
 
 
 
 

The CEREBELLUM as 
NEURAL ASSOCIATIVE MEMORY 

 
 

Pentti Kanerva 
<pkanerva@berkeley.edu> 

Redwood Center for Theoretical Neuroscience 
 

 
 . Cerebellum figures and facts 
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Cerebellum Figures and Facts 
 

 
 

FIGURE 1. Cerebellum as part of vertebrate brains. 
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FIGURE 2. Cerebellum cell types in 3D. 
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FIGURE 3. 3D organization of the "main" circuit. 
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Cerebellum Facts and Figures 
 
 . 200 million Mossy Fibers: input from outside 
  
 . 40 billion Granule Cells, the most numerous 
 
 . 15 million Purkinje Cells (PC): sole output 
 
 . Climbing Fibers: input from within 
   -- 1/PC, shared by approx. 10 PCs 
 
100,000 synapses/PC 
 . 1.5 trillion synapses overall 
 
How big is 1.5 trillion? 
 
  1.5 trillion synapses @ 1 bit/synapse 
    = 360,000 books, 400 pages each 
    = 4 miles of shelf space 
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The Cerebellum Challenge 
 
Traditional theories--logic, rule-based AI, 
artificial neural nets, connectionism, parallel 
distributed processing, deep learning—-leave 
too much unexplained and unexplored. 
 
  For example, why the cerebellum? 
 
   . It has 40 billion neurons 
     vs. 16 billion in the rest of the brain 
 
   . Its organization is simple and regular 
 
 
The cerebellum must fulfill some essential function 
that computational theories and models of the brain 
cannot afford to ignore 
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What Is the Cerebellum for? 
 
 . Coordination of movement, fine motor control 
 
   -- learn, generate, and monitor sequences 
 
   -- predict 
 
 . Growing evidence for higher cognitive functions 
   such as language 
 
   -- this agrees with the theme of this talk: 
 
 
Theory of computing with high-dimensional vectors 
assumes a high-capacity associative memory 
  



                                                    7 
 

Development of Theory from Top Down 
 
Top-down development prepares the mind to 
recognize an answer when it presents itself 
 
 1. Philosophy and Psychology 
     . The character of concepts 
 
 2. Mathematics 
     . Develop a mathematical model of the 
       world of concepts 
 
 3. Engineering 
     . "Build" a physical structure implied 
       by the model 
 
 4. Biology 
     . Is there anything like it in the brain? 
     . Is anything of essence missing?
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Representing Concepts with High-D Vectors 
 
Brains consist of neurons but minds work with 
concepts 
 
The world of concepts is 
 . huge and 
 . ever-expanding 
 
Representation of concepts must allow for that 
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Concepts can be compared for similarity of meaning 
 
    man ≈ woman 
    man ≉ lake 
 
Distant concepts have similar neighbors 
 
    man ≉ lake 
    man ≈ fisherman ≈ fish ≈ lake 
    man ≈ plumber ≈ water ≈ lake 
    plumber ≉ fish 
 



                                                   10 
 
Robustness of Concepts (and of percepts) 
 
 . Sensory input never repeats exactly 
   -- yet we recognize people and things 
 . Recognition is fast and extremely tolerant of 
   variation and "noise" 
 . Learning can be very fast 
   -- from a single exposer 
   -- a handful of examples 
   -- explicit instruction 
 . Memories can last a lifetime 
 
 
How to model the world of concepts? 
 
What mathematical objects would have the above 
properties? 
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Properties of High-Dimensional Vectors 

 
e.g. 10,000-dimensional binary vectors 
 
 . 10K-bit vectors/"words"/points of a 10K-dim. 
   space 
  

 . Total number of 10K-bit vectors: 2
10,000

 
 
 . Hamming distance H between 10K-bit vectors 
   follows the binomial distribution: 
   -- mean = 5,000, STD = 50 
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FIGURE 4. Binomial distribution 
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 . Most vectors are dissimilar (H ~ 5,000, h ~ 0.5) 
 
 . A tiny fraction is closer than, say, 4,500 bits 
   -- h = 0.45 is 10 STDs from the mean 
   -- hence "very similar" 
 
 . Between pairs of dissimilar vectors (h ~ 0.5) 
   there are many that are very similar to both: 
 
     man ≈ fisherman ≈ fish ≈ lake 
 
 . These are properties of high-D vectors at large 
   -- binary, integer, real, complex vectors 
 
 . Called Concentration of Measure 
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              Hamming Distance/10,000 
    0.5     0.4     0.3     0,2     0,1      0 
     |.......|.......|.......|.......|.......| 
     |                             identical = 
     |       |==== essentially the same =====| 
     |   |===| very similar                  | 
     | |=| correlated                        | 
     |=| dissimilar                          | 
     = orthogonal                            | 
     |...|...|...|...|...|...|...|...|...|...| 
     0  .1  .2  .3  .4  .5  .6  .7  .8  .9   1 
                Pearson Correlation 
 
 
FIGURE 5. "Similarity" of 10K-bit vectors based on 
random chance. 
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Concepts as High-D Vectors 
 
Old school: 
 
 . Concepts are represented by disjoint features 
 
 . Each feature is its own dimension of a high-D 
   vector  
   -- e.g., age, sex, state, zip code, can swim, 
      eligible to vote, speaks Chinese, married,  
      number of children, ... 
   -- Grandmother cells 
 
 . The features constitute an ontology 
   -- i.e., concepts and categories of a subject 
      area and relations among them 
   -- the list can grow indefinitely (>> 10K) 
 
 . There is no universal ontology 
   -- any ontology will eventually box us in 
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Quasi-Orthogonality of High-D Vectors 
 
In 10,000 dimensions there are 10,000 mutually 
orthogonal vectors but billions of nearly 
orthogonal vectors, i.e., dissimilar 
 
 . A randomly chosen vector is nearly orthogonal 
   to any of a billion chosen so far 
 
   -- the number grows exponentially with 
      dimensionality 
 
 . Each can represent an independent feature or 
   concept 
 
 
Randomness is a major asset 
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Holographic Representation (Superposition) 
 
Overcomes the 10K limit on the number of features 
representable in 10K Bits 
 
 
A single vector can represent 
 
 . a feature 
 
 . set of features 
 
 . structured composition of features 
 
 . concept  
 
 . . . . 
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Computing in Superposition, an example 
  
 . Encode {x = a, y = b, z = c} into a single 
   superposition vector, super-vector S 
 
 . Retrieve the vector for x from S 
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 X  = 10010...01    X and A are bound with XOR 
 A  = 00111...11 
---------------- 
X*A = 10101...10 -> 1 0 1 0 1 ... 1 0   (x = a) 
 
 Y  = 10001...10 
 B  = 11111...00 
---------------- 
Y*B = 01110...10 -> 0 1 1 1 0 ... 1 0   (y = b) 
 
 Z  = 01101...01 
 C  = 10001...01 
---------------- 
Z*C = 11100...00 -> 1 1 1 0 0 ... 0 0   (z = c) 
                   ---------------------------- 
             Sum =  2 2 3 1 1 ... 2 0 
        Majority =  1 1 1 0 0 ... 1 0  = S 
 
 
FIGURE 6a, Encoding  S = {x = a, y = b, z = c} 
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 "Un"bind S   S  =  1 1 1 0 0 ... 1 0 
  with the    X  =  1 0 0 1 0 ... 0 1 
  inverse    ------------------------ 
   of X      X*S =  0 1 1 1 0 ... 1 1  = A' ≈ A 
                           | 
                           v 
                .----------------------. 
                |                      | 
                |  ASSOCIATIVE MEMORY  | 
                |        finds         | 
                |   nearest neighbor   | 
                | among stored vectors | 
                |                      | 
                '----------------------' 
                           | 
                           v 
                    0 0 1 1 1 ... 1 1  = A 
 
 
FIGURE 6b. Decoding:  What's the value of x in S? 
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Summary of the Algorithm 
 
1. The variables and the values are represented by 
   random 10K-bit seed vectors X, Y, Z, A, B, C 
 
2. Variables are bound to their vales with XOR and 
   the bound pairs are combined with "addition"  
   (i.e., thresholded sum, majority)  
 
3. The vector for x is retrieved with XOR and 
   "clean-up" 
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System of Computing with Super-Vectors 
 
Ingredients 
 
1. Random-vector generator: 
   -- seed vectors 
 
2. Three operations on vectors: 
   -- Multiply, Add, Permute (MAP) 
 
3. Measure of similarity: 
   -- distance, cosine, Pearson correlation 
 
 
These operations make it possible to do both 
 . rule-based symbolic processing (GOFAI) and 
 . statistical learning from data  
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  HOWEVER ... 
 
  there is a limit to the amount of information 
  that can be stored in a single super-vector. 
  The limit is overcome by  
 
4. High-capacity memory for super-vectors 
 
   -- akin to memory for numbers and pointers 
      in today's computers 
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Functions of the Memory 
 
 . Store and generate sequences: predict 
   -- hetero-associative 
 
 . Identify "noisy" vectors: clean-up 
   -- auto-associative 
 
 
Modeled by neural-net associative memories 
 
 . Hopfield net 
   -- limited capacity 
 
 . Sparse Distributed Memory (SDM) 
   -- "unlimited" but inefficient 
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FIGURE 7. Spare Distributed Memory (SDM). 
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Figure 3.4. Organization of a sparse distributed memory. The first selected memory location is 
shown by shading.
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FIGURE 8. SDM morphs into cerebellum.

KANERVA / SDM AND RELATED MODEL S /02/02/0 2 /Fig. 3.12
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Figure 3.12. Sparse distributed memory’s resemblance to the cerebellum (Fig. 3.9 redrawn in the 
style of Fig. 3.11; see also Fig. 3.10).
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FIGURE 9. Weights, counters, synapses.   

KANERVA / SDM AND RELATED MODEL S /02/02/0 2 /Fig. 3.10
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Figure 3.10. Connections to an output neuron. Three output units are shown. The first unit is 
drawn as a column through the contents matrix C, the middle unit shows the connections 
explicitly, and the last unit corresponds to Figure 3.11.
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FIGURE 10. The cerebellum is more efficient than SDM. 
 

KANERVA / SDM AND RELATED MODEL S /02/02/0 2 /Fig. 3.11
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Figure 3.11. Sketch of the cortex of the cerebellum. Ba = basket cell, Cl = climbing fiber (black), Go = 
Golgi cell, Gr = granule cell, Mo = mossy fiber (black), Pa = Parallel fiber, Pu = Purkinje cell (cross-
hatched), St = stellate cell. Synapses are shown with small circles and squares of the axon’s “color.” 
Excitatory synapses are black or white, inhibitory synapses are cross-hatched or gray.
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FIGURE 3/11. 3D organization of the "main" circuit. 
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FIGURE 12. Side view: "Select lines" and "bit planes." 
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Pseudo-Cerebellum 
 
 . Building an associative memory for super- 
   vectors is a major engineering challenge 
 
 . Nature appears to have solved it 
 
 . We can use the cerebellum as a source of ideas 
   and guidance 
 
  
Calls for in-depth study of cerebellar circuits 
from engineering point of view (Loebner, 1989) 
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FIGURE 13. Cerebellar interconnect diagram. 

- 17 -

in DCNs. In rhesus monkey and cat, the
ratio of input GL neurons to output DCN
neurons is about a hundred thousand. If
we allow for a twenty-five-fold increase
in pulse rate from Purkinje to DCN cells,
we estimate 4,000 input pulses per cere-
bellar output pulse. This ratio provides
a measure of cerebellar processing power,
i.e., its data rate reduction capability.

It should be noted that Figure 1 shows a
direct connection of MFs and CFs to the
DCNs, bypassing the cerebellar cortex.
This supports the fact that absence of
the cerebellar cortex does not result in
loss of sensation or intelligence. It
does result in ataxia, proprioceptive
misperception, poor muscular coordination
and inability to adapt to changing envir-
onmental conditions. Such behavior can be
compared to an orchestra that lacks a
conductor. The music score is followed
but there are difficulties with coordina-
tion and synchronization of the players
and any to-be-remembered changes in their
performance.

CEREBELLUM AS A PROCESSOR OF INFORMATION

In synthesizing a functional model of the
cerebellar processing architecture we try
to adhere to the principle that reliable
and up-to-date experimental biological
knowledge should constrain inventive
modelling. We desire to preserve relative
numbers of various classes of neurons
that form the "circuitry" and logic of
the processor network. Their connectiv-
ities, as represented by their respective
fan-outs and fan-ins should also be
approximated. This can best be visualized
with the aid of Figure 2 which has been
constructed using our best estimates of
numbers and topologies found in the
massive but incomplete literature on the
subject. It seems appropriate to remark
at this point that this state of affairs
has hardly changed since the days when
Sherrington observed that exact knowledge
regarding CNS anatomy and physiology is
extremely inadequate although there
exists a vast body of detailed fact.
Since the numbers of the various kinds of
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Figure 2. Cerebellar Interconnect Diagram
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Is this Neuroscience? 
 
Are differential equations physics? 
 
 . No, but they are 
 . Mathematics to help us understand forces 
   of nature, i.e., physics  
 
... and so, ... Is this neuroscience? 
 
 . No, but it is 
 . Computer Science to help us understand human 
   and animal behavior and traits, i.e., brains 
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Concluding Remarks 
 
 
The nervous system and the brain are too complex 
to be understood without an adequate theory that 
serves as a framework in which to interpret our 
observations 
 
 
Neuroanatomy and physiology are too important 
to be ignored in our theorizing about the brain 
and the mind 
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Origins 
 
 . Santiago Ramon y Cajal (ca. 1900): anatomy 
 
 . David Marr (1969) and James Albus (1972): 
   cerebellum as neural associative memory 
 
 . PK (1984): Sparse Distributed Memory 
 
 . Tony Plate (1994): computing in superposition 
   (HRR = Holographic Reduced Representation)  
 
 . Egon Loebner (1989): interconnect diagram 
 
 . Ross Gayler (1998): significance of permutation 
   (MAP = Multiply-Add-Permute) 
 
 . Paxon Frady (2017): computing with timing of 
   spikes (complex-vector HRR) 
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The Cerebellum as Neural Associative Memory 
Pentti Kanerva, UC Berkeley 
 
Abstract 
 
The cerebellum contains over half the neurons in the brain (the granule cells), 
as well as neurons with the largest number of modifiable synapses (the 
Purkinje cells).  More than a century ago Santiago Ramon y Cajal mapped its 
circuits and left us with the puzzle of interpreting its function and operation.  
70 years later David Marr (1969) and James Albus (1972) interpreted it as a 
neural associative memory.  I will discuss this interpretation and its fit into a 
theory of computing with high-dimensional vectors.  It turns out that 
computing with vectors resembles computing with numbers.  Both need a 
large memory, to provide ready access to a lifetime's worth of information.  I 
will also discuss the need to understand the cerebellum's connections to the 
rest of the nervous system in light of the theory of computing with vectors. 
 


