On the power and the limits of evolvability

Vitaly Feldman

Almaden Research Center

Learning from examples vs evolvability

The core model: PAC [Valiant 84]

- Learner observes random examples: $(x, f(x))$
- Assumption: unknown Boolean function $f: X \rightarrow \{-1,1\}$ labeling the examples comes from a known class of functions C every distribution D
- Distribution D over X (e.g. R^n or $\{-1,1\}^n$)

For every $f \in C$, $\epsilon > 0$, w.h.p. output $h: X \to [-1,1]$ s.t. E $x \sim D$ $f(x)h(x)] \geq 1 - \epsilon$ For Boolean h Pr $x \sim D$ $f(x) = h(x) \geq 1 - \epsilon/2$ Efficient: $poly(\frac{1}{2})$ ϵ , $|x|$) time

Classical example

 \cdot $\,$ $\,$ $\,$ $\,$ $\,$ halfspaces/linear threshold functions

- \circ $sign(\sum_i w_i x_i \theta)$ for $w_1, w_2, ..., w_n, \theta \in \mathbb{R}$
- o equivalent to examples being linearly separable
- Perceptron algorithm

[Rosenblatt 57; Block 62; Novikoff 62]

- o Start with LTF h^0 defined by $w^0 = (0,0,...,0)$; $\theta^0 = 0$
- o Get a random example (x, ℓ) . If $h^t(x) = \ell$ do nothing
- o Else let h^{t+1} be LTF defined by $w^{t+1} = w^t + \ell \cdot x$; $\theta^{t+1} = \theta^t + \ell$
- Gives PAC learning if f has significant margin γ on the observed data points

 $\overrightarrow{+}$

+

-

-

+

+

+

+ +

+

-

-

-

-

-

-

+

-

-

+

-

-

 $+$ +

Evolution algorithm

- R representation class of functions over X
	- \circ E.g. all linear thresholds over \mathbb{R}^n
- M randomized *mutation algorithm* that given $r \in R$ outputs (a random mutation) $r' \in R$
	- \circ Efficient: poly in $\frac{1}{2}$ ϵ , n
	- \circ E.g. choose a random *i* and adjust w_i by 0, +1 or -1 randomly

Selection

• Fitness $Perf_D(f, r) \in [-1, 1]$ \circ Correlation: $E_D[f(x)r(x)]$

 $\widetilde{Perf}_D(f,r)$

- For $r \in R$ sample $M(r)$ p times: $r_1, r_2, ..., r_p$
- Estimate empirical performance of r and each r_i using s samples: $\widetilde{Perf}_{D}(f,r_i)$

Evolvability

• Class of functions C is evolvable over D if exists an evolution algorithm (R, M) and a polynomial $g(\cdot, \cdot)$ s.t.

For every $f \in C, r \in R, \varepsilon > 0$ and a sequence $r_0 = r, r_1, r_2, ...$ where $r_{i+1} \leftarrow \textsf{Select}(R, M, r_i)$ it holds: $\mathit{Perf}_{D}(f, r_{g(n, \frac{1}{\epsilon})})$ ϵ $)\geq 1-\epsilon$ w.h.p.

- Evolvable (*distribution-independently)*
	- Evolvable for all D by the same mutation algorithm (R, M)

Limits of evolvability

• Feedback is restricted to values of $\widetilde{Perf}_D(f,r_i)$ for some polynomial number of samples s

 $v_i = \widetilde{Perf}_D(f, h_i)$ evaluated on s fresh examples

Evolvable ⊆ CSQ learnable

Correlational Statistical Query: To query h CSQ oracle responds with any value v $|v - \mathbf{E}_D[f(x)h(x)]| \leq \tau$ for $\tau \geq \frac{1}{\text{rank}(h)}$ $poly(n, \frac{1}{\epsilon})$ ϵ Learning by Distances [Ben-David,Itai,Kushilevitz '90] Restriction of SQ model by Kearns [93]

CSQ learnable ⊆ Evolvable [F. 08]

Proof outline

Replace queries for performance values with approximate comparisons

For hypothesis $h: X \to [-1,1]$, tolerance $\tau > 0$ and threshold $t \geq \tau$, CSQ_> oracle returns: if $E_D[f(x)h(x)] \ge t + \tau$ if $E_D[f(x)h(x)] \le t - \tau$ 0 or 1 otherwise

Design evolution algorithm with mutations that simulate comparison queries

From comparisons to mutations

For hypothesis $h: X \to [-1,1]$, tolerance $\tau > 0$ and threshold $t \geq \tau$, CSQ_> oracle returns: if $E_D[f(x)h(x)] \ge t + \tau$ if $E_D[f(x)h(x)] \le t - \tau$ 0 or 1 otherwise

Beneficial/neutral threshold = t Mutation pool size $p=O$ $\log(\frac{1}{5})$ $\frac{1}{\delta}$ δ Performance sample size $s = 0$ $\log(\frac{1}{5})$ $\frac{1}{\delta}$ τ^2

With probability at least $1 - \delta$, Select $(r) = r_h$ where b is valid response to comparison query

Simulating CSQ_> algorithm

Need to answer q queries ϕ_i is the function obtained after answering i queries Need to answer query h_i with threshold t_i

Beneficial/neutral threshold = t_i Mutation sample size $p = 0$ $\log(\frac{1}{s})$ $\frac{1}{\delta}$ δ Performance sample size $s = 0$ $\log(\frac{1}{5})$ $\frac{1}{\delta}$ τ^2

Leads to representations with values in $[-q, q]!$ Rescale by $1/q$ to get functions with values in [-1,1]

> Given answers to queries can compute h such that $Perf_D(f, h) \geq 1 - \epsilon$ and mutate into it

CSQ learnable ≡ Evolvable [F.08; F. 09]

E.g. optimizing selection; recombination [Kanade 11]; changing thresholds; number of mutations

How powerful is CSQ learning?

SQ learning [Kearns 93] : learner submits $\psi(x, \ell)$ SQ oracle returns v such that $|v - E_D[\psi(x, f(x))]| \le \tau$

- Many known algorithms are essentially described in SQ or can be easily translated to SQ
	- \circ Boolean conjunctions, decision lists, simple geometric concepts, AC^0 [Kearns 93]
- Several other were found with more effort
	- \circ Halfspaces with large margin [Bylander 94]
	- o General LTFs [BlumFrie.Kann.Vemp. 96; Duna.Vemp. 04]
- General ML techniques
	- o Nearest neighbor
	- o Gradient descent
	- o SVM
	- o Boosting

Perceptron in SQ

- Recall the Perceptron algorithm:
	- o Add false negatives, subtract false positive examples

- Use SQs to find the centroid of false positives
- $E_D[x_1 \cdot I(f(x) = -1) \cdot I(h^t(x) = 1)]$ gives the first coordinate of the centroid
- Use the centroid for the Perceptron update

If *D* is fixed then SQ≡CSQ

• Decompose SQ into CSQ and a constant

$$
\mathbf{E}_{D}[\psi(x, f(x))] = \mathbf{E}_{D} \left[\psi(x, -1) \frac{1 - f(x)}{2} + \psi(x, 1) \frac{1 + f(x)}{2} \right]
$$

$$
= \mathbf{E}_{D} \left[\frac{\psi(x, 1) - \psi(x, -1)}{2} f(x) \right] + \mathbf{E}_{D} \left[\frac{\psi(x, 1) + \psi(x, -1)}{2} \right]
$$

• Corollary: linear threshold functions are evolvable for any fixed distribution D

Distribution-independent CSQ

- Single points are learnable [F. 09]
- Characterization of weak-learning [F. 08]

Better than random guessing: E $x \sim D$ $f(x)h(x)] \geq$ 1 $poly(n, \frac{1}{\epsilon})$ ϵ

 C is weakly CSQ learnable if and only if all functions in C can be represented as linear threshold functions with "significant" margin over a poly-size set of Boolean features

- General linear thresholds are not weakly CSQ learnable [Goldmann,Hastad,Razborov 95] (but are SQ learnable)
- Conjunctions are not CSQ learnable [F. 11]

Further directions

- Characterize (strong) evolvability (CSQ learning)
	- o Strengthen the lower bound for conjunctions
- Are thresholds on a line evolvable distribution independently
- $Perf_D(f,r) = -E_D |(f(x) r(x))|$ 2 then all of SQ is evolvable [F. 09]

