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The successes of Deep RL
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A simple mobile robotics problem
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*  Robotic applications: Continuous state and action spaces

4 /39



Model-free approaches near 1mpossible?

PPO, DDPG

Courtesy: Bosch Center for CPS @ 1ISc, Bangalore

*  Deep RL: long training times, tuning hyper-parameters, no
guarantees, random search...?

* Train algorithms in simulation using a generative model

H. Mania, A. Guy, and B. Recht. Simple random search provides a competitive approach to reinforcement learning. arXiv preprint arXiv:

1803.07055,2018.
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The problem of Reinforcement Learning

X+ 1=f( X, Uk, W)

Envi ( f Known” \
nvironment -
r(x,u)
u = > (1)
Control
wt(ulx) [
Agent

MDP  Continuous State space X Continuous Action space U

*Samples from a generative model available

* Value of policy, Vi(z) =E[> oo r(xe, ut)] O<y<1

*  Objective: V*(x) = supr Vr(x)

6 /39



Bellman’s Principle of Optimality

* The dynamic programming equation

Vix) = [TV*|(x) = sup,{r(z,u) + 72, V*()0(ylr,u);

E[V*(y) | x,u]

*  Bellman operator T is a contraction operator

|TVL = TVa|| < ||Vi — V3

*x  Value Iteration: Vi1 =1V, = TkHVo
Vipr () = [TVi](2) = sup, {r(z, u) + 1B, [Vi @(z, u

» V-V as. from a

generative model

7 /39



A "Quasi-Model-free’ RL Algorithm for finite MDPs
Continuous state MDPs

Continuous state-action MDPs

=~ » o=

"Online’ RL for Continuous state MDDPs

The Probabilistic Contraction Analysis Framework
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Finite MDPs

X+ 1=f( X, Uk, W)

( f Known” \
A
. & r(x,u)J o)
Control
wt(ulx) [

MDP Finite State space X Finite Action space U

*Samples from a generative model available

* Value of policy, Vi (z) =E > o7 r(xe, ut)] O<y<1

*  Objective: V*(x) = supr Vn(x)
* Vi (z) = [TVi](2) = sup, {r(z,u) + vE[Vi(y)|z, ul}
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Empirical Value Learning

Value Iteration by simulation

« EVL: B
Viyi(z) = [TVi](z)

— Slt];p{’l“(f, U) ”YEn [Vk (¢(fl7» u, w)]}

— sup{r(a,u) nzmm,@]}

where w’s are i.i.d. noise RVs

* Vo, Vi, Va,--- is a random sequence
* T is a random operator, E[T (V)] # T(V)

*  Non-incremental updates
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Does EVL Converge?

Numerical Evidence

100 States, 5 actions, Random MD?P
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How do they compare?
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*  States=100, Actions=5, random MDP

*  Offline QL with n=5 samples/iteration:
Qi+1 = (1 — ap)Qr + 0. GQy, 2: Qp, — OC, Z: Of <0

e
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Actual Runtime

Runtime Comparison
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*  States=5000, Actions=10, random MD?Z.

»  All simulations run on a Macbook Pro under near-identical conditions
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The Empirical Bellman Operator and its Iterations

Q. Can we prove convergence?

* This is like product of random matrices
* (Vi) is a Markov chain. [Diaconis & Freedman’99]
» Converges weakly

* Another way to look at it... whether T is
probabilistically contracting, and has a (probabilistic) fixed
point?

[5] A. Gupta, R. Jain and P. Glynn, “Probabilistic contraction analysis for iterated random operators”, submitted: Ann. Appl. Prob., Feb 2019.
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Sample Complexity of EVL

n samples, k iterations

Theorem [1]:

Givene & (0,1), 0 (0, 1), select

Ch 2|1X|A]
n > = log 5 k > log S
Then,
P(||[Vi, — V*|| <€) >1—06.
G T T J
* “Sample Complexity” of EVL: 0(6—2, log 5 log |X||A])

) o

No assumptions on MDPs needed!
"‘Online” EVL converges under suitable recurrence
conditions

) o

[1] W. Haskell, R. Jain and D. Kalathil, “Empirical Dynamic Programming”, Mathematics of Operations Research, 2016.
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http://www-bcf.usc.edu/~rahuljai/Downloads/

1. A Quasi-Model-free’” RL Algorithm for finite MDPs
Continuous state MDPs

Continuous state-action MDPs

= LN

"Online’ RL for Continuous state MDDPs

The Probabilistic Contraction Analysis Framework
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MDPs with Continuous States

X+ 1=f(Xr, Uk, W)

“Universal’
Computationally simple
Arbitrarily good approximation
Non-asymptotic (Probabilistic) Guarantees
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Continuous State Space MDPs

* State space Aggregation methods often don’t work

» Function approximation via ¢p: X x @ = R

~ Z Cngb(CE, 193)
1=1

» Approximation error depends on d(®(0),V*), ], basis functions

picked
1 N - J
RO MUCAED ST

* (Deep) Neural Nets

» Universal function approximators [Cybenko’89, Hornik, et al’89,
Barron’93]

» No guarantees: How much data? How many layers/arch.? When to stop?
Lot of Computation.
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Use ‘Universal’” Function Approx. Spaces

Randomized Function Approximation
in a Universal Function Approximation Space

Vi1 () = Ty [Vie(1), -, Vie()]

19/39



A ‘universal’ algorithm for Cont. state MDPs

EVL+RKHS: A simple random basis function fitting algorithm

X

Vir1(2n) = [Tar Vi) (2n) = max, {r(z,, u) + = SN Vk(Xv,;i)

Next state from x;,

1. Sample x,, ~ u, basis functions |

2. EVL update:

3. Randomized Function Approximation

~ ~

Vir1(z) = 302y anK (2, ) = Ty [Vi(@r), -, Vi)
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Numerical Evidence

Optimal replacement problem
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Sample Complexity of EVL+RPBF

N sampled points, J(=N) basis functions, M next states, K iterations

Theorem [2]:

Givene & (0,1),0€ (0, 1), select

1 1 1

Then, X
|Vie = VT[] <e

with probability > 1-9.

» Dependence of N on € is bad! but we get sup-error
» Assumptions: Absolute continuity of @ wrt y and boundedness of Radon-

Nikodym derivative d@/du needed!

» Proof: Randomized function fitting error concentration + Probabilistic
Contraction Analysis of Iterated Random Operators

PoeTy

[2] W. Haskell, R. Jain, H. Sharma and P. Yu,,””An empirical dynamic programming algorithm for continuous state space MDPs”, to appear, IEEE TAC
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1. A Quasi-Model-free’” RL Algorithm for finite MDPs
Continuous state MDPs

Continuous state-action MDPs

W N

"Online’ RL for Continuous state MDDPs

The Probabilistic Contraction Analysis Framework
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Continuous MDPs

X+ 1=f( X, Uk, W)

( f Known” \
=
. & r(x,u)J o)
Control
wt(ulx) [

MDP Continuous State space X Continuous Action space e.g., U=[-1,1]

*Samples from a generative model available

Vi1 (2n) = [T Vi) () = max, {r(2,, u) + 2 S Vi(X2,)

24/39



A simple RL Algorithm for Cont. state-action MDPs

RAEVL: Random Actions for Empirical Value Learning

1. Sample x;, ~ u, basis functions ¢, (x) = K(x,x)
2. Sample uy,...,u, ~ Unif[U] (Can also do Adaptive Sampling, e.g., MCTY)
3. EVL update:

Vir1(2n) = [Ta Vi) (#n) = max,n {r(zn, u;) + 2 Som_ Vi(X2))

4. Randomized Function Approximation

~ ~

Vi1 () = S0y anK (25, @) = g, [Vie(21), -, Vi(@)]
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Numerical Evidence

An MDP with X=[0,1], U=[0,1], r(x,u) = -(x-1u)?

V*(x)=0

W W W W —_—— - W W . W W ———— -

5 16 - 15 2 2% g 40
Iterations

N sampled points, M next states, L actions
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Sample Complexity of RAEVL

N sampled points, J basis functions, M next states, L actions, K iterations

r \

Theorem [3]:

Givene €(0,1), 0 (0, 1), select J > Jg(%, log %)

€
1 1 1 1 1 1
N 2 N2(€—4710g 5)7 M > M2(€_2)7L > LQ(E,IOg 5) K > K (log 5)
Then, . ) .
||Vk—V HQSClé—l—CQ”y

_ with probability > 1-. )

Assumptions: Lipschitz continuity of r(x,.) and 6(B | x,.)
Assumptions: Absolute continuity of @ wrt y and boundedness of Radon-
Nikodym derivative d@/du needed!

Proof: V*is Lipschitz-cont., and bound sample complexity for approx optimal of
a Lipschitz continuous function maximization by sampling

[3] H. Sharma and R. Jain, “Empirical algorithms for stochastic systems with continuous states and actions”, submitted, March 2019

PoeTy
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1. A Quasi-Model-free’” RL Algorithm for finite MDPs
Continuous state MDPs

Continuous state-action MDPs

= P DN

"Online’ RL for Continuous state MDPs

The Probabilistic Contraction Analysis Framework
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An ‘Online’ RL Algorithm

X+ 1=f( X, Uk, W)

( f Known* \

Environment u

>

. & r(x,u)J o)

Control

wt(ulx) [

Agent

MDP Continuous State space X Finite Action space U

*Samples from a generative model available

*  Fully randomized policy, zs: B-mixing with geometric rate [Nummelin-
Tuominen’82]

* Use N previous states, or from those visited so far
29/39



A ‘Online’ RL Algorithm for Cont. state MDPs

The Online-EVL algorithm

Xy

_*>;Xm,

*  Pick basis functions randomly, optimize over weights
1. x ~ [Xkne1,. .., Xx], basis functions ¢,(x) = K(xu,x)
2. EVL update:

Vir1(2n) = [Tar Vi) (2n) = max, {r(zn, u) + 2 SN V(X))

3. Randomized Function Approximation

~

Vi1 () = S0 anK (20, 2) = T [Vi(@1), -+, V()]
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Does Online EVL work?

The Cartpole problem

31/39



Numerical Evidence

The Cartpole problem

- DQN
Online-EVL
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high variance

w
o
1

N
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Episodes
Of various other algorithms (ridge regression, Nystrom, Nearest-
neighbor), DQN performs best. Runtime better than all except ridge

regression which has poor performance 32/39



Sample Complexity of Online EVL

N sampled points, J basis functions, M next states, K iterations

e \
Theorem [4]:
Givene €(0,1), 0 (0, 1), select J > Jg(%, log %)
€

1 1 1 1 1 1
N 2 Nao(—,log <), M = Ms(—), L > La(—,log =) K = Ks(log )

el ) el € ) )
Then,

Ve — VT|lo < Che

with probability > 1-9. )

» Assumptions: Lipschitz continuity of r(.,u) and (B |.,u)

» Assumptions: Absolute continuity of @ wrt y and boundedness of Radon-
Nikodym derivative d@/du needed!

»  Proof: Use beta-mixing to treat Markov chain samples as independent

PoeTy

[4] H. Sharma and R. Jain, A reinforcement learning algorithm for continuous state MDPs with finite time guarantees”, submitted, May 2019
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1. A Quasi-Model-free’” RL Algorithm for finite MDPs
Continuous state MDPs

Continuous state-action MDPs

N

"Online’ RL for Continuous state MDDPs

The Probabilistic Contraction Analysis Framework
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Key Analysis Idea:

View Stochastic Recursive Algorithms as Iteration of a Random Operator

Contraction Operator:

(for example)
V*=TV* where [TV|(z)=sup{r(z,a)+ YE,|V(¥(z,a,w))|}

a

|TVi = TV5|| < Bl[Vi = Val|, with 5 <1

Random Operators:

(for example)

Viyr = T, Vi, where [T,V](z) = Sup{r(r a) +7 ZV (Y(z,a,w;))}
1=1

Hﬂz"ﬁ — In :

w.h.p.

Probabilistic Contraction Property:
PCPy: P (HTV ~ T, V| < e) > pn(€),

where p,(€) T 1 asn — oo for all € > 0.

[4] W. Haskell, R. Jain and D. Kalathil, “Empirical Dynamic Programming”, Mathematics of Operations Research, 2016. 35/39



http://www-bcf.usc.edu/~rahuljai/Downloads/

Convergence to Probabilistic Fixed Points

x Visa Strong Probabilistic Fixed Point (SPFP) of {IA”H} if
lim P (||T“n,f/ ~V||>€) =0, ¥e>0.

200

Theorem. [4] We can obtain sample complexity bounds such that if
n=>noled) and k > ko(e,5), then

P( — V| > €) <.
(where ng = ()(}2, log %) and ko = O(log %) can be gwen explicitly)

PCPa: |15, (w)Vi — S, (w)Val| <37(w ||v Vall,
and P (3, —€,1)) < d,(e).

where € < €g for some €q, 0,,(€) L 0 as n — oo and [, (w) < 1 a.s.
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Probabilistic Contraction Analysis of Iterated

Random Operators

*  Algorithm converges to “Weak probabilistic fixed points’ of
random operators [1,5]

»  Stochastic dominance via a Markov chain

» Stochastic optimization algorithms such as mini-batch versions of SGD, and
SVRG can be shown to satisfy PCP; and PCP,, and converge to WPFPs [5]

Problem{/Methods— Direct/Alt Lyapunov Contraction
Deterministic Many Well-established Well-established
Stochastic Martingale /Markov Difficult None!

[5] A. Gupta, R. Jain and P. Glynn, “Probabilistic contraction analysis for iterated random operators”, submitted: Ann. Appl. Prob., Feb 2019. 37/39



Conclusions

* Empirical” (RL) Algorithms are simple, "universal’, have good
numerical performance, average-case also [6]

» "Quasi-model free’: Need a generative model

» Weaker performance guarantees, but good numerical performance

* A new analytical tool for Stochastic Iterative Algorithms:

» “Probabilistic Contraction analysis” v. Stochastic Lyapunov techniques v. Direct
methods

» Also useful for stochastic optimization algorithms: minibatch-SGD, SVRG,
streaming variants

*  Future:
» Solving the robotic problem

» Incorporating (safety) constraints

[6] H. Sharma, A. Gupta, R. Jain, “An Empirical Relative Value Learning Algorithm for Non-parametric MDPs with Continuous
State Space”, ECC 2019. 38/39



RL: Challenges

» RL Literature has focused on discrete (finite) state
and action spaces

» Continuous state and action space problems are way harder

*  Online R. Learning for continuous state (and action)
spaces needs ideas beyond Posterior Sampling

» Search over Value function space

* RL with constraints?

*»  Formal RL for safety-critical applications

*  Multi-Agent RL
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