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Context

Running time/complexity analysis of randomized search heuristics (RSHs)
e. g., evolutionary algorithms (EA), local search, simulated annealing
(SA), ant colony optimization, particle swarm optimization

Initialization

Selection

Variation

Selection

Stop?

no

Purpose: find optimum of
objective/fitness function
f : D → R

x f (x)

study the (expected) optimization time

started in late 1980s/early 1990s with analysis of SA

using/adapting techniques from classical randomized algorithms

nowadays body of results and methods for the analysis available,
especially in combinatorial optimization
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Contents

Challenge
Very innocently looking settings surprisingly hard to analyze
since EAs (and other RSHs) were not made for analysis

Aim for today
Show selected (state-of-the-art) results and techniques;
discuss challenges and opportunies of approach

1 Introducing an important technique: drift analysis

2 An application to “weighted hillclimbing” with EAs: linear functions

3 Back to classical TCS?
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Drift Analysis: Idea

EAs are randomized algorithms → analyze their “running time” =
time to reach optimum (or some approximation).

EAs induce very complex stochastic processes.

In addition, want to analyze a complex random variable related to a
global property (a first hitting time).

Can rarely understand the global behavior completely.

But can roughly understand what happens from one step to the next
– a local property.

Drift analysis is the tool to translate the one-step local behavior into
a global statement on the running time.
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A Simple Scenario: Additive Drift

You start off at distance X0 = n (discrete r.v.) from optimum.

In each step, reduce distance by at least d in expectation:
E (Xt − Xt+1 | Xt > 0) ≥ d – maybe sometimes more or less.

Find (or bound) the expected time to reach 0: E (T0)?

0

prob. 1
2 prob. 1

2
(E(Xt − Xt+1) = 2)

The obvious answer is correct: E (T0) ≤ n
d .

Analogously E (Xt − Xt+1 | Xt > 0) ≤ d ⇒ E (T0) ≥ n
d .

Scenario is called additive drift. Brought into theory of EAs
by He/Yao (2001).
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Multiplicative Drift

Still X0 = n. In each step, reduce distance by expected δ-factor of
current one: E (Xt − Xt+1 | Xt = s) ≥ δs. Find E (T0).
Example: E (Xt+1 | Xt = s) = s

2 . Your guess for E (T0)?

0
(δ = 1/2)

E (T0) ≤ 2(ln n + 1), in general E (T0) ≤ (ln X0)+1
δ .

Lower bound? Say Pr(Xt+1 = 0) = Pr(Xt+1 = Xt) = 1
2 .

Then still E (Xt+1 | Xt = s) = s
2 . However, E (T0) = 2.

Matching lower bound (E (T0) ≥ ln X0
δ ) requires concentration of the

one-step progress – often met in EAs.
Scenario is called multiplicative drift – more typical than additive
drift in analysis of EAs.
Due to Doerr/Johannsen/Winzen and Doerr/Goldberg (2010).
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A Warm-up Example Using Multiplicative Drift

An extremely simple EA: (1+1) EA
1 Choose x ∈ {0, 1}n uniformly at random.
2 Repeat
– Create y by flipping each bit in x independently with probability 1

n .
– If f (y) ≤ f (x), set x := y .

3 Until happy.

An extremely simple problem
OneMax(x1, . . . , xn) (in fact: “OneMin”) = x1 + · · ·+ xn

Analysis:
Say Xt = OneMax(x) = s, where s ∈ {1, . . . , n}.
s ways of flipping a single one-bit, each prob. 1

n
(
1− 1

n
)n−1 ≥ 1

en .
E (Xt −Xt+1 | Xt = s) ≥ s

en ⇒ δ = 1
en in multiplicative drift theorem

E (T0) ≤ ln(X0)+1
δ ≤ ln(n)+1

1/(en) = en ln n + en = O(n log n).
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Further Applications of Drift Analysis

Bounds on the running time of population-based EAs, e. g.

The Simple GA (SGA)
1 Create population P of µ randomly chosen individuals.
2 C := ∅.
3 While |C | < µ do

Fitness-proportional selection: Select two parents x ′ and x ′′ from P
proportional to their fitness.
Uniform crossover: Create an offspring x by setting each bit xi = x ′

i with
probability 1/2 and xi = x ′′

i otherwise, for 1 ≤ i ≤ n.
Standard Bit Mutation: Flip each bit xi of x with probability 1/n.
C := C ∪ {x}.

4 Set P := C and go to 2.

EAs in combinatorial optimization (minimum spanning trees,
maximum matchings, makespan scheduling . . . )
EAs in noisy optimization (drift methods really crucial here)
. . .
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Linear Functions: Generalized OneMax

Aim
Case study in drift analysis: bounds for linear functions.
Increases understanding of an innocently looking problem.

Impact
Prove optimality of parameter setting from practice.
Prove optimality of (1+1) EA within a larger class of EAs.
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The Setting

Task: minimize linear pseudo-Boolean f : {0, 1}n → R

f (x1, . . . , xn) = w1x1 + · · ·+ wnxn w. l. o. g. 0 < w1 ≤ · · · ≤ wn

Randomized Local Search (RLS)
1 Choose x ∈ {0, 1}n uniformly at random.
2 Repeat
– Create y by flipping exactly one bit in x , chosen uniformly at random.
– If f (y) ≤ f (x), set x := y .

3 Until happy.

Expected time for minimization? Can’t we just reuse OneMax result?
Or use another classical method (coupon collector problem)?

Yes, BUT only for RLS → ≤ n ln n + O(n) iterations expected

Carsten Witt How to Treat Evolutionary Algorithms as Ordinary Randomized Algorithms
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What Makes Analysis of (1+1) EA Difficult

Many light bits exchanged for few heavy ones, (0, . . . , 0, 1) might be
improved to (1, . . . , 1, 0). How does this affect running time?

Some prior work
Expected running time of (1+1) EA with p = 1

n on linear function
O(n2) (not too difficult)
O(n ln n) (Droste, Jansen, Wegener 1998/2002)
≤ (1 + o(1))2.02en ln n (Jägersküpper 2008/2011)
≤ (1 + o(1))1.39en ln n (Doerr, Johannsen, Winzen 2010)
≥ en ln n − O(n) (DJW 2010 + Doerr, Fouz, W. 2011).

Main new result (W. 2012/13)

Running time bound (1± o(1)) ec

c n ln n if p = c
n ; optimal for p = 1

n ,
which is an often recommended mutation probability in practice.

Note:
((

1− c
n
)n−1 (n

1
) c

n

)−1
≈ ec

c is waiting time for single-bit flip.
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Discussion of Distance Function

OneMax(x1, . . . , xn)
= x1 + · · ·+ xn

BinVal(x1, . . . , xn) =
x1 + 2x2 + 4x3 + · · ·+ 2n−1xn

OneMax: 0-bits never lost → distance (measured in 1-bits)
non-increasing → multiplicative drift → en(ln n + 1).
BinVal: can lose almost all 0-bits.

Consider ∆(1-bits) := (no. 1-bits time t − no. 1-bits time t + 1):
in general random
possibly negative (= bad)
but positive expectation ≥ 1− (n − 1) 1

n ≥
1
n (additive drift)

Problem: 1
n not sufficient for our purpose, gives only O(n2).

Need different “potential/distance function” w. r. t. search points →
distance from optimum is not measured in no. 1-bits.
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Finding the Right Potential Function
From now on: f (x1, . . . , xn) = w1x1 + · · ·+ wnxn arbitrary.
No. one-bits usually not a good potential function.

Classical potential functions
Could try Xt := f -value at time t, which is a weighted sum of 1-bits;
leads to good multiplicative drift, however ln(X0) might be huge.
Potential function should “compress” steeply increasing weights.
Previous work: Xt :=

∑n
i=n/2+1 2x(t)i +

∑n/2
i=1 x(t)i or similar

Adaptive potential functions
Idea: do not compress all f in the same way.
If the linear function at hand is OneMax, why not use OneMax?
If it is BinVal, can we use more slowly increasing weights?
First time used by Doerr and Goldberg (2010).
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New Potential Function Proves Upper Bound

Define g(x) = g1x1 + · · ·+ gnxn by g1 := 1 = γ1 and

gi := min


(

1 +
(ln ln n)p

(1− p)n−1

)i−1

︸ ︷︷ ︸
=:γi

, gi−1 ·
wi

wi−1

 for 2 ≤ i ≤ n.

Properties
g includes the mutation probability p.

If f has “steep” coefficients (e. g., BinVal), then gi = γi .

In “flat” regions, we reproduce f (with some scaling).

Crucial: E (Xt − Xt | Xt = s) ≥ (1− o(1)) · s · p · (1− p)n−1

(Xt is g-value at time t).
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Further Results

OneMax: stochastically smallest optimization time within class

Tight lower bounds using multiplicative drift

Phase transition from polynomial to superpolynomial in regime
p = Θ((ln n)/n)

(1+1) EA as optimal mutation-based, population-based algorithm

for t := 0→ µ− 1 do
create xt ∈ {0, 1}n uniformly at random.

end for
repeat

select x ∈ {x0, . . . , xt} according to t and f (x0), . . . , f (xt).
create xt+1 by flipping each bit in x indep’ly with probability p.
t := t + 1.

until happy
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Recent Developments

Is expected running time the right measure of efficiency?

Where is drift analysis going?

Is drift analysis useful for other purposes than analysis of RSHs?
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Why Expected Time is Not Enough
(1+1) EA on Distance (DJW 2002)

0 1 2 3 4 5 6 7 8 9 100

10

20

30

no. of one-bits

fit
ne

ss

Each with prob. ≈ 1
2 :

local optimum
reached, time nn

to escape
global optimum
found in
O(n log n) steps

Expected running time Ω(nn) for (1+1) EA but function is not really
difficult (expected 2 restarts sufficient)
→ results on the distribution of running time required.
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Sharp Concentration of Measure

Classical example
X number of 1-bits in uniformly random x ∈ {0, 1}n. Then (Chernoff)

Pr(|X − E (X )| ≥ δ
√

n) ≤ 2e−δ2/3.

→ deviation in lower-order term exponentially unlikely.

Similar results for running time?
Known: for running time T of (1+1) EA on OneMax:
Pr(T > E (T ) + δn) ≤ e−δ/e (by multiplicative drift analysis).
No corresponding lower tail (Pr(T < E (T )− δn)) known before.

Will also get lower tails with new theorems. Running times are identified
as “almost deterministic”, despite algorithms being heavily randomized.
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Sharp Concentration of Running Times

Drift analysis with tail bounds (Lehre and W., 2014)
Suppose we know (bound on) h(s) = E (Xt − Xt+1 | Xt = s).
Consider potential function g(s) = 1

h(1) +
∫ s

1
1

h(x) dx

Bound E (e−λ(g(s)−g(Xt+1)) | Xt = s) ≤ β < 1
for some λ > 0.
Then Pr(T0 > t) ≤ βt · eλg(X0).
Analogous bound on Pr(T0 < t) available.

Implications within theory of RSHs
For (1+1) EA on OneMax: Pr(|T − en ln n| ≥ δn) ≤ e−Ω(δ).
Also valid for linear functions!
Similar results for other benchmark functions (e. g., expected Θ(n2),
deviation δn3/2 has prob. e−Ω(δ).
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Drift Analysis and Probabilistic Recurrences

Scenario
Consider a recurrrence T (n) = 1 + T (h(n)),
where h(n) ≤ n random and E (h(n)) known; T (0) = 0.

Karp (JACM 1994) bounds Pr(T (n) ≥ u(n) + δ), where u(n)
“solution” of T (n) = 1 + T (E (h(n))) (de-randomized recurrence).
Recurrence is a stochastic process: X0 = n, Xt+1 = h(Xt).
Can be treated by drift analysis.

Application to random combinatorial structure
Draw random permutation π of {1, . . . , n}.
Consider cycles, e. g., 1→ 5→ 8→ 3→ 1.
How to determine T (n), the number of cycles?
Recurrence T (n) = 1 + T (h(n)), where h(n) ∼ Unif(0, . . . , n − 1).
Karp: Pr(T (n) > log2(n + 1) + δ) ≤ 2−δ+1

For comparison, E (T (n)) = ln n + Θ(1); note: log2 n ≈ 1.44 ln n.
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Sharp Tail Bound on No. of Cycles

New result
Using drift analysis with tail bounds, we get

Pr(T (n) < (1− δ)(ln n)) ≤ e− δ2
4 (1−o(1)) ln n and

Pr(T (n) > (1 + δ)((ln n) + 1)) ≤ e− min{δ,δ2}
6 ln n.

Compared to Karp’s technique, need knowledge of distribution of h(n),
not only the expectation.

Obvious topics for future research
T (n) = a(n) + T (h(n)) for a(n) > 1
More than one recursive call?
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Summary

Drift analysis for the analysis of EAs
Introduced additive and multiplicative drift.
Applied drift analysis to bound running time of (1+1) EA on linear
functions:

Tight bounds up to lower-order terms.
Structural insight: multiple-bit flips do neither help or harm.
Practically used mutation probability is theoretically optimal.
“Greedy” (1+1) EA is optimal mutation-based, population-based EA.
Adaptive multiplicative drift analysis is very powerful technique, but
finding the “right” potential function can be difficult.

Drift analysis can yield sharp-concentration results.
Looking into EAs from CS perspective may be promising: techniques
developed here may be useful for problems from classical TCS.

Thank you for your attention!

Carsten Witt How to Treat Evolutionary Algorithms as Ordinary Randomized Algorithms



22/22

Introduction Drift Analysis Linear Functions Back to TCS? End

Summary

Drift analysis for the analysis of EAs
Introduced additive and multiplicative drift.
Applied drift analysis to bound running time of (1+1) EA on linear
functions:

Tight bounds up to lower-order terms.
Structural insight: multiple-bit flips do neither help or harm.
Practically used mutation probability is theoretically optimal.
“Greedy” (1+1) EA is optimal mutation-based, population-based EA.
Adaptive multiplicative drift analysis is very powerful technique, but
finding the “right” potential function can be difficult.

Drift analysis can yield sharp-concentration results.
Looking into EAs from CS perspective may be promising: techniques
developed here may be useful for problems from classical TCS.

Thank you for your attention!

Carsten Witt How to Treat Evolutionary Algorithms as Ordinary Randomized Algorithms


	Introduction
	Drift Analysis
	Linear Functions
	Back to TCS?
	End



