The CEREBELLUM as NEURAL ASSOCIATIVE MEMORY

Pentti Kanerva <pkanerva@berkeley.edu> Redwood Center for Theoretical Neuroscience

- . Cerebellum figures and facts
- . The cerebellum challenge
- . Development of theory from top down
- . Representing concepts with high-dim. vectors
- . Computing with high-D vectors
- . The necessity for an associative memory
- . Cerebellum as a model from nature

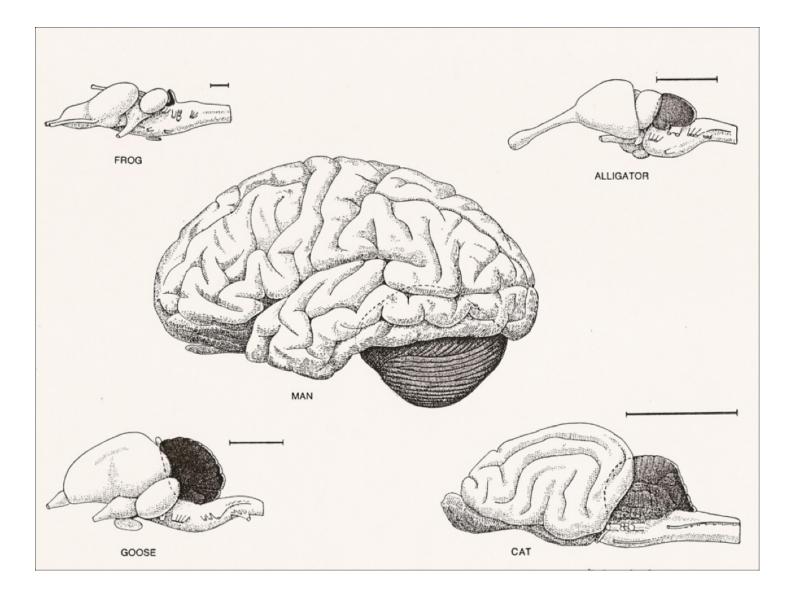


FIGURE 1. Cerebellum as part of vertebrate brains.

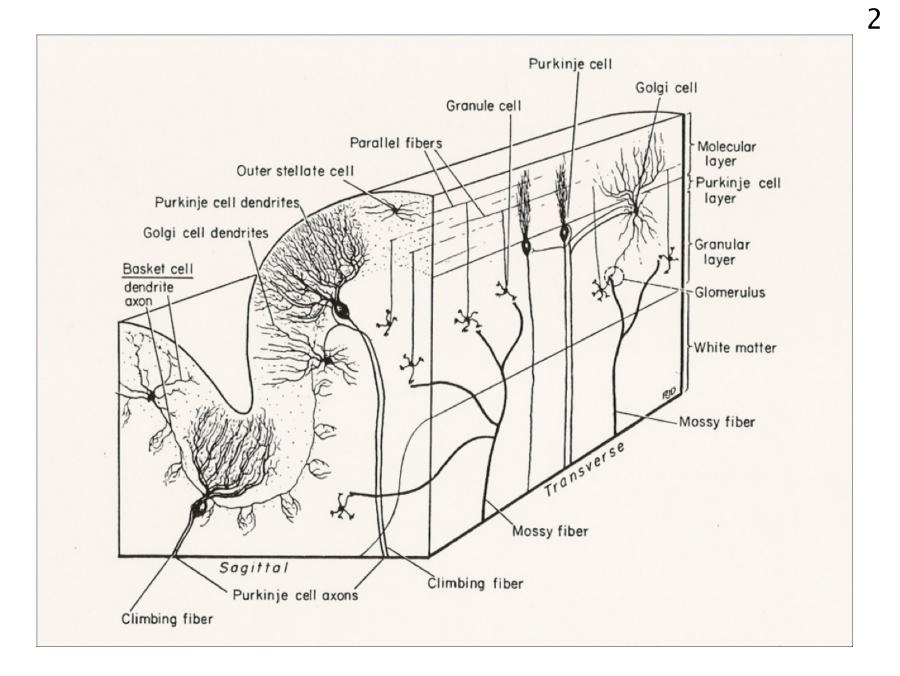


FIGURE 2. Cerebellum cell types in 3D.

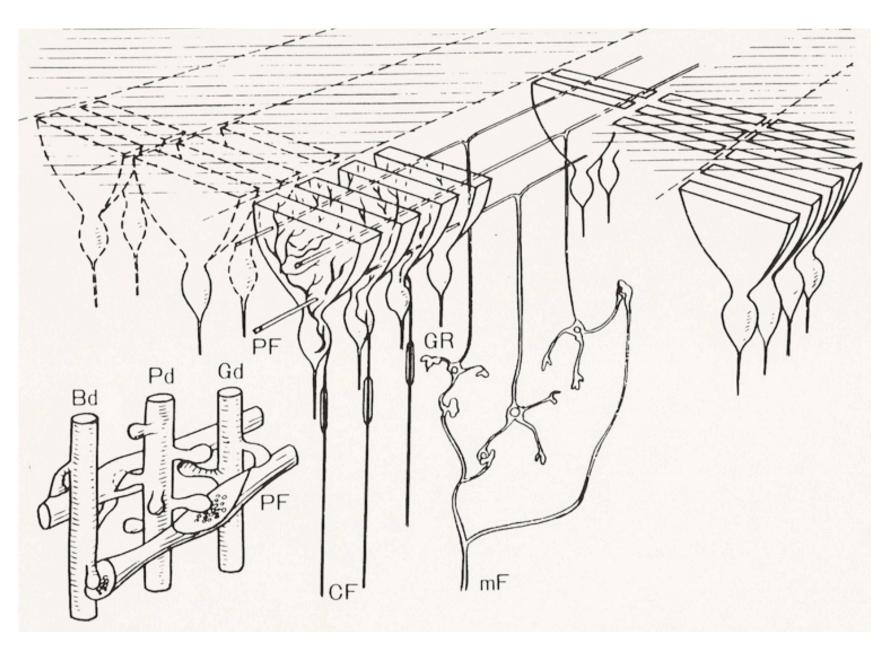


FIGURE 3. 3D organization of the "main" circuit.

Cerebellum Facts and Figures

- . 200 million Mossy Fibers: input from outside
- . 40 billion Granule Cells, the most numerous
- . 15 million Purkinje Cells (PC): sole output
- . Climbing Fibers: input from within -- 1/PC, shared by approx. 10 PCs

```
100,000 synapses/PC
```

. 1.5 trillion synapses overall

How big is 1.5 trillion?

1.5 trillion synapses @ 1 bit/synapse = 360,000 books, 400 pages each = 4 miles of shelf space

The Cerebellum Challenge

Traditional theories--logic, rule-based AI, artificial neural nets, connectionism, parallel distributed processing, deep learning--*leave* too much unexplained and unexplored.

For example, why the cerebellum?

- . It has 40 billion neurons vs. 16 billion in the rest of the brain
- . Its organization is simple and regular

The cerebellum must fulfill some essential function that computational theories and models of the brain cannot afford to ignore What Is the Cerebellum for?

- . Coordination of movement, fine motor control
 - -- learn, generate, and monitor sequences
 - -- predict
- . Growing evidence for *higher cognitive functions* such as language
 - -- this agrees with the theme of this talk:

Theory of computing with high-dimensional vectors assumes a high-capacity associative memory

Development of Theory from Top Down

Top-down development prepares the mind to recognize an answer when it presents itself

- 1. Philosophy and Psychology
 - . The character of concepts
- 2. Mathematics
 - . Develop a mathematical model of the world of concepts
- 3. Engineering
 - . "Build" a physical structure implied by the model
- 4. Biology
 - . Is there anything like it in the brain?
 - . Is anything of essence missing?

Representing Concepts with High-D Vectors

Brains consist of *neurons* but **minds** work with *concepts*

The world of concepts is

- . huge and
- . ever-expanding

Representation of concepts must allow for that

Concepts can be compared for *similarity* of *meaning*

man ≈ woman man ≈ lake

Distant concepts have *similar neighbors*

```
man ≈ lake
man ≈ fisherman ≈ fish ≈ lake
man ≈ plumber ≈ water ≈ lake
plumber ≈ fish
```

Robustness of Concepts (and of percepts)

- . Sensory input never repeats exactly
 - -- yet we recognize people and things
- . Recognition is fast and extremely tolerant of variation and "noise"
- . Learning can be very fast
 - -- from a single exposer
 - -- a handful of examples
 - -- explicit instruction
- . Memories can last a lifetime

How to model the world of concepts?

What mathematical objects would have the above properties?

Properties of High-Dimensional Vectors

e.g. 10,000-dimensional binary vectors

- . 10K-bit vectors/"words"/points of a 10K-dim. space
- . Total number of 10K-bit vectors: $2^{10,000}$
- . Hamming distance *H* between 10K-bit vectors follows the binomial distribution:
 - -- mean = 5,000, STD = 50

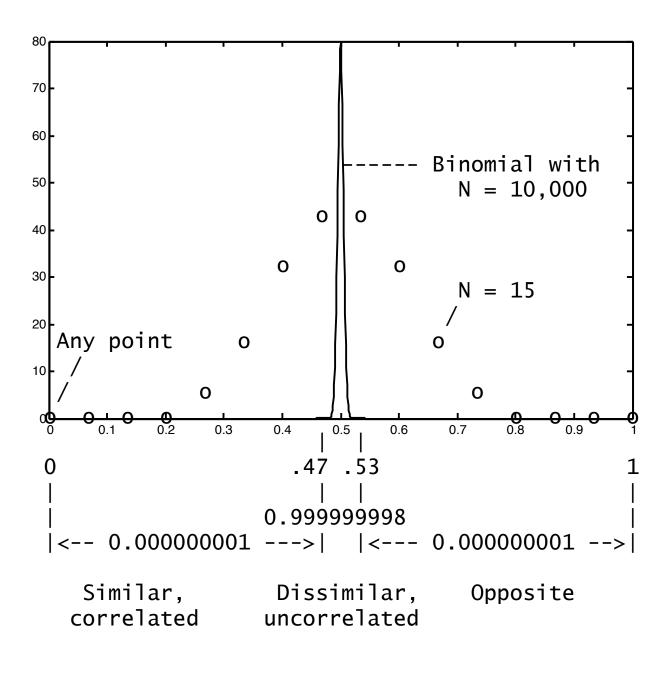


FIGURE 4. Binomial distribution

. Most vectors are dissimilar ($H \sim 5,000, h \sim 0.5$)

- A tiny fraction is closer than, say, 4,500 bits
 -- h = 0.45 is 10 STDs from the mean
 -- hence "very similar"
- . Between pairs of dissimilar vectors (*h* ~ 0.5) there are many that are *very similar to both*:

man \approx fisherman \approx fish \approx lake

- These are properties of high-D vectors at large
 -- binary, integer, real, complex vectors
- . Called Concentration of Measure

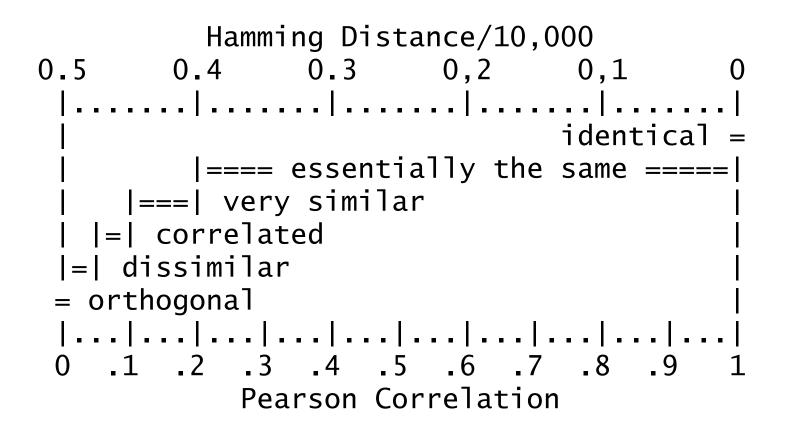


FIGURE 5. "Similarity" of 10K-bit vectors based on random chance.

Concepts as High-D Vectors

Old school:

- . Concepts are represented by *disjoint features*
- . Each feature is its own dimension of a high-D vector
 - -- e.g., age, sex, state, zip code, can swim, eligible to vote, speaks Chinese, married, number of children, ...
 - -- Grandmother cells
- . The features constitute an **ontology**
 - -- i.e., concepts and categories of a subject
 area and relations among them
 - -- the list can grow indefinitely (>> 10K)
- There is no universal ontology
 -- any ontology will eventually box us in

Quasi-Orthogonality of High-D Vectors

In 10,000 dimensions there are 10,000 mutually orthogonal vectors but **billions of nearly orthogonal vectors**, i.e., dissimilar

- . A randomly chosen vector is nearly orthogonal to any of a billion chosen so far
 - -- the number grows exponentially with dimensionality
- . Each can represent an independent feature or concept

Randomness is a major asset

Holographic Representation (Superposition)

Overcomes the 10K limit on the number of features representable in 10K Bits

- A single vector can represent
 - . a feature
 - . set of features
 - . structured composition of features
 - . concept
 -

Computing in Superposition, an example

- . Encode $\{x = a, y = b, z = c\}$ into a single superposition vector, super-vector S
- . Retrieve the vector for x from S

$$X = 10010...01 X and A are bound with XOR
A = 00111...11
X*A = 10101...10 -> 1 0 1 0 1 ... 1 0 (x = a)
Y = 10001...10
B = 11111...00
Y*B = 01110...10 -> 0 1 1 1 0 ... 1 0 (y = b)
Z = 01101...01
C = 10001...01
Z*C = 11100...00 -> 1 1 1 0 0 ... 0 0 (z = c)
Sum = 2 2 3 1 1 ... 2 0
Majority = 1 1 1 0 0 ... 1 0 = S$$

FIGURE 6a, Encoding $S = \{x = a, y = b, z = c\}$

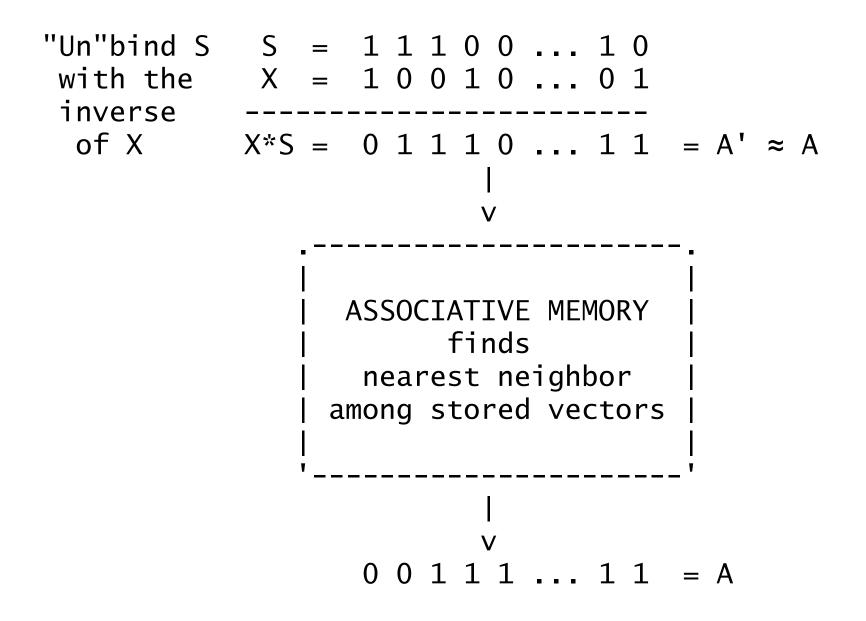


FIGURE 6b. Decoding: What's the value of x in S?

Summary of the Algorithm

- 1. The variables and the values are represented by random 10K-bit **seed vectors** X, Y, Z, A, B, C
- 2. Variables are **bound** to their vales with XOR and the bound pairs are combined with "addition" (i.e., thresholded sum, majority)
- 3. The vector for x is retrieved with XOR and "clean-up"

System of Computing with Super-Vectors

Ingredients

- 1. Random-vector generator:
 - -- seed vectors
- 2. Three operations on vectors:
 -- Multiply, Add, Permute (MAP)
- 3. Measure of similarity:
 - -- distance, cosine, Pearson correlation

These operations make it possible to do both

- . rule-based symbolic processing (GOFAI) and
- . statistical learning from data

HOWEVER ...

there is a limit to the amount of information that can be stored in a single super-vector. The limit is overcome by

- 4. High-capacity memory for super-vectors
 - -- akin to memory for numbers and pointers in today's computers

Functions of the Memory

- . Store and generate sequences: predict
 -- hetero-associative
- . Identify "noisy" vectors: clean-up
 - -- auto-associative

Modeled by neural-net associative memories

- . Hopfield net
 - -- limited capacity
- . Sparse Distributed Memory (SDM)
 -- "unlimited" but inefficient

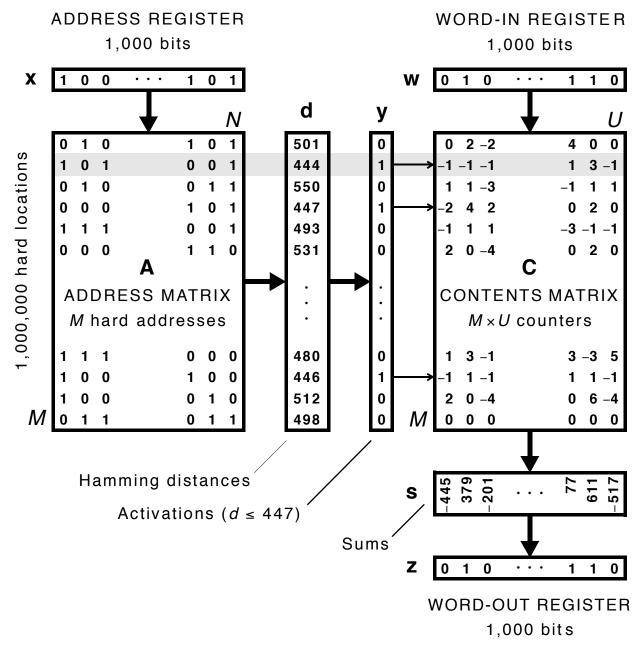


FIGURE 7. Spare Distributed Memory (SDM).

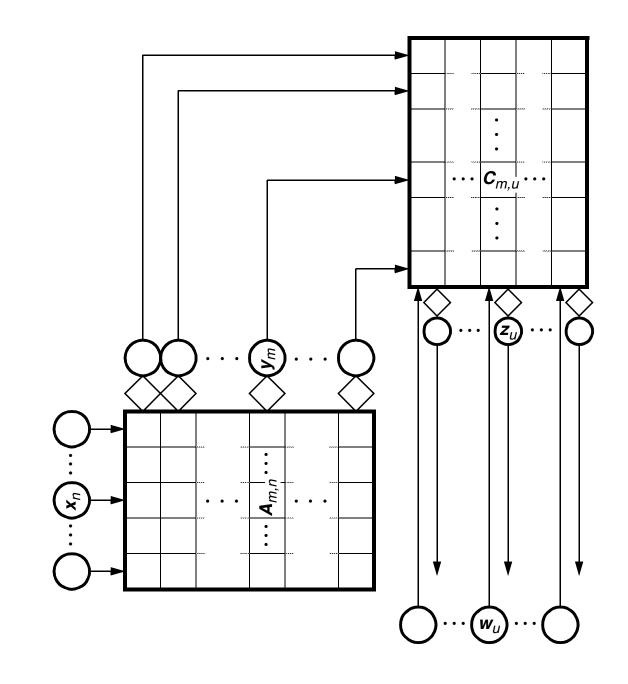


FIGURE 8. SDM morphs into cerebellum.

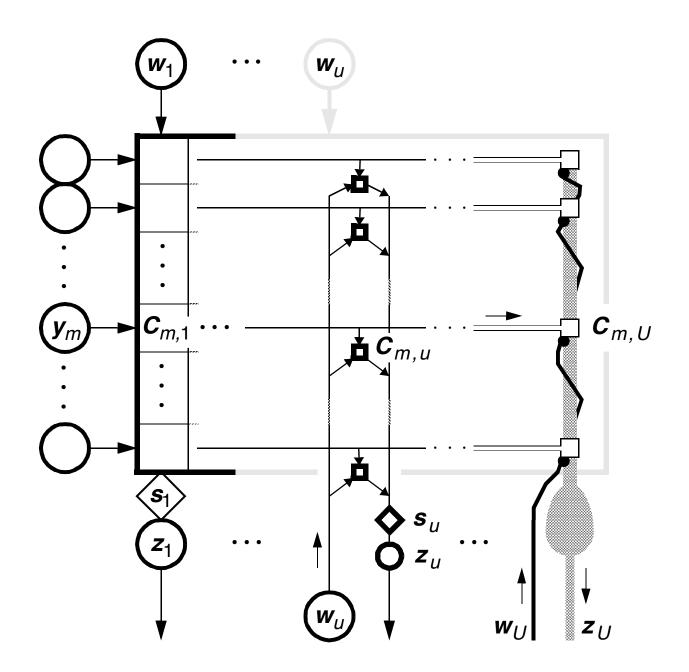


FIGURE 9. Weights, counters, synapses.

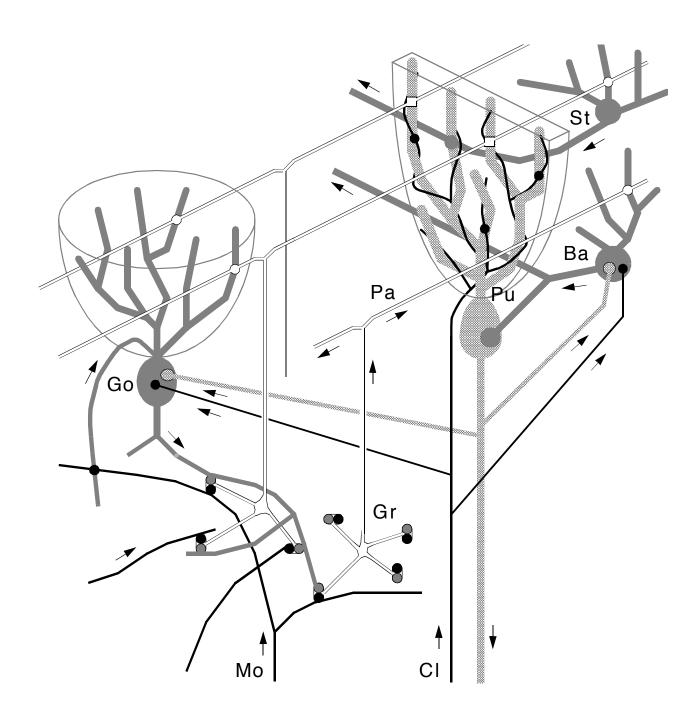


FIGURE 10. The cerebellum is more efficient than SDM.

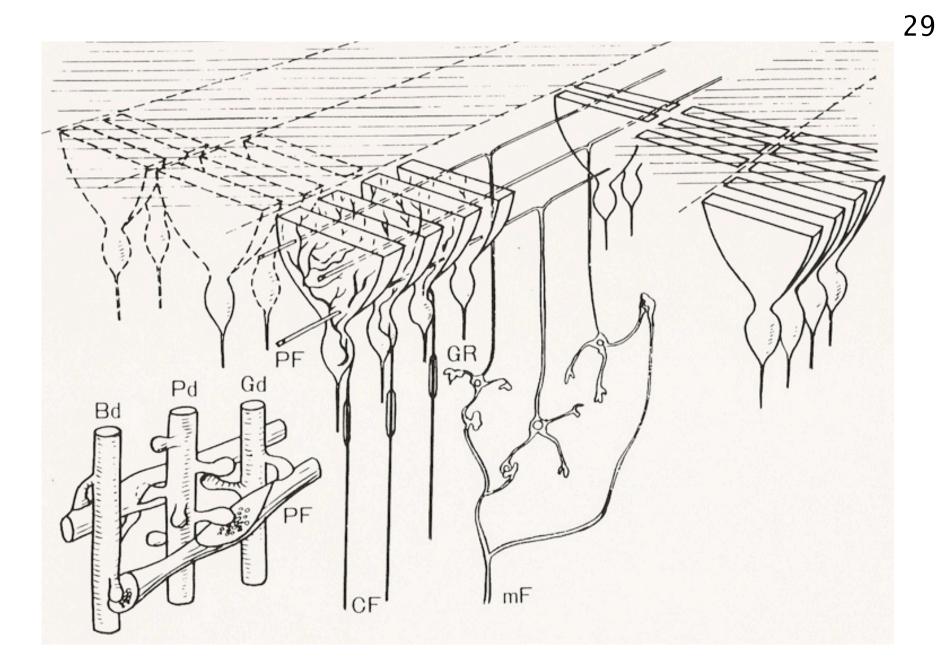


FIGURE 3/11. 3D organization of the "main" circuit.

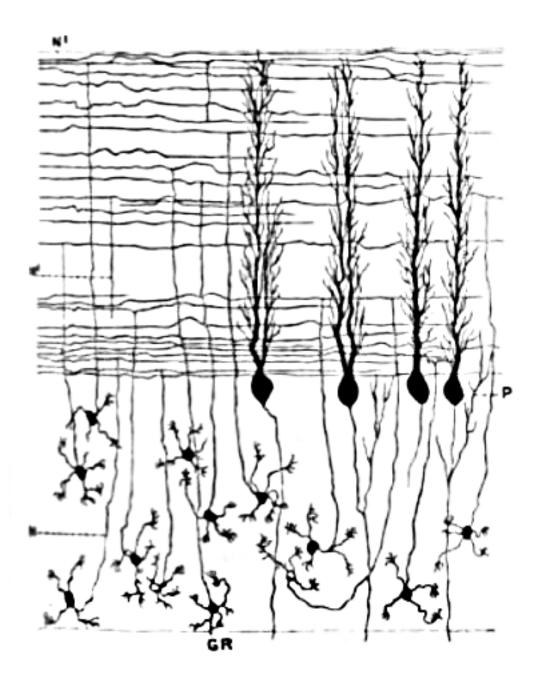


FIGURE 12. Side view: "Select lines" and "bit planes."

Pseudo-Cerebellum

- . Building an associative memory for supervectors is a major engineering challenge
- . Nature appears to have solved it
- . We can use the cerebellum as a source of ideas and guidance

Calls for in-depth study of cerebellar circuits from engineering point of view (Loebner, 1989)

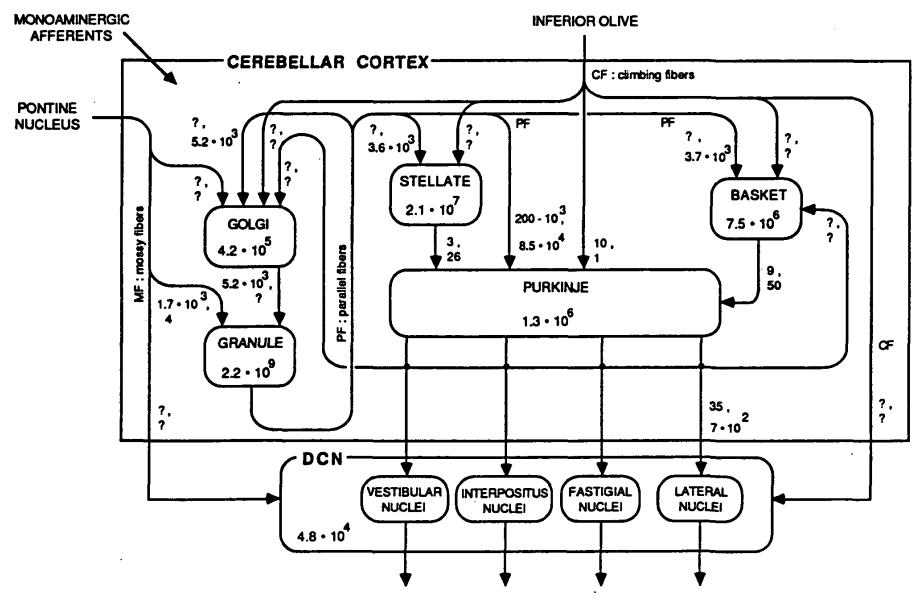


FIGURE 13. Cerebellar interconnect diagram.

Is this Neuroscience?

Are differential equations physics?

- . No, but they are
- . Mathematics to help us understand forces of nature, i.e., *physics*

... and so, ... Is this neuroscience?

- . No, but it is
- . Computer Science to help us understand human and animal behavior and traits, i.e., *brains*

Concluding Remarks

The nervous system and the brain are too complex to be understood without an adequate theory that serves as a framework in which to interpret our observations

Neuroanatomy and physiology are too important to be ignored in our theorizing about the brain and the mind

Origins

- . Santiago Ramon y Cajal (ca. 1900): anatomy
- . David Marr (1969) and James Albus (1972): cerebellum as neural associative memory
- . PK (1984): Sparse Distributed Memory
- . Tony Plate (1994): computing in superposition
 (HRR = Holographic Reduced Representation)
- . Egon Loebner (1989): interconnect diagram
- . Ross Gayler (1998): significance of permutation
 (MAP = Multiply-Add-Permute)
- . Paxon Frady (2017): computing with timing of spikes (complex-vector HRR)

Grateful Acknowledgment of Support

- . Intel Strategic Research Alliance program on Neuromorphic Architectures for Mainstream Computing
- . NSF 16-526: Energy-Efficient Computing: from Devices to Architectures (E2CDA). A Joint Initiative between NSF and SRC
- . AFOSR FA9550-19-1-0241: Cognitive and Computational Neuroscience program, "Computing in Holographic Representation"

Simons Institute -- The Brain and Computation Reunion Workshop

https://simons.berkeley.edu/workshops/schedule/10785

2:00-3:00 PM on Wednesday June 17, 2019

The Cerebellum as Neural Associative Memory

Pentti Kanerva, UC Berkeley

Abstract

The cerebellum contains over half the neurons in the brain (the granule cells), as well as neurons with the largest number of modifiable synapses (the Purkinje cells). More than a century ago Santiago Ramon y Cajal mapped its circuits and left us with the puzzle of interpreting its function and operation. 70 years later David Marr (1969) and James Albus (1972) interpreted it as a neural associative memory. I will discuss this interpretation and its fit into a theory of computing with high-dimensional vectors. It turns out that computing with vectors resembles computing with numbers. Both need a large memory, to provide ready access to a lifetime's worth of information. I will also discuss the need to understand the cerebellum's connections to the rest of the nervous system in light of the theory of computing with vectors.