A Short Tour of the Laws of Entanglement (And How to Evade Them)

Patrick Hayden Stanford University

Simons Institute UC Berkeley 2014 From the Universal Compendium of Rock Solid Physico-Informational Facts

- §1.0.1.
 - Entanglement cannot be created without interaction
 - Evasion strategy: embezzlement
 - Applications
- §1.0.2.
 - Entanglement is monogamous
 - One mathematical formulation
 - No applications

The Great Laws: Part 1

§1.0.0. Thou shalt not create *correlation* without a commensurate investment of interaction.

Embezzlement

Theft from a reservoir of wealth sufficiently large that the crime is not noticed.

(Until it is.)

Embezzling entanglement

The perfect crime: $|\phi\rangle_{AB}|00\rangle_{A'B'} \xrightarrow{U_{AA'}\otimes U_{BB'}} |\phi\rangle_{AB}|\psi\rangle_{A'B'}$

Extract the entangled state ψ from the entanglement bank φ without leaving behind a trace in the bank.

Trivial solution: the infinite reservoir

$$|\phi\rangle_{AB} = (|\psi\rangle)^{\otimes\infty}$$

Drawbacks:

* Not even the Federal Reserve has an infinite amount of entanglement

* Must keep a separate account for every possible Ψ

Embezzling states

$$|\phi_n\rangle = \frac{1}{\sqrt{C_n}} \sum_{j=1}^n \frac{1}{\sqrt{j}} |j\rangle_A |j\rangle_B$$

Theorem: For every pure state $|\psi\rangle_{A'B'}$ of Schmidt rank m, there exist unitary transformations $U_{AA'}$ and $V_{BB'}$ such that $_{AB}\langle\phi_n|_{A'B'}\langle\psi|U_{AA'}\otimes V_{BB'}|\phi_n\rangle_{AB}|00\rangle_{A'B'} \ge 1 - \frac{\log m}{\log n}$ #qubits(ϕ_n) = O(#qubits(ψ)/ ϵ) for inner product 1- ϵ [H-van Dam 2003]

Embezzling Bell pairs

$$\begin{split} |\phi_n\rangle &= \frac{1}{\sqrt{C_n}} \sum_{j=1}^n \frac{1}{\sqrt{j}} |j\rangle_A |j\rangle_B \qquad |\psi\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle \\ \\ \hline \mathbf{Schmidt \ coefficients:} \\ \hline \phi_n\rangle &: \frac{1}{\sqrt{C_n}} \times \left\{ \frac{1}{\sqrt{1}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \cdots & \frac{1}{\sqrt{n}} \\ \frac{1}{\sqrt{1 \cdot 2}} & \frac{1}{\sqrt{2 \cdot 2}} & \frac{1}{\sqrt{3 \cdot 2}} & \cdots & \frac{1}{\sqrt{n \cdot 2}} \\ \frac{1}{\sqrt{1 \cdot 2}} & \frac{1}{\sqrt{2 \cdot 2}} & \frac{1}{\sqrt{3 \cdot 2}} & \cdots & \frac{1}{\sqrt{n \cdot 2}} \\ \frac{1}{\sqrt{1 \cdot 2}} & \frac{1}{\sqrt{2 \cdot 2}} & \frac{1}{\sqrt{3 \cdot 2}} & \cdots & \frac{1}{\sqrt{n \cdot 2}} \\ \\ \end{matrix} \right\}$$

Embezzling Bell pairs

$$\begin{split} |\phi_n\rangle &= \frac{1}{\sqrt{C_n}} \sum_{j=1}^n \frac{1}{\sqrt{j}} |j\rangle_A |j\rangle_B \qquad |\psi\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \\ \\ \hline \mathbf{Schmidt \ coefficients:} \\ \hline |\phi_n\rangle &: \frac{1}{\sqrt{C_n}} \times \left\{ \frac{1}{\sqrt{1}} \quad \frac{1}{\sqrt{2}} \quad \frac{1}{\sqrt{3}} \quad \frac{1}{\sqrt{4}} \quad \cdots \quad \frac{1}{\sqrt{n-1}} \quad \frac{1}{\sqrt{n}} \quad \right\} \\ \hline \phi_n\rangle |\psi\rangle &: \frac{1}{\sqrt{C_n}} \times \left\{ \frac{1}{\sqrt{2}} \quad \frac{1}{\sqrt{2}} \quad \frac{1}{\sqrt{4}} \quad \frac{1}{\sqrt{4}} \quad \cdots \quad \frac{1}{\sqrt{n}} \quad \frac{1}{\sqrt{n}} \quad \cdots \quad \right\} \\ \\ \hline \mathrm{Dot \ product} \quad \geq \quad \frac{1}{C_n} \times \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \cdots + \frac{1}{n} + \frac{1}{n} \right) \\ &\geq \quad \frac{\log(n/2)}{\log(n)} = 1 - \frac{\log 2}{\log n} \end{split}$$

Further developments

- [Araki ~1967]:
 - Exploited (exact) embezzlement in the classification of von Neumann algebras
- [Leung+Toner+Watrous 2013^{*}]:
 - Embezzlement for multiparty states
- [Dinur+Steurer+Vidick 2013]:
 - Robust embezzlement
 - Alice and Bob don't quite agree on the target state $\boldsymbol{\psi}$
 - a.k.a. Quantum correlated sampling lemma
 - Key step in proving parallel repetition for projection games
- [Leung+Wang 2013]:
 - Characteristics of universal embezzling states
- [Haagerup+Scholz+Werner 2014[?]]:
 - Universal embezzling algebra
 - Uniquenessness of universal embezzling "eigenvalue" scaling
 - Every state in free quantum field theory is embezzling!

* Really 2008, but who can be bothered to submit to journals in a timely fashion these days?

Application: Multiplayer quantum games

Application:

Games can require unbounded entanglement

Same thing twice, just as nice

This idea was originally used as part of the proof of the *Quantum Reverse Shannon Theorem*:

Asymptotically, every quantum channel can simulate every other using a rate of forward noiseless communication given by the ratio of their entanglement-assisted capacities plus shared entanglement.

Embezzlement-assisted QRST in Schur Basis, for general source and channel

[Bennett-Devetak-Harrow-Shor-Winter 2009*]

The Great Laws: Part 2

§1.0.1. Thou shalt not create *entanglement* without a commensurate investment of *quantum* interaction.

The Great Laws: Part 2

§1.0.2. Every person, human, physical or cryptographic shall be maximally entangled with at most one other person.

Monogamy: The more entangled Alice is with Bob, the less entangled she can be with Charlie.

In particular, if AB state is pure, then C must factorize:

$$|\varphi\rangle_{AB} \Rightarrow |\varphi\rangle\langle\varphi|_{AB} \otimes \rho_C$$

Static version of the no-cloning theorem:

Entanglement measures

Entanglement measures extend the entanglement entropy to mixed states. For mixed state on AB measures cannot exceed $S(A)_{o}$.

 $E_{C}(A;B)_{\rho}$: Entanglement of cost of the state ρ_{AB} . What is the minimal rate of Bell pairs required to make many copies of ρ_{AB} using only LOCC operations?

$$-E_C(A;B)_{\rho} + E_C(A;C)_{\rho} \leq S(A)_{\rho}$$

Random pure state on ABC has both $E_c(A;B)$ and $E_c(A;C)$ almost maximal

 $E_D(A;B)_{\rho}$: Entanglement of distillation of the state ρ_{AB} . What is the maximal rate at which Bell pairs can be extracted from many copies of ρ_{AB} using only LOCC operations?

 $E_C(A;B)_{\rho} + E_D^{\rightarrow}(A;C)_{\rho} \leq S(A)_{\rho}$

Look before you leap

Measure	<i>E</i> _{sq} [6]	<i>E_D</i> [18, 19]	<i>K_D</i> [20, 21]	<i>E_C</i> [18, 22]	<i>E_F</i> [18]	<i>E_R</i> [23]	E_R^∞ [24]	<i>E_N</i> [25]
normalisation	у	у	у	у	у	у	у	у
faithfulness	y Cor. 1	n [14]	?	y [26]	у	у	y [27]	n
LOCC monotonicity ^a	у	у	у	у	у	у	у	y [28]
asymptotic continuity	y [29]	?	?	?	у	y [30]	y [9]	n[9]
convexity	у	?	?	?	у	у	y [31]	n
strong superadditivity	у	у	у	?	n [32, 33]	n [34]	?	?
subadditivity	у	?	?	у	у	у	у	у
monogamy	y [11]	?	?	n [10]	n [10]	n [10]	n [10]	?

$$\sum_{j=1}^{k} E_{sq}(A; B_j) \le E_{sq}(A; B_1 B_2 \cdots B_k)$$
$$\le \log \dim A$$

$$\frac{1}{k}\sum_{j=1}^{k} E_{sq}(A; B_j)_{\sigma} \le \frac{1}{k}\log\dim A$$

Monogamy: The more entangled Alice is with Bob, the less entangled she can be with Charlie.

[Brandao, Christandl, Yard 1010.1750]

Squashed entanglement

Measure	<i>E</i> _{sq} [6]
normalisation	у
faithfulness	y Cor. 1
LOCC monotonicity ^a	у
asymptotic continuity	y [29]
convexity	у
strong superadditivity	у
subadditivity	у
monogamy	y [11]

 $\rho_{AB} \text{ unentangled } (separable): \quad \rho_{AB} = \sum_{j} p_{j} \phi_{j,A} \otimes \psi_{j,B}$ Consider extension: $\rho_{ABC} = \sum_{j} p_{j} \phi_{j,A} \otimes \psi_{j,B} \otimes |j\rangle \langle j|_{C}$ A and B are conditionally independent given C: I(A;B|C)_p = 0.

$$E_{sq}(A;B)_{\rho} = \frac{1}{2} \inf\{I(A;B|C)_{\sigma}; \operatorname{tr}_{C} \sigma_{ABC} = \rho_{AB}\}$$

[Christandl-Winter 2004]

Squashed entanglement

Measure	<i>E</i> _{sq} [6]
normalisation	у
faithfulness	y Cor. 1
LOCC monotonicity ^a	у
asymptotic continuity	y [29]
convexity	у
strong superadditivity	у
subadditivity	у
monogamy	y [11]

Proof of monogamy:

$$\begin{split} E_{sq}(A; B_{1}B_{2})_{\rho} &= \frac{1}{2} \inf_{C} I(A; B_{1}B_{2}|C)_{\sigma} \\ &= \frac{1}{2} \inf_{C} \left[I(A; B_{1}|C)_{\sigma} + I(A; B_{2}|B_{1}C)_{\sigma} \right] \\ &\geq \frac{1}{2} \inf_{C} I(A; B_{1}|C)_{\sigma} + \frac{1}{2} \inf_{C} I(A; B_{2}|C)_{\sigma} \\ E_{sq}(A; B)_{\rho} &= \frac{1}{2} \inf\{I\!\!\!(A; A; B_{1}|C)_{\rho} \notin I\!\!\!(A; B_{2}|C)_{\rho}\} \end{split}$$

[Christandl-Winter 2004]

Conclusions

- If your result looks like a sneaky but useless trick, just wait ten years. You might be surprised.
- For applications of the monogamy of entanglement, consult a workshop talk at random:
 - Brandao: Limitations on quantum PCP
 - Miller: Untrusted device cryptography
 - Yuen: Infinite randomness expansion with constant number of devices
 - Parrilo: Testing entanglement using symmetric extensions
 - Reichardt: Delegated quantum computation
 - (super-monogamy?)