Simple Reinforcement Learning Algorithms for Continuous State and Action Space Systems

Rahuljain

Stochastic Systems & Learning Laboratory
Electrical Engineering and Computer Science* Departments
University of Southern California

Simons Institute Berkeley ~ June 2019

Acknowledgements

Current & Former Students

Hiteshi Sharma (USC)

Dileep Kalathil (Texas A&M)

Abhishek Gupta (Ohio State)

William Haskell (Purdue)

Vivek Borkar (IITB)

Peter Glynn (Stanford)

The successes of Deep RL

A simple mobile robotics problem

* Robotic applications: Continuous state and action spaces

Model-free approaches near impossible?

PPO, DDPG

Courtesy: Bosch Center for CPS @ IISc, Bangalore

- Deep RL: long training times, tuning hyper-parameters, no guarantees, random search...?
- ★ Train algorithms in simulation using a *generative model*

The problem of Reinforcement Learning

MDP *Continuous* State space **X** *Continuous* Action space **U***Samples from a generative model available

- * Value of policy, $V_{\pi}(x) = \mathbb{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} r(x_{t}, u_{t})\right]$ 0< γ <
- ★ Objective: $V^*(x) = \sup_{\pi} V_{\pi}(x)$

Bellman's Principle of Optimality

★ The dynamic programming equation

$$V^*(x) = [TV^*](x) = \sup_{u} \{r(x, u) + \gamma \sum_{y} V^*(y)\theta(y|x, u)\}$$

 $E[V^*(y) | x,u]$

 \star Bellman operator T is a contraction operator

$$||TV_1 - TV_2|| < ||V_1 - V_2||$$

* Value Iteration: $V_{k+1} = TV_k = T^{k+1}V_0$ $V_{k+1}(x) = [TV_k](x) = \sup_u \{r(x,u) + \gamma \mathbb{E}_{\omega}[V_k(\psi(x,u,\omega))\}$

• $V_k \rightarrow V^* a.s.$

next state from a generative model

Outline

- 1. A 'Quasi-Model-free' RL Algorithm for finite MDPs
- 2. Continuous state MDPs
- 3. Continuous state-action MDPs
- 4. 'Online' RL for Continuous state MDPs

The Probabilistic Contraction Analysis Framework

Finite MDPs

MDP

Finite State space X Finite Action space U

*Samples from a generative model available

- * Value of policy, $V_{\pi}(x) = \mathbb{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^{t} r(x_{t}, u_{t})\right]$ 0< γ <
- ★ Objective: $V^*(x) = \sup_{\pi} V_{\pi}(x)$
- ★ $V_{k+1}(x) = [TV_k](x) = \sup_u \{r(x, u) + \gamma \mathbb{E}[V_k(y)|x, u]\}$

Empirical Value Learning

Value Iteration by simulation

★ EVL:

$$\hat{V}_{k+1}(x) = [\hat{T}\hat{V}_k](x)
:= \sup_{u} \{r(x,u) + \gamma \hat{\mathbb{E}}^n [\hat{V}_k(\psi(x,u,\omega))] \}
:= \sup_{u} \{r(x,u) + \frac{\gamma}{n} \sum_{i=1}^{n} \hat{V}_k(\psi(x,u,\omega_{k+1,i})) \}$$

where ω 's are i.i.d. noise RVs

- $\star V_0, \hat{V}_1, \hat{V}_2, \cdots$ is a random sequence
- \star \hat{T} is a random operator, $\mathbb{E}[\hat{T}(V)] \neq T(V)$
- **★** Non-incremental updates

Does EVL Converge?

Numerical Evidence

100 States, 5 actions, Random MDP

Approx. Opt. in finite-time (w.h.p.)

How do they compare?

- ★ States=100, Actions=5, random MDP
- **★** Offline QL with n=5 samples/iteration:

$$Q_{k+1} = (1 - \alpha_k)Q_k + \alpha_k GQ_k,$$

$$\sum_k \alpha_k = \infty, \sum_k \alpha_k^2 < \infty$$

Actual Runtime

- ★ States=5000, Actions=10, random MDP.
 - All simulations run on a *Macbook Pro* under near-identical conditions

The Empirical Bellman Operator and its Iterations

Q. Can we prove convergence?

$$\hat{V}_k = \hat{T}(\omega_k)\hat{V}_{k-1} = \hat{T}(\omega_k)\cdots\hat{T}(\omega_1)V_0$$

- ★ This is like product of random matrices
- ★ (V_k) is a Markov chain. [Diaconis & Freedman'99]
 - Converges weakly
- * Another way to look at it... whether \hat{T} is probabilistically contracting, and has a (probabilistic) fixed point?

$$\hat{V} = \hat{T}\hat{V}$$

Sample Complexity of EVL

n samples, *k* iterations

Theorem [1]:

Given $\epsilon \in (0, 1)$, $\delta \in (0, 1)$, select

$$n \ge \frac{C_1}{\epsilon^2} \log \frac{2|\mathbb{X}||\mathbb{A}|}{\delta}, \quad k \ge \log \frac{1}{\delta \mu_{n,min}}$$

Then,

$$\mathbb{P}(||\hat{V}_k - V^*|| \le \epsilon) \ge 1 - \delta.$$

- * `Sample Complexity' of EVL: $O(\frac{1}{\epsilon^2}, \log \frac{1}{\delta}, \log |\mathbb{X}||\mathbb{A}|)$
- ★ No assumptions on MDPs needed!
- ★ 'Online' EVL converges under suitable recurrence conditions

Outline

- 1. A 'Quasi-Model-free' RL Algorithm for finite MDPs
- 2. Continuous state MDPs
- 3. Continuous state-action MDPs
- Online' RL for Continuous state MDPs
 The Probabilistic Contraction Analysis Framework

MDPs with Continuous States

$$x_{k+1}=f(x_k,u_k,w_k)$$

`Universal'
Computationally *simple*Arbitrarily good approximation
Non-asymptotic (*Probabilistic*) Guarantees

Continuous State Space MDPs

- ★ State space Aggregation methods often don't work
- ★ Function approximation $via \phi: X \times \Theta \rightarrow \mathbb{R}$

$$V^*(x) \approx \sum_{j=1}^{J} \alpha_j \phi(x, \vartheta_j)$$

Approximation error depends on $d(\Phi(\Theta), V^*)$, J, basis functions picked

$$\inf_{\alpha,\vartheta} \frac{1}{N} \sum_{n=1}^{N} |\tilde{V}(x_n) - \sum_{j=1}^{J} \alpha_j \phi(x_n, \vartheta_j)|^2$$

- ⋆ (Deep) Neural Nets
 - Universal function approximators [Cybenko'89, Hornik, et al'89, Barron'93]
 - No guarantees: *How much data? How many layers/arch.? When to stop?* Lot of Computation.

Use 'Universal' Function Approx. Spaces

Randomized Function Approximation in a Universal Function Approximation Space

$$V_{k+1}(x) = \widehat{\Pi}_{\mathcal{H}_K}[\widetilde{V}_k(x_1), \cdots, \widetilde{V}_k(x_n)]$$

A 'universal' algorithm for Cont. state MDPs

EVL+RKHS: A simple random basis function fitting algorithm

2. EVL update:

$$\tilde{V}_{k+1}(x_n) = [\hat{T}_M V_k](x_n) = \max_u \{r(x_n, u) + \frac{\gamma}{M} \sum_{m=1}^M V_k(X_m')\}$$

Next state from x_n

3. Randomized Function Approximation

$$V_{k+1}(x) = \sum_{n=1}^{N} \alpha_n K(x_n, x) = \widehat{\Pi}_{\mathcal{H}_K}[\widetilde{V}_k(x_1), \cdots, \widetilde{V}_k(x_n)]$$

Numerical Evidence

Optimal replacement problem

Sample Complexity of EVL+RPBF

N sampled points, J(=N) basis functions, M next states, K iterations

Theorem [2]:

Given $\epsilon \in (0, 1)$, $\delta \in (0, 1)$, select

$$N \ge N_{\infty}(\frac{1}{\epsilon^2}, \log \frac{1}{\delta}), \quad M \ge M_{\infty}(\frac{1}{\epsilon^2}), \quad K \ge K_{\infty}(\log \frac{1}{\delta})$$

Then,

$$\|\hat{V}_k - V^*\|_1 \le \epsilon$$

with probability > 1- δ .

- ▶ Dependence of N on ϵ is bad! but we get sup-error
- *Assumptions:* Absolute continuity of θ wrt μ and boundedness of Radon-Nikodym derivative $d\theta/d\mu$ needed!
- Proof: Randomized function fitting error concentration + Probabilistic
 Contraction Analysis of Iterated Random Operators

Outline

- 1. A 'Quasi-Model-free' RL Algorithm for finite MDPs
- 2. Continuous state MDPs
- 3. Continuous state-action MDPs
- 4. 'Online' RL for Continuous state MDPs
 The Probabilistic Contraction Analysis Framework

Continuous MDPs

MDP

Continuous State space **X Continuous** Action space e.g., **U=[-1,1]** *Samples from a generative model available

$$\tilde{V}_{k+1}(x_n) = [\hat{T}_M V_k](x_n) = \max_u \{r(x_n, u) + \frac{\gamma}{M} \sum_{m=1}^M V_k(X_m')\}$$

A simple RL Algorithm for Cont. state-action MDPs

RAEVL: Random Actions for Empirical Value Learning

- 1. Sample $x_n \sim \mu$, basis functions $\phi_n(x) = K(x_n, x)$
- 2. Sample $u_1,...,u_n \sim \text{Unif}[U]$ (Can also do Adaptive Sampling, e.g., MCTS)
- 3. EVL update:

$$\tilde{V}_{k+1}(x_n) = [\hat{T}_M V_k](x_n) = \max_{\mathbf{u_1^n}} \{r(x_n, u_i) + \frac{\gamma}{M} \sum_{m=1}^M V_k(X_m')\}$$

4. Randomized Function Approximation

$$V_{k+1}(x) = \sum_{n=1}^{N} \alpha_n K(x_n, x) = \widehat{\Pi}_{\mathcal{H}_K}[\widetilde{V}_k(x_1), \cdots, \widetilde{V}_k(x_n)]$$

Numerical Evidence

An MDP with X=[0,1], U=[0,1], $r(x,u) = -(x-u)^2$

N sampled points, M next states, L actions

Sample Complexity of RAEVL

N sampled points, J basis functions, M next states, L actions, K iterations

Theorem [3]:

Given
$$\epsilon \in (0, 1)$$
, $\delta \in (0, 1)$, select $J \ge J_2(\frac{1}{\epsilon^2}, \log \frac{1}{\delta})$

$$N \ge N_2(\frac{1}{\epsilon^4}, \log \frac{1}{\delta}), \quad M \ge M_2(\frac{1}{\epsilon^2}), L \ge L_2(\frac{1}{\epsilon}, \log \frac{1}{\delta}) \quad K \ge K_2(\log \frac{1}{\delta})$$

Then,

$$||\hat{V}_k - V^*||_2 \le C_1 \epsilon + C_2 \gamma^K$$

with probability > 1- δ .

- Assumptions: Lipschitz continuity of r(x,.) and $\theta(B \mid x,.)$
- Assumptions: Absolute continuity of θ wrt μ and boundedness of Radon-Nikodym derivative $d\theta/d\mu$ needed!
- ▶ Proof: V* is Lipschitz-cont., and bound sample complexity for approx optimal of a Lipschitz continuous function maximization by sampling

Outline

- 1. A 'Quasi-Model-free' RL Algorithm for finite MDPs
- 2. Continuous state MDPs
- 3. Continuous state-action MDPs
- 4. 'Online' RL for Continuous state MDPs

The Probabilistic Contraction Analysis Framework

An 'Online' RL Algorithm

- * *Fully randomized* policy, π_g : β-mixing with geometric rate [Nummelin-Tuominen'82]
- ★ Use *N* previous states, or from those visited so far

A 'Online' RL Algorithm for Cont. state MDPs

The Online-EVL algorithm

- Pick basis functions randomly, optimize over weights
 - 1. $x_n \sim [\widetilde{x}_{k-N+1}, ..., \widetilde{x}_k]$, basis functions $\phi_n(x) = K(x_n, x)$
 - 2. EVL update:

$$\tilde{V}_{k+1}(x_n) = [\hat{T}_M V_k](x_n) = \max_u \{r(x_n, u) + \frac{\gamma}{M} \sum_{m=1}^M V_k(X_m')\}$$

3. Randomized Function Approximation

$$V_{k+1}(x) = \sum_{n=1}^{N} \alpha_n K(x_n, x) = \widehat{\Pi}_{\mathcal{H}_K}[\tilde{V}_k(x_1), \cdots, \tilde{V}_k(x_n)]$$

Does Online EVL work?

The Cartpole problem

Numerical Evidence

The Cartpole problem

Of various other algorithms (ridge regression, Nystrom, Nearestneighbor), DQN performs best. Runtime better than all except ridge regression which has poor performance

Sample Complexity of Online EVL

N sampled points, J basis functions, M next states, K iterations

Theorem [4]:

Given
$$\epsilon \in (0, 1)$$
, $\delta \in (0, 1)$, select $J \ge J_2(\frac{1}{\epsilon^2}, \log \frac{1}{\delta})$

$$N \ge N_2(\frac{1}{\epsilon^4}, \log \frac{1}{\delta}), \quad M \ge M_2(\frac{1}{\epsilon^4}), L \ge L_2(\frac{1}{\epsilon}, \log \frac{1}{\delta}) \quad K \ge K_2(\log \frac{1}{\delta})$$

Then,

$$||\hat{V}_k - V^*||_2 \le C_1 \epsilon$$

with probability > 1- δ .

- *Assumptions:* Lipschitz continuity of r(.,u) and $\theta(B | .,u)$
- *Assumptions:* Absolute continuity of θ wrt μ and boundedness of Radon-Nikodym derivative $d\theta/d\mu$ needed!
- ▶ Proof: Use beta-mixing to treat Markov chain samples as independent

Outline

- 1. A 'Quasi-Model-free' RL Algorithm for finite MDPs
- 2. Continuous state MDPs
- 3. Continuous state-action MDPs
- 4. 'Online' RL for Continuous state MDPs

The Probabilistic Contraction Analysis Framework

Key Analysis Idea:

View Stochastic Recursive Algorithms as Iteration of a Random Operator

Contraction Operator:

$$V^* = TV^*$$
, where $[TV](x) = \sup_{a} \{r(x, a) + \gamma \mathbb{E}_{\omega}[V(\psi(x, a, \omega))]\}$
 $||TV_1 - TV_2|| < \beta ||V_1 - V_2||$, with $\beta < 1$

Random Operators:

Operators:
$$\hat{V}_{k+1} = \hat{T}_n \hat{V}_k, \text{ where } [\hat{T}_n V](x) = \sup_a \{ r(x,a) + \gamma \frac{1}{n} \sum_{i=1}^n V(\psi(x,a,\omega_i)) \}$$
$$||\hat{T}_n V_1 - \hat{T}_n V_2|| < \beta ||V_1 - V_2|| \text{ w.h.p.}$$

Probabilistic Contraction Property:

PCP₁:
$$\mathbb{P}\left(||TV - \hat{T}_nV|| < \epsilon\right) > p_n(\epsilon),$$

where $p_n(\epsilon) \uparrow 1$ as $n \to \infty$ for all $\epsilon > 0$.

Convergence to Probabilistic Fixed Points

* \hat{V} is a Strong Probabilistic Fixed Point (SPFP) of $\{\hat{T}_n\}$ if

$$\lim_{n \to \infty} \mathbb{P}\left(||\hat{T}_n \hat{V} - \hat{V}|| > \epsilon\right) = 0, \quad \forall \epsilon > 0.$$

Theorem. [4] We can obtain sample complexity bounds such that if $n \ge n_0(\epsilon, \delta)$ and $k > k_0(\epsilon, \delta)$, then

$$\mathbb{P}(||\hat{V}_k^n - V^*|| > \epsilon) < \delta.$$

(where $n_0 = O(\frac{1}{\epsilon^2}, \log \frac{1}{\delta})$ and $k_0 = O(\log \frac{1}{\delta})$ can be given explicitly).

PCP₂:
$$||\hat{S}_n(\omega)V_1 - \hat{S}_n(\omega)V_2|| < \beta_n(\omega)||V_1 - V_2||$$
,
and $\mathbb{P}(\beta_n(\omega) \in (1 - \epsilon, 1)) < \delta_n(\epsilon)$,

where $\epsilon < \epsilon_0$ for some ϵ_0 , $\delta_n(\epsilon) \downarrow 0$ as $n \to \infty$ and $\beta_n(\omega) < 1$ a.s.

Probabilistic Contraction Analysis of Iterated Random Operators

- Algorithm converges to 'Weak probabilistic fixed points' of random operators [1,5]
 - Stochastic dominance via a Markov chain
 - Stochastic optimization algorithms such as mini-batch versions of SGD, and SVRG can be shown to satisfy PCP₁ and PCP₂, and converge to WPFPs [5]

Problem↓/Methods→	Direct/Alt	Lyapunov	Contraction
Deterministic	Many	Well-established	Well-established
Stochastic	Martingale/Markov	Difficult	None!

Conclusions

- * `Empirical' (RL) Algorithms are simple, `universal', have good numerical performance, average-case also [6]
 - `Quasi-model free': Need a generative model
 - Weaker performance guarantees, but good numerical performance
- ★ A new analytical tool for Stochastic Iterative Algorithms:
 - "Probabilistic Contraction analysis" v. Stochastic Lyapunov techniques v. Direct methods
 - Also useful for stochastic optimization algorithms: minibatch-SGD, SVRG, streaming variants
- ★ Future:
 - Solving the robotic problem
 - Incorporating (safety) constraints

RL: Challenges

- ★ RL Literature has focused on discrete (finite) state and action spaces
 - Continuous state and action space problems are way harder
- Online R. Learning for continuous state (and action) spaces needs ideas beyond Posterior Sampling
 - Search over Value function space
- **★** RL with constraints?
- ★ Formal RL for safety-critical applications
- ★ Multi-Agent RL