completion of low-rank matrix via GD over DMF

Can the Implicit Regularization Be Captured by Norms?

Can the Implicit Regularization Be Captured by Norms?

Conjecture of [Gunasekar et al. 2017](https://papers.nips.cc/paper/7195-implicit-regularization-in-matrix-factorization.pdf) (in spirit of classical learning theory):

implicit regularization with depth 2 LNN (MF) \longleftrightarrow minimizing nuclear norm (surrogate for rank)

Can the Implicit Regularization Be Captured by Norms?

Conjecture of [Gunasekar et al. 2017](https://papers.nips.cc/paper/7195-implicit-regularization-in-matrix-factorization.pdf) (in spirit of classical learning theory):

implicit regularization with depth 2 LNN (MF) \longleftrightarrow minimizing nuclear norm (surrogate for rank)

In light of our experiments, natural to hypothesize:

implicit regularization with deeper LNN (DMF)

minimizing other norm or quasi-norm closer to rank

Can the Implicit Regularization Be Captured by Norms?

Conjecture of [Gunasekar et al. 2017](https://papers.nips.cc/paper/7195-implicit-regularization-in-matrix-factorization.pdf) (in spirit of classical learning theory):

implicit regularization with depth 2 LNN (MF) \longleftrightarrow minimizing nuclear norm (surrogate for rank)

In light of our experiments, natural to hypothesize:

implicit regularization with deeper LNN (DMF) \longleftrightarrow

minimizing other norm or quasi-norm closer to rank

Example

Schatten- p quasi-norm to the power of p :

$$
\bullet \ \Vert W \Vert_{{\mathcal S}_p}^p := \textstyle \sum_r \sigma_r^p(W) \ \text{where} \ \sigma_r(W) \ \text{are singular vals of} \ W
$$

Can the Implicit Regularization Be Captured by Norms?

Conjecture of [Gunasekar et al. 2017](https://papers.nips.cc/paper/7195-implicit-regularization-in-matrix-factorization.pdf) (in spirit of classical learning theory):

implicit regularization with depth 2 LNN (MF) \longleftrightarrow minimizing nuclear norm (surrogate for rank)

In light of our experiments, natural to hypothesize:

implicit regularization with deeper LNN (DMF) minimizing other norm or quasi-norm closer to rank

Example

Schatten- p quasi-norm to the power of p :

- $\|W\|_{\mathcal{S}}^p$ $S_p \vcentcolon= \sum_r \sigma_r^p(W)$ where $\sigma_r(W)$ are singular vals of W
- \bullet $p = 1$: nuclear norm, corresponds to depth 2 by [Gunasekar et al. 2017](https://papers.nips.cc/paper/7195-implicit-regularization-in-matrix-factorization.pdf)

Can the Implicit Regularization Be Captured by Norms?

Conjecture of [Gunasekar et al. 2017](https://papers.nips.cc/paper/7195-implicit-regularization-in-matrix-factorization.pdf) (in spirit of classical learning theory):

implicit regularization with depth 2 LNN (MF) \longleftrightarrow minimizing nuclear norm (surrogate for rank)

In light of our experiments, natural to hypothesize:

implicit regularization with deeper LNN (DMF) \longleftrightarrow minimizing other norm or quasi-norm closer to rank

Example

Schatten- p quasi-norm to the power of p :

- $\|W\|_{\mathcal{S}}^p$ $S_p \vcentcolon= \sum_r \sigma_r^p(W)$ where $\sigma_r(W)$ are singular vals of W
- $p = 1$: nuclear norm, corresponds to depth 2 by [Gunasekar et al. 2017](https://papers.nips.cc/paper/7195-implicit-regularization-in-matrix-factorization.pdf)
- \bullet 0 $\lt p$ \lt 1: closer to rank, may correspond to higher depths

Theorem

In the restricted setting where [Gunasekar et al. 2017](https://papers.nips.cc/paper/7195-implicit-regularization-in-matrix-factorization.pdf) proved conjecture, nuclear norm is minimized not just with depth 2, but with any depth ≥ 2

Theorem

In the restricted setting where [Gunasekar et al. 2017](https://papers.nips.cc/paper/7195-implicit-regularization-in-matrix-factorization.pdf) proved conjecture, nuclear norm is minimized not just with depth 2, but with any depth > 2

Proposition

There exist instances of this setting where nuclear norm minimization contradicts Schatten-p quasi-norm minimization (even locally) ∀p ∈ (0*,* 1)

Theorem

In the restricted setting where [Gunasekar et al. 2017](https://papers.nips.cc/paper/7195-implicit-regularization-in-matrix-factorization.pdf) proved conjecture, nuclear norm is minimized not just with depth 2, but with any depth > 2

Proposition

There exist instances of this setting where nuclear norm minimization contradicts Schatten-p quasi-norm minimization (even locally) ∀p ∈ (0*,* 1)

This implies:

implicit regularization with any depth \neq Schatten quasi-norm minimization

Theorem

In the restricted setting where [Gunasekar et al. 2017](https://papers.nips.cc/paper/7195-implicit-regularization-in-matrix-factorization.pdf) proved conjecture, nuclear norm is minimized not just with depth 2, but with any depth > 2

Proposition

There exist instances of this setting where nuclear norm minimization contradicts Schatten-p quasi-norm minimization (even locally) ∀p ∈ (0*,* 1)

This implies:

implicit regularization with any depth \neq Schatten quasi-norm minimization

Instead, adopting lens of [Gunasekar et al. 2017](https://papers.nips.cc/paper/7195-implicit-regularization-in-matrix-factorization.pdf) leads to conjecturing: implicit regularization with any depth $=$ nuclear norm minimization

Theorem

In the restricted setting where [Gunasekar et al. 2017](https://papers.nips.cc/paper/7195-implicit-regularization-in-matrix-factorization.pdf) proved conjecture, nuclear norm is minimized not just with depth 2, but with any depth > 2

Proposition

There exist instances of this setting where nuclear norm minimization contradicts Schatten-p quasi-norm minimization (even locally) ∀p ∈ (0*,* 1)

This implies:

implicit regularization with any depth \neq Schatten quasi-norm minimization

Instead, adopting lens of [Gunasekar et al. 2017](https://papers.nips.cc/paper/7195-implicit-regularization-in-matrix-factorization.pdf) leads to conjecturing: implicit regularization with any depth $=$ nuclear norm minimization

But our experiments show depth changes implicit regularization!

Experiments Testing Nuclear Norm Conjecture

Setup:

- Completion of 100×100 rank 5 matrix
- Observed entries chosen uniformly at random

Setup:

- Completion of 100×100 rank 5 matrix
- Observed entries chosen uniformly at random

Many (5K) Observations:

Setup:

- Completion of 100×100 rank 5 matrix
- Observed entries chosen uniformly at random

Many (5K) Observations:

• Nuclear norm minimization recovers ground truth

Setup:

- Completion of 100×100 rank 5 matrix
- Observed entries chosen uniformly at random

Many (5K) Observations:

- Nuclear norm minimization recovers ground truth
- LNN do so too

Setup:

- Completion of 100×100 rank 5 matrix
- Observed entries chosen uniformly at random

Many (5K) Observations:

- Nuclear norm minimization recovers ground truth
- LNN do so too
- Correspondence, but can't distinguish nuclear norm minimization from any other bias leading to low rank

Few (2K) Observations:

Few (2K) Observations:

• Nuclear norm minimization does not recover ground truth

Few (2K) Observations:

- Nuclear norm minimization does not recover ground truth
- LNN focus on lowering effective rank at expense of nuclear norm

Few (2K) Observations:

- Nuclear norm minimization does not recover ground truth
- LNN focus on lowering effective rank at expense of nuclear norm
- **•** Discrepancy!

Few (2K) Observations:

- Nuclear norm minimization does not recover ground truth
- LNN focus on lowering effective rank at expense of nuclear norm

• Discrepancy!

LNN implicitly minimize nuclear norm sometimes but not always!

Few (2K) Observations:

- Nuclear norm minimization does not recover ground truth
- LNN focus on lowering effective rank at expense of nuclear norm

• Discrepancy!

LNN implicitly minimize nuclear norm sometimes but not always!

Hypothesis

Single norm (or quasi-norm) not enough to capture implicit regularization, detailed account for trajectories is needed

Trajectory Analysis → Dynamics of Singular Values
[Case Study: Linear Neural Networks](#page-108-0) [Generalization](#page-108-0)

Trajectory Analysis \longrightarrow Dynamics of Singular Values

Trajectory analysis gave dynamics for end-to-end matrix of N-layer LNN:

$$
\frac{d}{dt}\text{vec}\left[W_{1:N}(t)\right] = -P_{W_{1:N}(t)}\cdot\text{vec}\left[\nabla\ell(W_{1:N}(t))\right]
$$

Trajectory analysis gave dynamics for end-to-end matrix of N-layer LNN:

$$
\frac{d}{dt} \text{vec}\left[W_{1:N}(t)\right] = -P_{W_{1:N}(t)} \cdot \text{vec}\left[\nabla \ell(W_{1:N}(t))\right]
$$

Denote:

- ${\{\sigma_r(t)\}_r}$ singular vals of $W_{1:N}(t)$
- $\{{\bm u}_r(t)\}_r/\{{\bm v}_r(t)\}_r$ corresponding left/right (resp) singular vecs

Trajectory Analysis → Dynamics of Singular Values

Trajectory analysis gave dynamics for end-to-end matrix of N-layer LNN:

$$
\frac{d}{dt} \text{vec}\left[W_{1:N}(t)\right] = -P_{W_{1:N}(t)} \cdot \text{vec}\left[\nabla \ell(W_{1:N}(t))\right]
$$

Denote:

- \bullet { $\sigma_r(t)$ }_r singular vals of $W_{1:N}(t)$
- $\{{\bm u}_r(t)\}_r/\{{\bm v}_r(t)\}_r$ corresponding left/right (resp) singular vecs

Theorem

$$
\frac{d}{dt}\sigma_r(t)=-N\cdot \sigma_r^{2-\frac{2}{N}}(t)\cdot \left\langle \nabla \ell(W_{1:N}(t)), \mathbf{u}_r(t)\mathbf{v}_r^\top(t) \right\rangle
$$

Trajectory analysis gave dynamics for end-to-end matrix of N-layer LNN:

$$
\frac{d}{dt} \text{vec}\left[W_{1:N}(t)\right] = -P_{W_{1:N}(t)} \cdot \text{vec}\left[\nabla \ell(W_{1:N}(t))\right]
$$

Denote:

- ${\{\sigma_r(t)\}_r$ singular vals of $W_{1:N}(t)$
- $\{{\bm u}_r(t)\}_r/\{{\bm v}_r(t)\}_r$ corresponding left/right (resp) singular vecs

Theorem

$$
\frac{d}{dt}\sigma_r(t)=-N\cdot \sigma_r^{2-\frac{2}{N}}(t)\cdot \left\langle \nabla \ell(W_{1:N}(t)), \mathbf{u}_r(t)\mathbf{v}_r^\top(t) \right\rangle
$$

Interpretation

 $\overline{\text{Given } W_{1:N}(t),}$ depth affects evolution only via factors $N \cdot \sigma^{2-\frac{2}{N}}_r(t)$

Trajectory analysis gave dynamics for end-to-end matrix of N-layer LNN:

$$
\frac{d}{dt} \text{vec}\left[W_{1:N}(t)\right] = -P_{W_{1:N}(t)} \cdot \text{vec}\left[\nabla \ell(W_{1:N}(t))\right]
$$

Denote:

- ${\{\sigma_r(t)\}_r$ singular vals of $W_{1:N}(t)$
- $\{{\bm u}_r(t)\}_r/\{{\bm v}_r(t)\}_r$ corresponding left/right (resp) singular vecs

Theorem

$$
\frac{d}{dt}\sigma_r(t) = -N \cdot \sigma_r^{2-\frac{2}{N}}(t) \cdot \left\langle \nabla \ell(W_{1:N}(t)), \mathbf{u}_r(t) \mathbf{v}_r^\top(t) \right\rangle
$$

Interpretation

- $\overline{\text{Given } W_{1:N}(t),}$ depth affects evolution only via factors $N \cdot \sigma^{2-\frac{2}{N}}_r(t)$
- \bullet $N = 1$ (classic linear model): factors reduce to 1

Trajectory analysis gave dynamics for end-to-end matrix of N-layer LNN:

$$
\frac{d}{dt} \text{vec}\left[W_{1:N}(t)\right] = -P_{W_{1:N}(t)} \cdot \text{vec}\left[\nabla \ell(W_{1:N}(t))\right]
$$

Denote:

- ${\{\sigma_r(t)\}_r$ singular vals of $W_{1:N}(t)$
- $\{{\bm u}_r(t)\}_r/\{{\bm v}_r(t)\}_r$ corresponding left/right (resp) singular vecs

Theorem

$$
\frac{d}{dt}\sigma_r(t) = -N \cdot \sigma_r^{2-\frac{2}{N}}(t) \cdot \left\langle \nabla \ell(W_{1:N}(t)), \mathbf{u}_r(t) \mathbf{v}_r^\top(t) \right\rangle
$$

Interpretation

- $\overline{\text{Given } W_{1:N}(t),}$ depth affects evolution only via factors $N \cdot \sigma^{2-\frac{2}{N}}_r(t)$
- \bullet $N = 1$ (classic linear model): factors reduce to 1
- $N \geq 2$: factors speed-up/slow-down large/small (resp) singular vals, in manner which intensifies with depth

Experiment

Completion of low-rank matrix via GD over LNN

Experiment

Completion of low-rank matrix via GD over LNN

Theoretical Example

For one observed entry and ℓ_2 loss, relationship between singular vals is:

Experiment

Completion of low-rank matrix via GD over LNN

Theoretical Example

For one observed entry and ℓ_2 loss, relationship between singular vals is:

Depth leads to larger gaps between singular vals (lower rank)!

Outline

1 [Optimization and Generalization in Deep Learning via Trajectories](#page-1-0)

[Case Study: Linear Neural Networks](#page-15-0)

- **[Trajectory Analysis](#page-21-0)**
- **•** [Optimization](#page-33-0)
- **•** [Generalization](#page-69-0)

Perspective

Understanding optimization and generalization in deep learning:

Perspective

Understanding optimization and generalization in deep learning:

Language of classical learning theory is insufficient

Perspective

Understanding optimization and generalization in deep learning:

- Language of classical learning theory is insufficient
- Need to analyze trajectories of gradient descent

Perspective

Understanding optimization and generalization in deep learning:

- Language of classical learning theory is insufficient
- Need to analyze trajectories of gradient descent

Case Study — Deep Linear Neural Networks

Perspective

Understanding optimization and generalization in deep learning:

- Language of classical learning theory is insufficient
- Need to analyze trajectories of gradient descent

Case Study — Deep Linear Neural Networks

Trajectory analysis:

Perspective

Understanding optimization and generalization in deep learning:

- Language of classical learning theory is insufficient
- Need to analyze trajectories of gradient descent

Case Study — Deep Linear Neural Networks

Trajectory analysis:

Depth induces preconditioner promoting movement in directions taken

Perspective

Understanding optimization and generalization in deep learning:

- Language of classical learning theory is insufficient
- Need to analyze trajectories of gradient descent

Case Study — Deep Linear Neural Networks

Trajectory analysis:

Depth induces preconditioner promoting movement in directions taken

Optimization:

Perspective

Understanding optimization and generalization in deep learning:

- Language of classical learning theory is insufficient
- Need to analyze trajectories of gradient descent

Case Study — Deep Linear Neural Networks

Trajectory analysis:

Depth induces preconditioner promoting movement in directions taken

Optimization:

Guarantee of efficient convergence to global min (most general yet)

Perspective

Understanding optimization and generalization in deep learning:

- Language of classical learning theory is insufficient
- Need to analyze trajectories of gradient descent

Case Study — Deep Linear Neural Networks

Trajectory analysis:

Depth induces preconditioner promoting movement in directions taken

Optimization:

- **Guarantee of efficient convergence to global min** (most general yet)
- **Depth can accelerate convergence** (w/o any gain in expressiveness)!

Perspective

Understanding optimization and generalization in deep learning:

- Language of classical learning theory is insufficient
- Need to analyze trajectories of gradient descent

Case Study — Deep Linear Neural Networks

Trajectory analysis:

Depth induces preconditioner promoting movement in directions taken

Optimization:

- **Guarantee of efficient convergence to global min** (most general yet)
- **Depth can accelerate convergence** (w/o any gain in expressiveness)!

Generalization:

Perspective

Understanding optimization and generalization in deep learning:

- Language of classical learning theory is insufficient
- Need to analyze trajectories of gradient descent

Case Study — Deep Linear Neural Networks

Trajectory analysis:

Depth induces preconditioner promoting movement in directions taken

Optimization:

- **Guarantee of efficient convergence to global min** (most general yet)
- **Depth can accelerate convergence** (w/o any gain in expressiveness)!

Generalization:

Depth enhances implicit regularization towards low rank, yielding generalization for problems such as matrix completion

Beyond Linear Neural Networks

Arithmetic NN are competitive in practice, and admit algebraic structure

Beyond Linear Neural Networks

Arithmetic NN are competitive in practice, and admit algebraic structure Preliminary analysis: their trajectories share properties with those of LNN...

1 [Optimization and Generalization in Deep Learning via Trajectories](#page-1-0)

[Case Study: Linear Neural Networks](#page-15-0)

- **[Trajectory Analysis](#page-21-0)**
- **•** [Optimization](#page-33-0)
- **•** [Generalization](#page-69-0)

Thank You