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Factorization of shape and reflectance

offers a complete description.)
Luminance, illuminance, and reflectance, are physical

quantities that can be measured by physical devices. There
are also two subjective variables that must be discussed.

Lightness is defined as the perceived reflectance of a sur-
face. It represents the visual system’s attempt to extract
reflectance based on the luminances in the scene. 

Brightness is defined as the perceived intensity of light
coming from the image itself, rather than any property of the
portrayed scene. Brightness is sometimes defined as per-
ceived luminance. 

These terms may be understood by reference to figure 24.7.
The block is made of a 2x2 set of cubes, each colored either
light or dark gray. We call this the “checker- b l o c k . ”
Illumination comes from an oblique angle, lighting different
faces differently. The luminance image can be considered to
be the product of two other images: the reflectance image
and the illuminance image, shown below. These underlying
images are termed intrinsic images in machine vision
(Barrow and Tenenbaum, 1978). Intrinsic image decomposi-
tions have been proposed for understanding lightness per-
ception (Arend, 1994; Adelson and Pentland, 1996)

Patches p and q have the same reflectance, but different
luminances. Patches q and r have different reflectances and
d i fferent luminances; they share the same illuminance.
Patches p and r happen to have the same luminance, because
the lower reflectance of p is counterbalanced by its higher

illuminance. 
Faces p and q appear to be painted with the same gray,

and thus they have the same lightness. However, it is clear
that p has more luminance than q in the image, and so the
patches differ in brightness. Patches p and r differ in both
lightness and brightness.

The problem of lightness constancy

From a physical point of view, the problem of lightness con-
stancy is as follows. An illuminance image, E(x,y), and a
reflectance image, R(x,y), are multiplied to produce a lumi-
nance image, L(x,y):

An observer is given L at each pixel, and attempts to
determine the two numbers E and R that were multiplied to
make it. Unfortunately, unmultiplying two numbers is
impossible. If E(x,y) and R(x,y) are arbitrary functions, then
for any E(x,y) there exists an R(x,y) that produces the
observed image. The problem appears impossible, but
humans do it pretty well. This must mean that illuminance
and reflectance images are not arbitrary functions. They are
constrained by statistical properties of the world, as pro-
posed by Land and McCann.

Note that Land and McCann’s constraints fail when
applied to the checker-block image. Figure 24.8(a) shows
two light-dark edges. They are exactly the same in the
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FIGURE 24.6  Variants on the Koffka ring. (a) The ring appears about
uniform. (b) When split, the two half-rings appear distinctly differ-
ent. (c) When shifted, the two half-rings appear quite different. FIGURE 24.7  The “checker-block” and its analysis into two intrinsic

images.

L(x,y) = E(x,y)R(x,y).

offers a complete description.)
Luminance, illuminance, and reflectance, are physical

quantities that can be measured by physical devices. There
are also two subjective variables that must be discussed.

Lightness is defined as the perceived reflectance of a sur-
face. It represents the visual system’s attempt to extract
reflectance based on the luminances in the scene. 

Brightness is defined as the perceived intensity of light
coming from the image itself, rather than any property of the
portrayed scene. Brightness is sometimes defined as per-
ceived luminance. 

These terms may be understood by reference to figure 24.7.
The block is made of a 2x2 set of cubes, each colored either
light or dark gray. We call this the “checker- b l o c k . ”
Illumination comes from an oblique angle, lighting different
faces differently. The luminance image can be considered to
be the product of two other images: the reflectance image
and the illuminance image, shown below. These underlying
images are termed intrinsic images in machine vision
(Barrow and Tenenbaum, 1978). Intrinsic image decomposi-
tions have been proposed for understanding lightness per-
ception (Arend, 1994; Adelson and Pentland, 1996)

Patches p and q have the same reflectance, but different
luminances. Patches q and r have different reflectances and
d i fferent luminances; they share the same illuminance.
Patches p and r happen to have the same luminance, because
the lower reflectance of p is counterbalanced by its higher

illuminance. 
Faces p and q appear to be painted with the same gray,

and thus they have the same lightness. However, it is clear
that p has more luminance than q in the image, and so the
patches differ in brightness. Patches p and r differ in both
lightness and brightness.

The problem of lightness constancy

From a physical point of view, the problem of lightness con-
stancy is as follows. An illuminance image, E(x,y), and a
reflectance image, R(x,y), are multiplied to produce a lumi-
nance image, L(x,y):

An observer is given L at each pixel, and attempts to
determine the two numbers E and R that were multiplied to
make it. Unfortunately, unmultiplying two numbers is
impossible. If E(x,y) and R(x,y) are arbitrary functions, then
for any E(x,y) there exists an R(x,y) that produces the
observed image. The problem appears impossible, but
humans do it pretty well. This must mean that illuminance
and reflectance images are not arbitrary functions. They are
constrained by statistical properties of the world, as pro-
posed by Land and McCann.

Note that Land and McCann’s constraints fail when
applied to the checker-block image. Figure 24.8(a) shows
two light-dark edges. They are exactly the same in the

342 SENSORY SYSTEMS

FIGURE 24.6  Variants on the Koffka ring. (a) The ring appears about
uniform. (b) When split, the two half-rings appear distinctly differ-
ent. (c) When shifted, the two half-rings appear quite different. FIGURE 24.7  The “checker-block” and its analysis into two intrinsic

images.

L(x,y) = E(x,y)R(x,y).

reflectance shading (Adelson, 2000)



Factorization of object shape and pose

Hinton (1981)

mapping
units



Computing with high-dimensional vectors

Pentti Kanerva

Kanerva P  (2009)  Hyperdimensional Computing:  An Introduction to Computing in Distributed 
Representation with High-Dimensional Random Vectors.  Cognitive Computing, 1: 139-159.

Plate, T. A. (1995). Holographic reduced representations. IEEE Transactions on Neural networks, 6(3), 
623-641.

Concepts, variables, attributes are represented 
as high-dimensional vectors (e.g., 10,000 bits)

Three fundamental operations:
• multiplication  (binding)
• addition          (combining)
• permutation    (sequencing)

Approximates a field



Single neuron recording  ⇒  Single neuron thinking
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What the Frog's Eye Tells the Frog's Brain *
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Summary-In this paper, we analyze the activity of single fibers
in the optic nerve of a frog. Our method is to find what sort of stimu-
lus causes the largest activity in one nerve fiber and then what is the
exciting aspect of that stimulus such that variations in everything else
cause little change in the response. It has been known for the past
20 years that each fiber is connected not to a few rods and cones in
the retina but to very many over a fair area. Our results show that for
the most part within that area, it is not the light intensity itself but
rather the pattern of local variation of intensity that is the exciting
factor. There are four types of fibers, each type concerned with a dif-
ferent sort of pattern. Each type is uniformly distributed over the
whole retina of the frog. Thus, there are four distinct parallel dis-
tributed channels whereby the frog's eye informs his brain about the
visual image in terms of local pattern independent of average
illumination. We describe the patterns and show the functional and
anatomical separation of the channels. This work has been done on
the frog, and our interpretation applies only to the frog.

INTRODUCTION

Behavior of a Frog
t FROG hunts on land by vision. He escapes

enemies mainly by seeing them. His eyes do not
move, as do ours, to follow prey, attend suspi-

cious events, or search for things of interest. If his body
changes its position with respect to gravity or the whole
visual world is rotated about him, then he shows coin-
pensatory eye movements. These movements enter his
hunting and evading habits only, e.g., as he sits on a
rocking lily pad. Thus his eyes are actively stabilized.
He has no fovea, or region of greatest acuity in vision,
upon which he must ceniter a part of the image. He also
has only a single visual system, retina to colliculus, not
a double one such as ours where the retina send& Thbers
not only to colliculus but to the lateral geniculatt; body
which relays to cerebral cortex. Thus, we chose to work
oni the frog because of the uniformity of his retina, the
normal lack of eye and head movements except for
those which stabilize the retinal image, and the relative
simplicity of the connection of his eye to his brain1.
The frog does not seem to see or, at any rate, is not

conicerned with the detail of stationary parts of the
world around him. He will starve to death surrounided
by food if it is not moving. His choice of food is deter-
mined only by size and movement. He will leap to cap-
ture any object the size of an insect or worm, providing
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it moves like one. He can be fooled easily not only by a
bit of dangled meat but by any moving small object.
His sex life is conducted by sound and touch. His choice
of paths in escaping enemies does not seem to be gov-
erned by anything more devious than leaping to where
it is darker. Since he is equally at home in water and on
lanid, why should it matter where he lights after jumping
or what particular direction he takes? He does remember
a moving thing providing it stays within his field of
vision and he is not distracted.

A natomy of Frog Visual A pparatus
The retina of a frog is shown in Fig. l(a). Between

the rods and cones of the retina and the ganglion cells,
whose axons form the optic nerve, lies a layer of con-
necting neurons (bipolars, horizontals, and amacrines).
In the frog there are about 1 million receptors, 21 to 31
million conniecting neurons, and half a million ganglion
cells [1]. The connections are such that there is a syn-
aptic path from a rod or cone to a great many ganglion
cells, and a ganglion cell receives paths from a great
many thousand receptors. Clearly, such an arrangement
would not allow for good resolution were the retina
meant to map an image in terms of light intensity point
by point inito a distribution of excitement in the optic
nerve.
There is only one layer of ganglion cells in the frog.

These cells are half a million in number (as against one
million rods and cones). The neurons are packed to-
gether tightly in a sheet at the level of the cell bodies.
Their denidrites, which may extend laterally from 50,u to
500 ,u, interlace widely into what is called the inner plexi-
forml layer, which is a close-packed neuropil containing
the terminal arbors of those neurons that lie between re-
ceptors and ganglion cells. Thus, the amount of overlap
of adjacent ganglioni cells is enormous in respect to
what they see. Morphologically, there are several types
of these cells that are as distinct ini their dendritic pat-
terns as different species of trees, from which we infer
that they work in different ways. The anatomy shown
in the figures is that found in standard referenices. Fur-
ther discussion of anatomiiical questionis and additioinal
original work on themn will appear in a later publicationi.
Physiology as Known up to This Stutdy

Hartline [21 first used the term receptive field for the
region of retina within which a local change of bright-
ness would cause the ganglion cell he xwas observing to
discharge. Such a region is sometimes surrounded by ani
annulus, within which changes of brightness affect the
cell's response to what is occurring in the receptive field,
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Figure 6: Operational capacity is dramatically higher for Resonator Circuits (blue and red above)
than for any of the benchmark algorithms. These points represent the size of factorization problem
that can be solved reliably.

3.2.1 Resonator Circuits have superior operational capacity

We estimated the operational capacity of Alternating Least Squares, Iterative Soft Thresh-
olding, Fast Iterative Soft Thresholding, Projected Gradient Descent, Multiplicative Weights,
and Map Seeking Circuits, in addition to the two variants of our algorithm. What is shown
in Figure 6 is the operational capacity estimated on several thousand random trials, where
we display Mmax as a function of N for both three-factor problems and four-factor prob-
lems. One can see that the operational capacity of Resonator Circuits is between

two and three orders of magnitude greater than the operational capacity of the

other algorithms. Each of the benchmark algorithms has a slightly different operational
capacity (due to the fact that they each have different dynamics and will, in general, find
different solutions) but they are all similarly poor compared to the two variants of Resonator
Circuit.

As N increases to 3,000 and beyond, the performance difference between the two variants
of the Resonator Circuit starts to disappear, ostensibly due to the fact that Xf

�
X

T
f Xf

��1
X

T
f ⇡

XfX
T
f . The two variants are different in general (and we have found that when the codevec-

tors have significant similarities the Ordinary Least Squares variant performs better), but
the simulations in this paper do not particularly highlight the difference between the two.

Except for Alternating Least Squares, each of the benchmark algorithms has at least
one hyperperparameter that must be chosen – we simulated many thousand random trials
with a variety of hyperparameter settings for each algorithm and chose the hyperparameter
values that performed best on average. We list these values for each of the algorithms in
the Appendix. Each of the benchmark algorithms converge on their own and the tunable
stepsizes make a comparison of the number of iterations non-standardized, so we did not
impose a maximum number of iterations on these algorithms – the points shown represent
the best the benchmark algorithms can do, even when not restricted to a maximum number
of iterations. In fact, we experimented with many algorithms beyond those shown here in an
attempt to find a competitive alternative to Resonator Circuits, but were unable to do so.
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Figure 7: The fth root of Mmax varies as a linear function N .

3.2.2 A scaling law for operational capacity of Resonator Circuits

The operational capacity is a very practical measure of performance, and we set out to
estimate how it scales with parameters of the factorization problem. We are concerned
with scaling in the limit of large N (where cross-talk noise between codevectors is well-
approximated as Gaussian, see section 3.1). The capacity scaling we find does not apply to
small values of N .

We discovered a powerful and relatively simple scaling law for operational capacity which
is illustrated by figure 7. The points are operational capacities estimated over many thou-
sands of random trials and the lines give the best linear fits to a subset of these points – in
the limit of large N we find that F

p
Mmax increases as a linear function of N . The slope of

this relationship is heavily dependent on the number of factors F , which we find follows a
inverse power-law in F (see figure 8). The linear dependence of F

p
Mmax on N implies that

Mmax scales according to NF

F
p
Mmax = �0 + �1N =) Mmax = (�0 + �1N)F = O(�F

1 N
F )

in the limit of large N . The values �0 and �1 are parameters of this linear scaling and
depend in general on F , which one can see clearly in figure 7. From Figure 8 we estimate
the expression for �1 to be �1 = 25.74F�5.66. Substituting this into the expression for Mmax,
we have the main scaling law for operational capacity as a function of N and F :

Mmax = O(25.74F�5.66FNF ) (28)
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Figure 9: States in hypercube interior get pulled into spurious basins of attraction

3.4 Search efficiency

If a Resonator Circuit is not consistently descending an energy function, is it just aimlessly
wandering around the space, trying every possible factorization until it finds the correct one?
Figure 10 shows that it is not. We plot the mean number of iterations over 5,000 random
trials, as a fraction of M , the search space size. This particular plot is based on a Resonator
Circuit with outer product weights and F = 3. In the high-performance regime where M
is below operation capacity, the number of iterations is far less than the 0.001M cutoff we
used in the simulations of section 3.2 – the algorithm is only ever considering a tiny fraction
of the possible factorizations before it finds the solution.

Figure 10: Iterations until convergence, Resonator Circuit with outer product weights and F = 3.
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(a) Convergence traces for 100 randomly-drawn factorization problems – each line is the cosine
similarity between c and ĉ over iterations of the algorithm. Each of the four algorithms is run on the
same 100 factorization problems. All of the instances are solved by the Resonator Circuit, whereas
a sizeable fraction (around 30%) of the instances are not solved by the benchmark algorithms, at
least within 100 iterations.

(b) Avg. cosine similarity vs. iteration
number (only trials with accuracy 1.0)

(c) Avg. cosine similarity vs. wall-clock
time (only trials with accuracy 1.0)

Figure 11: Our benchmark of factorization speed. Implementation in Python with NumPy. Run on
machine with Intel Core i7-6850k processor and 32GB RAM. We generated 5, 000 random instanti-
ations of the factorization problem with N = 1500, F = 3, and Mf = 40, running each of the four
algorithms in turn. Figure 11a gives a snapshot of 100 randomly selected trials. Figures 11b and
11c show average performance conditioned on the algorithms finding the correct factorization.

Section 3.2.1 compared the operational capacity of different algorithms and showed that
compared to the benchmarks, Resonator Circuits can solve much larger factorization prob-
lems. This is in the sense that the dynamics eventually converge (with high probability) on
the correct factorization while, the dynamics of the other algorithms converge on spurious
factorizations. This result, however, does not directly demonstrate the relative speed with
which factorization are found in terms of either the number of iterations or the amount of
time to convergence. We set up a benchmark to determine the relative speed of Resonator
Circuits and our main finding is depicted in Figure 11. What these plots indicate is that
measured in number of iterations, Resonator Circuits are comparable to the

benchmark algorithms. However, due to the nearly 5x lower per-iteration cost

of Resonator Circuits with outer product weights, this variant is significantly

faster in terms of wall-clock time. Resonator Circuits with outer product weights uti-
lize very simple arithmetic operations and this explains the difference between Figures 11b
and 11c.
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2. The problem

The abstract problem solved by the map-seeking circuit is
the discovery of a composition of transformations
between an input pattern and a stored pattern (or between
two input patterns, as in the case of stereovision). In
general the transformations express the generating process
of the problem. Define correspondence c between vectors
r and w through a composition of L transformations
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Let C be an L dimensional matrix of values of c(j) whose
dimensions are n1…nL. The problem, then is to find

( )arg max c=x j eq. 2
The indices x specify the sequence of transformations that
best correspondence between vectors r and w. The
problem is that C is too large a space to be searched by
conventional means. Instead, map-seeking circuits search
a superposition space Q defined
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of t in layer m, [ ]0,1m
m
xg ∈ , is adjoint ofl l

i it t′ .
Q(G) is the hypersurface defining the value of the inner
product of forward and backward superpositions for all
values of g. In Q space, the solution lies along a single
axis in each layer. Superposition culling uses the
components of grad Q to compute a path in steps !g to the
axis in each layer l which corresponds to the best fitting
transformation txl

, where xl is the lth element of x in eq. 2.
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The function f preserves the maximal component and
reduces the others: in neuronal terms, lateral inhibition.
This reformulation of the problem into the superposition
space Q permits a search with resources proportional to
the sum of sizes of the dimensions of C instead of their
product.

The price for moving the problem into superposition
space is that collusions of components of the
superpositions can result in better matches for incorrect
mappings than for the mappings of the correct solution.
The ordering property of superpositions [4] gives a
probabilistic description of the occurrence of collusion for
pattern vectors which satisfy the distribution properties of
decorrelating encodings, for which there is reasonable
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=  horizontal position xi
=  vertical position yj
=  pattern k

HD map-seeking circuit
(Paxon Frady)
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Main points
• Visual perception requires solving inverse problems 

in the form of factorization.

• HD algebra allows for searching among many 
factorial combinations at once via superposition of 
vectors.

• This property may be exploited for disentangling 
properties such as object shape, color and position 
from a scene containing multiple objects.

• Tradeoff  between “well behaved” gradient methods 
vs. more powerful dynamics for exploring solution 
space?


