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Factorization of shape and reflectance

reflectance shading (Adelson, 2000)



Factorization of object shape and pose

The meaning of the triangular symbol in fig. 1
is guite complex. It stands for two rules:

1. Multiply the ectivity level in the retina-
based unit by the activity level in the mapping
unit and send the product to the object-based

unit.

2. Multiply the activity level in the retina-
based unit by the activity level in the object-
besed unit and send the product to the mapping
unit.

Hinton (1981)
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Computing with high-dimensional vectors

Concepts, variables, attributes are represented
as high-dimensional vectors (e.g., 10,000 bits)

Three fundamental operations:

multiplication (binding)
Pentti Kanerva
addition (combining)

permutation (sequencing)

Approximates a field

Kanerva P (2009) Hyperdimensional Computing: An Introduction to Computing in Distributed
Representation with High-Dimensional Random Vectors. Cognitive Computing, |: 139-159.

Plate, T.A. (1995). Holographic reduced representations. IEEE Transactions on Neural networks, 6(3),
623-641.
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What the Frog’s Eye Tells the Frog’s Brain®

J. Y. LETTVINY, H. R. MATURANAY, W. S. McCULLOCH||, SENIOR MEMBER, IRE,
anp W. H. PITTS||

Summary—In this paper, we analyze the activity of single fibers
in the optic nerve of a frog. Our method is to find what sort of stimu-
lus causes the largest activity in one nerve fiber and then what is the
exciting aspect of that stimulus such that variations in everything else
cause little change in the response. It has been known for the past
20 years that each fiber is connected not to a few rods and cones in
the retina but to very many over a fair area. Our results show that for

it moves like one. He can be fooled easily not only by a
bit of dangled meat but by any moving small object.
His sex life is conducted by sound and touch. His choice
of paths in escaping enemies does not seem to be gov-
erned by anything more devious than leaping to where
it is darker. Since he is equally at home in water and on

factor. Ther are four types of fibers, each type concerned with a dif-

Each type is uniformly distributed over the

visual image in terms of local pattern independent of average
illumination. We describe the patterns and show the functional and
anatomical separation of the channels. This work has been done on
the frog, and our interpretation applies only to the frog.

ANALOMYy 0] Frog vVisual Apparaiis

The retina of a frog is shown in Fig. 1(a). Between
the rods and cones of the retina and the ganglion cells,
whose axons form the optic nerve, lies a laver of con-



Single neuron recording = Single neuron thinking
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Perception, 1972, volume 1, pages 371 -394 @\7)

Single units and sensation: A neuron doctrine
for perceptual psychology?

H B Barlow
Department of Physiology-Anatomy, University of California, Berkeley, California 94720
Received 6 December 1972
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Abstract. The roblem discussed is the relationship between the firing of single neurons in sensory
pathways and subjectively experienced sensations. The conclusions are formulated as the following

five dogmas:

either a more macroscopic or microscopic level, because behaviour depends upon the organized
pattern of these intercellular interactions.
2. The sensory system is organized to achieve as complete a representation of the sensory stimulus
as possible with the minimum number of active neurons,
3. Trigger features of sensory neurons are matched to redundant patterns of stimulation by
experience as well as by developmental processes.
4. Perception corresponds to the activity of a small selection from the very numerous high-level
neurons, each of which corresponds to a pattern of external events of the order of complexity of
the events symbolized by a word.
5. High impulse frequency in such neurons corresponds to high certainty that the trigger feature is
present.

The development of the concepts leading up to these speculative dogmas, their experimental
basis, and some of their limitations are discussed.
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Factorization in HD

x € X := {xg,X1,--.
b=x®y®z y €Y :={yo,y1,---
z € 7 .= {zy,21,- .

Problem: You are given b, what are x, y and z?

Solution: Resonate

Xtt1 g(XXT boy, '®z; ') x-|x x .

Yt_|_1 —g(Y A_l ®Zt_1)) Y=|y: y2 ...
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Consider the following energy function



Consider the following energy function

1,000,000 combinations! (n=100)

(1BiMx1Q®Yy1®21 + ... + B XiQ®Y; @z, + ... + ApBnTnXn @Yn @ Zy)

-

F=-b x®y X z)

n n n
X = E A X4y, Y = E Biyi, z= E Vi 4
i=1 i=1 i=1



Time evolution of circuit state
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Nearest-neighbor decoding accuracy
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Search capacity increases with
number of dimensions
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Size of compound vector search space (number of combinations)
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Operational capacity

=== Alternating Least Squares

= [terative Soft Thresholding

=== Fast Iterative Soft Thresholding

=== Projected Gradient Descent
Multiplicative Weights

=== Map Seeking Circuits

=== Resonator Circuit with OLS weights (ours)

=== Resonator Circuit with OP weights (ours)
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Three factors, F=3



Operational capacity

=== Alternating Least Squares
=== |terative Soft Thresholding
-=== Fast Iterative Soft Thresholding
=== Projected Gradient Descent
Multiplicative Weights
=== Map Seeking Circuits
=== Resonator Circuit with OLS weights (ours)
=== Resonator Circuit with OP weights (ours)
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Four factors, F=4
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Operational capacity - scaling law

F=2

A/ Mmax = — 95.700 + 0.458N

N

F=4
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Search efficiency

M (search space size)
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Search efficiency
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Multiplicative weights (N=5000)

Current state of each factor

1 -
Current State
0 =
-1
1 4
Target State
0 = e as as SdsiEe = == s s S = ale E & &
_1 T T T T T T T T T T
0 10 20 30 40 50 60 70 80 90
Index in codebook
1 -
Current State
0 . B e e e e e e R e R e e T )
-1
1 4
Target State
0_ - - = ——— | e = e e, i s = = ER s &
_1 T T T T T T T T T T
0 10 20 30 40 50 60 70 80 90
Index in codebook
1 =
Current State
0 N R e e e T e B e S R e e B e R e T T e e e 5]
-1
1 4
Target State l
0- A = g — B o A i RSP i AEf o S s
—'1 T T T T T T T T T T
0 10 20 30 40 50 60 70 80 90

Index in codebook

Cosine Similarity

Similarity between ¢ and ¢

14

o
Il

|
=
1

o

10

15

20



Similarity
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Resonator (N=1700)
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Map-Seeking Circuit

David Arathorn - www.giclab.com

iInput image or previous layer

7S " match
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superposition: b
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HD map-seeking circuit
(Paxon Frady)

X" = horizontal position x;

y?7 = vertical position y;
[(z,y) Pr = pattern k

0

1Ot
20}

30| . | — V:ZI(x’ij)Xxiyyj
~ 2,]

40t

010 20 30 40
Given v, find x, y and p via resonator:
X4l = Q(XXT(V & S’t_l Y f’t_l))
vir1 =g(YY' ' (vex; ' ®@p;!))
piy1 =g(PP (vox, ' @y, )
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Some examples
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Some examples
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Main points

- Visual perception requires solving inverse problems
In the form of factorization.

HD algebra allows for searching among many
factorial combinations at once via superposition of
vectors.

+ This property may be exploited for disentangling
properties such as object shape, color and position
from a scene containing multiple objects.

- Tradeoff between “well behaved” gradient methods
vs. more powerful dynamics for exploring solution
space?



