A Survey on the Complexity of Entangled Provers

Zhengfeng Ji, IQC, U. Waterloo

What we will NOT cover

- Quantum verifier and messages
- Non-signalling provers
- Bell violations

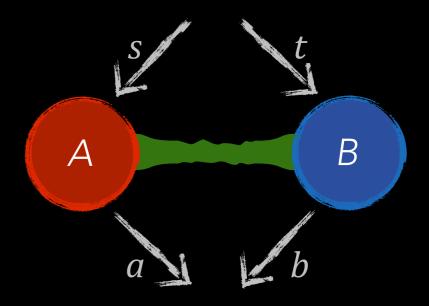
. . .

- Parallel repetition theorems
- Unentangled provers

Background

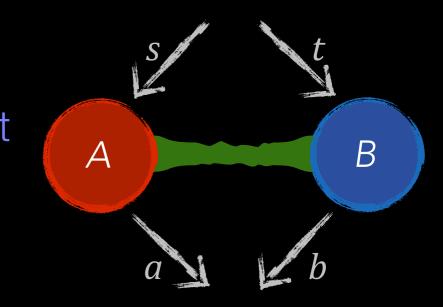
- Interactive proof systems and the PCP theorem
 [GMR'89] [Bab'85] [BOGKW'88] [BFL'91]
 [FGL+'96] [AS'98] [ALM+'96]
- Entanglement and non-locality [EPR '35] [Bell '64]
- Two origins combined [CHTW '04]
 - All powerful provers
 - A CS approach to non-locality

interaction + randomness



Problem setting and notions

• Strategy $(\rho, \{A_s^a\}, \{B_t^b\})$ Question in subscript, answer in superscript $p(a, b|s, t) = \operatorname{Tr}_{\rho}(A_s^a \otimes B_t^b)$ $\stackrel{\text{def}}{=} \operatorname{Tr}(A_s^a \otimes B_t^b \rho)$

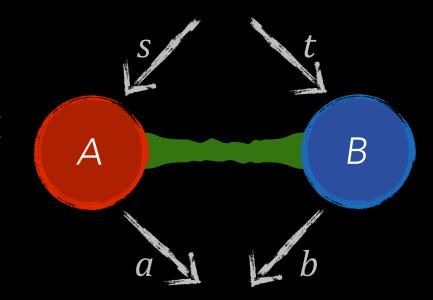


Game values

$$\omega^* = \sup_{\substack{\rho, A_s^a, B_t^b}} \mathbb{E}_{s,t} \sum_{a,b} V(a, b|s, t) \operatorname{Tr}_{\rho}(A_s^a \otimes B_t^b)$$
$$\omega^f = \sup_{\substack{\rho, A_s^a, B_t^b\\ [A_s^a, B_t^b] = 0}} \mathbb{E}_{s,t} \sum_{a,b} V(a, b|s, t) \operatorname{Tr}_{\rho}(A_s^a B_t^b)$$

Problem setting and notions

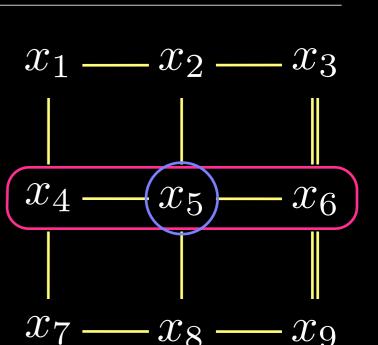
• Strategy $(\rho, \{A_s^a\}, \{B_t^b\})$ Question in subscript, answer in superscript $p(a, b|s, t) = \operatorname{Tr}_{\rho}(A_s^a \otimes B_t^b)$ $\stackrel{\text{def}}{=} \operatorname{Tr}(A_s^a \otimes B_t^b \rho)$

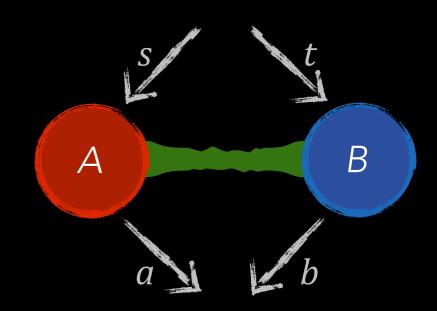


- Symmetry assumption
- ρ -norm $||A||_{\rho} = \sqrt{\operatorname{Tr}_{\rho}(AA^*)}$
- Measurement strategy replacement

Example I: Mermin-Peres magic square game

- Sample and send constraint-variable pair
- Check
 - Constraint
 - Consistency
- Magic: $1 = \omega^* > \omega$, 2 EPR pairs
- Binary constraint system games [CM '12]
- An instance of 3-SAT with 24 clauses

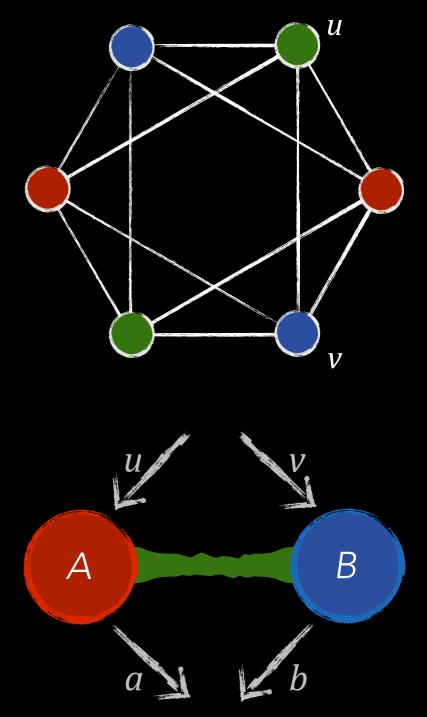




• 3-SAT*

Example 2: Quantum 3-coloring game

- Sample and send vertices u, v to A and B respectively
- Check
 - a = b if u = v, and
 - $a \neq b$ if u, v are adjacent
- \exists graph G, $1 = \omega^*(G) > \omega(G)$
- 3-COLORING*
- Entanglement undermines soundness
- A bug or a feature?



Entanglement undermines soundness

Two-player XOR games

Tsirelson's theorem: $\langle \phi | X_s \otimes Y_t | \phi \rangle = x_s \cdot y_t$ $\oplus MIP^*(2,1) \subseteq EXP$ [CHTW '04] $\oplus MIP^*(2,1) \subseteq QIP(2) \subseteq PSPACE$ [Weh '06][JUW '09] $\oplus MIP(2,1) = NEXP$ [Hås '01]

- Unique Games with Entangled Provers are Easy "Quantum rounding" of SDP from UGC [KRT '08]
- Unfixable bug...

Entanglement resistant techniques

- Consistency check
- Confusion check
- A third player
 - Bob'
 - 2-out-of-3
- PIR, NP $\subseteq \bigoplus MIP^*(2)$ [CGJ '09]

Consistency check

- Send each player the same question q and expect the same answers
- 2-player consistency check
 - Quantum 3-coloring game
- 3-player consistency check
 - Linearity test and multilinearity test [IV '12]
 - PCP simulation test [IKP+'08]

Consistency as a measure of "closeness"

For two measurements A and B, define

$$CONS(A, B) = \sum_{a} Tr_{\rho}(A^{a} \otimes B^{a})$$
$$INC(A, B) = 1 - CONS(A, B)$$

Inconsistency as a "distance" of measurements

$$\sum_{a} \|A^{a} - B^{a}\|_{\rho}^{2} \le O(\sqrt{\mathrm{INC}(A, B)})$$

Confusion check

- Sample two questions q, q'. Send the unordered pair q, q' to A and q to B
- Used to prove NP-hardness of computing ω* to inverse polynomial precision
 [IKM '09]
 [IKM '

• Lemma
$$\operatorname{CONF}(A, B) = \sum_{a,a'} \operatorname{Tr}_{\rho}(A^{a,a'}_{q,q'} \otimes B^a_q)$$

$$\operatorname{CONF}(A,B) \ge 1 - \epsilon \implies \mathbb{E}_{q,q'} \sum_{a,a'} \left\| \left[B_q^a, B_{q'}^{a'} \right] \right\|_{\rho}^2 \le O(\epsilon)$$

A third player

- Monogamy of entanglement
- Bob' construction

- NP-hardness of 3-player games [KKM+'08]
- Effect on the magic square game
- 2-out-of-3
 - Used with low degree test in [Vid '13]

NP-hardness of exact computation of ω^{\star}

- It is NP-hard to distinguish
 - $\omega^* = 1$ and

- $\omega^* \le 1 O(1/n^c)$ [KKM+'08] [IKM'09]
- State invariant lemma with Bob'

$$\left\|\sum_{a} \sqrt{B_q^a} \rho_{AB} \sqrt{B_q^a} - \rho_{AB}\right\|_1 = O(\sqrt{\text{INC}(B_q)})$$

- Sequential measurement rounding
- Bad soundness

$MIP = NEXP \subseteq MIP^* [IV'12]$

- Entangled provers are at least as expressive as their classical counterpart
- Any MIP protocol can be modified immune to entanglement
- Bug fixed for once and for all
- The best one can hope for using the entanglement resistant techniques

What to prove?

- Follows the proof of NEXP \subseteq MIP of [BFL'91]
- Multilinearity test is sound against entangled provers
 - Consistency test
 - Multilinearity test (axis aligned linearity test)
- Classically: provers act according to a common multilinear function

What to prove?

What is the right thing to prove in the quantum setting?

Theorem. Suppose that the strategy passes both the consistency test and multilinearity test with probability $1-\epsilon$, then there exists POVM $\{V^g\}$ such that

$$\mathbb{E}_{\boldsymbol{x}}\Big[\mathrm{INC}(A_{\boldsymbol{x}}, V_{\boldsymbol{x}})\Big] = O(\epsilon^c),$$

where $V^a_{\boldsymbol{x}} = \sum_{g:g(\boldsymbol{x})=a} V^g$.

Proof outline

- Remove the dependence on x_i one by one by induction
- Error (in terms of inconsistency) grows exponentially.
 Need an (active) consolidation step using SDPs
- Pasting lemma + consolidation (self-improvement) lemma
- The base step of the induction

The base step

• The statement $oldsymbol{x} \in \mathbb{F}^n$ $oldsymbol{x}' = x'_i, oldsymbol{x}_{
eg i}$

$$\exists \{B_{\boldsymbol{x}_{\neg i}}^{l}\} \qquad B_{\boldsymbol{x}}^{a} = \sum_{l:l(x_{i})=a} B_{\boldsymbol{x}_{\neg i}}^{l}$$
$$\mathbb{E}_{\boldsymbol{x}} \left[\text{INC}(A_{\boldsymbol{x}}, B_{\boldsymbol{x}}) \right] \leq O(\sqrt{\epsilon})$$

Construction of the *B* measurement

$$B_{\boldsymbol{x}_{\neg i}}^{l} \stackrel{\text{def}}{=} \mathbb{E}_{x_{i} \neq x_{i}'} A_{\boldsymbol{x}}^{l(x_{i})} A_{\boldsymbol{x}'}^{l(x_{i}')} A_{\boldsymbol{x}}^{l(x_{i})}$$

$$\mathbb{E}_{\boldsymbol{x}} \left[\text{CONS}(A_{\boldsymbol{x}}, B_{\boldsymbol{x}}) \right]$$

$$= \mathbb{E}_{\boldsymbol{x}, x_{i}^{\prime} \neq x_{i}^{\prime\prime}} \sum_{a, l: l(x_{i})=a} \sum_{a^{\prime}} \text{Tr}_{\rho} (A_{\boldsymbol{x}}^{a} \otimes A_{\boldsymbol{x}^{\prime}}^{l(x_{i}^{\prime})} A_{\boldsymbol{x}^{\prime\prime}}^{l(x_{i}^{\prime})} \otimes A_{\boldsymbol{x}^{\prime}}^{a^{\prime}})$$

$$\approx_{\epsilon} \mathbb{E}_{\boldsymbol{x}, x_{i}^{\prime} \neq x_{i}^{\prime\prime}} \sum_{a, l: l(x_{i})=a} \text{Tr}_{\rho} (A_{\boldsymbol{x}}^{a} \otimes A_{\boldsymbol{x}^{\prime}}^{l(x_{i}^{\prime})} A_{\boldsymbol{x}^{\prime\prime}}^{l(x_{i}^{\prime})} \otimes A_{\boldsymbol{x}^{\prime}}^{l(x_{i}^{\prime})})$$

$$\approx_{\sqrt{\epsilon}} \mathbb{E}_{\boldsymbol{x}, x_{i}^{\prime} \neq x_{i}^{\prime\prime}} \sum_{a, l: l(x_{i})=a} \text{Tr}_{\rho} (A_{\boldsymbol{x}}^{a} \otimes A_{\boldsymbol{x}^{\prime\prime}}^{l(x_{i}^{\prime\prime})} \otimes A_{\boldsymbol{x}^{\prime}}^{l(x_{i}^{\prime})})$$

$$\approx_{\epsilon} \mathbb{E}_{\boldsymbol{x}, x_{i}^{\prime} \neq x_{i}^{\prime\prime}} \sum_{l} \text{Tr}_{\rho} (A_{\boldsymbol{x}}^{l(x_{i})} \otimes A_{\boldsymbol{x}^{\prime\prime}}^{l(x_{i}^{\prime\prime})} \otimes A_{\boldsymbol{x}^{\prime}}^{l(x_{i}^{\prime})})$$

$$= 1 - O(\sqrt{\epsilon})$$

$$\mathbb{E}_{\boldsymbol{x}} \left[\text{CONS}(A_{\boldsymbol{x}}, B_{\boldsymbol{x}}) \right]$$

$$= \mathbb{E}_{\boldsymbol{x}, x'_{i} \neq x''_{i}} \sum_{a,l:l(x_{i})=a} \sum_{a'} \text{Tr}_{\rho} (A_{\boldsymbol{x}}^{a} \otimes A_{\boldsymbol{x}'}^{l(x'_{i})} A_{\boldsymbol{x}''}^{l(x''_{i})} A_{\boldsymbol{x}'}^{l(x'_{i})} \otimes A_{\boldsymbol{x}'}^{a'})$$

$$\approx_{\epsilon} \mathbb{E}_{\boldsymbol{x}, x'_{i} \neq x''_{i}} \sum_{a,l:l(x_{i})=a} \text{Tr}_{\rho} (A_{\boldsymbol{x}}^{a} \otimes A_{\boldsymbol{x}'}^{l(x'_{i})} A_{\boldsymbol{x}''}^{l(x'_{i})} A_{\boldsymbol{x}'}^{l(x'_{i})} \otimes A_{\boldsymbol{x}'}^{l(x'_{i})})$$

$$\approx_{\sqrt{\epsilon}} \mathbb{E}_{\boldsymbol{x}, x'_{i} \neq x''_{i}} \sum_{a,l:l(x_{i})=a} \text{Tr}_{\rho} (A_{\boldsymbol{x}}^{a} \otimes A_{\boldsymbol{x}''}^{l(x''_{i})} \otimes A_{\boldsymbol{x}'}^{l(x''_{i})})$$

$$\approx_{\epsilon} \mathbb{E}_{\boldsymbol{x}, x'_{i} \neq x''_{i}} \sum_{l} \text{Tr}_{\rho} (A_{\boldsymbol{x}}^{l(x_{i})} \otimes A_{\boldsymbol{x}''}^{l(x''_{i})} \otimes A_{\boldsymbol{x}'}^{l(x'_{i})})$$

$$= 1 - O(\sqrt{\epsilon})$$

$$\mathbb{E}_{\boldsymbol{x}} \left[\text{CONS}(A_{\boldsymbol{x}}, B_{\boldsymbol{x}}) \right]$$

$$= \mathbb{E}_{\boldsymbol{x}, x'_{i} \neq x''_{i}} \sum_{a,l:l(x_{i})=a} \sum_{a'} \text{Tr}_{\rho} (A_{\boldsymbol{x}}^{a} \otimes A_{\boldsymbol{x}'}^{l(x'_{i})} A_{\boldsymbol{x}''}^{l(x'_{i})} A_{\boldsymbol{x}'}^{l(x'_{i})} \otimes A_{\boldsymbol{x}'}^{a'})$$

$$\approx_{\epsilon} \mathbb{E}_{\boldsymbol{x}, x'_{i} \neq x''_{i}} \sum_{a,l:l(x_{i})=a} \text{Tr}_{\rho} (A_{\boldsymbol{x}}^{a} \otimes A_{\boldsymbol{x}'}^{l(x'_{i})} A_{\boldsymbol{x}''}^{l(x'_{i})} \otimes A_{\boldsymbol{x}'}^{l(x'_{i})})$$

$$\approx_{\sqrt{\epsilon}} \mathbb{E}_{\boldsymbol{x}, x'_{i} \neq x''_{i}} \sum_{a,l:l(x_{i})=a} \text{Tr}_{\rho} (A_{\boldsymbol{x}}^{a} \otimes A_{\boldsymbol{x}''}^{l(x''_{i})} \otimes A_{\boldsymbol{x}'}^{l(x''_{i})})$$

$$\approx_{\epsilon} \mathbb{E}_{\boldsymbol{x}, x'_{i} \neq x''_{i}} \sum_{l} \text{Tr}_{\rho} (A_{\boldsymbol{x}}^{l(x_{i})} \otimes A_{\boldsymbol{x}''}^{l(x''_{i})} \otimes A_{\boldsymbol{x}'}^{l(x'_{i})})$$

$$= 1 - O(\sqrt{\epsilon})$$

$$\mathbb{E}_{\boldsymbol{x}} \left[\text{CONS}(A_{\boldsymbol{x}}, B_{\boldsymbol{x}}) \right]$$

$$= \mathbb{E}_{\boldsymbol{x}, x'_{i} \neq x''_{i}} \sum_{a,l:l(x_{i})=a} \sum_{a'} \text{Tr}_{\rho} (A_{\boldsymbol{x}}^{a} \otimes A_{\boldsymbol{x}'}^{l(x'_{i})} A_{\boldsymbol{x}''}^{l(x'_{i})} A_{\boldsymbol{x}'}^{l(x'_{i})} \otimes A_{\boldsymbol{x}'}^{a'})$$

$$\approx_{\epsilon} \mathbb{E}_{\boldsymbol{x}, x'_{i} \neq x''_{i}} \sum_{a,l:l(x_{i})=a} \text{Tr}_{\rho} (A_{\boldsymbol{x}}^{a} \otimes A_{\boldsymbol{x}'}^{l(x'_{i})} A_{\boldsymbol{x}''}^{l(x'_{i})} \otimes A_{\boldsymbol{x}'}^{l(x'_{i})})$$

$$\approx_{\sqrt{\epsilon}} \mathbb{E}_{\boldsymbol{x}, x'_{i} \neq x''_{i}} \sum_{a,l:l(x_{i})=a} \text{Tr}_{\rho} (A_{\boldsymbol{x}}^{a} \otimes A_{\boldsymbol{x}''}^{l(x''_{i})} \otimes A_{\boldsymbol{x}'}^{l(x'_{i})})$$

$$\approx_{\epsilon} \mathbb{E}_{\boldsymbol{x}, x'_{i}, x''_{i}} \sum_{l} \text{Tr}_{\rho} (A_{\boldsymbol{x}}^{l(x_{i})} \otimes A_{\boldsymbol{x}''}^{l(x''_{i})} \otimes A_{\boldsymbol{x}'}^{l(x'_{i})})$$

$$= 1 - O(\sqrt{\epsilon})$$

$$\mathbb{E}_{\boldsymbol{x}} \left[\text{CONS}(A_{\boldsymbol{x}}, B_{\boldsymbol{x}}) \right]$$

$$= \mathbb{E}_{\boldsymbol{x}, x'_{i} \neq x''_{i}} \sum_{a,l:l(x_{i})=a} \sum_{a'} \text{Tr}_{\rho} (A_{\boldsymbol{x}}^{a} \otimes A_{\boldsymbol{x}'}^{l(x'_{i})} A_{\boldsymbol{x}''}^{l(x''_{i})} A_{\boldsymbol{x}'}^{l(x'_{i})} \otimes A_{\boldsymbol{x}'}^{a'})$$

$$\approx_{\epsilon} \mathbb{E}_{\boldsymbol{x}, x'_{i} \neq x''_{i}} \sum_{a,l:l(x_{i})=a} \text{Tr}_{\rho} (A_{\boldsymbol{x}}^{a} \otimes A_{\boldsymbol{x}'}^{l(x'_{i})} A_{\boldsymbol{x}''}^{l(x'_{i})} \otimes A_{\boldsymbol{x}'}^{l(x'_{i})})$$

$$\approx_{\sqrt{\epsilon}} \mathbb{E}_{\boldsymbol{x}, x'_{i} \neq x''_{i}} \sum_{a,l:l(x_{i})=a} \text{Tr}_{\rho} (A_{\boldsymbol{x}}^{a} \otimes A_{\boldsymbol{x}''}^{l(x''_{i})} \otimes A_{\boldsymbol{x}'}^{l(x'_{i})})$$

$$\approx_{\epsilon} \mathbb{E}_{\boldsymbol{x}, x'_{i}, x''_{i}} \sum_{l} \text{Tr}_{\rho} (A_{\boldsymbol{x}}^{l(x_{i})} \otimes A_{\boldsymbol{x}''}^{l(x''_{i})} \otimes A_{\boldsymbol{x}'}^{l(x'_{i})})$$

$$= 1 - O(\sqrt{\epsilon})$$

Upper bounds?

- Nothing known
- Possible approaches
 - Random projections?
 - Non-commutative Positivestellensatz
 [DLTW '08]

 $\longrightarrow \omega^* \stackrel{?}{=} \omega^f \longleftarrow SDP$ Hierarchy

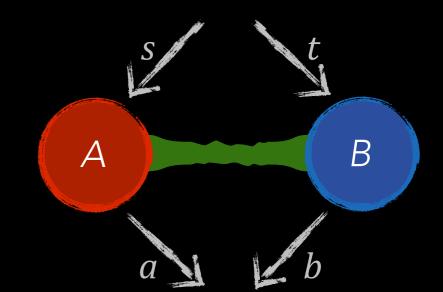
Connes' embedding problem and Tsirelson's problem
 [JNP+ '11] [Fri '12]

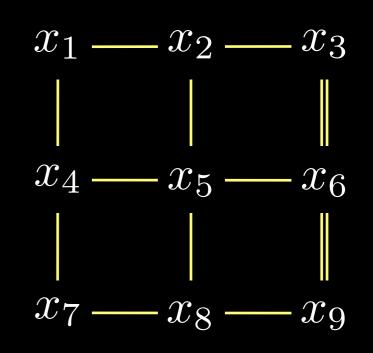
Binary Constraint System Games

- The bug vs. feature question
- Exact case characterization

A BCS game has a perfect quantum strategy if and only if the corresponding BCS has a quantum satisfying assignment

```
[CM '12, ARXIV:1209.2729]
```





Rewrite constraints as polynomials over reals

Rewrite constraints as polynomials over reals

$$x_1 \oplus x_2 = 0,$$

 $x_1 \oplus x_2 = 1.$ \longrightarrow $x_1 + x_2 - 2x_1x_2 = 0,$
 $x_1 + x_2 - 1 = 0.$

Rewrite constraints as polynomials over reals

$$x_1 \oplus x_2 = 0,$$

 $x_1 \oplus x_2 = 1.$ \longrightarrow $x_1 + x_2 - 2x_1x_2 = 0,$
 $x_1 + x_2 - 1 = 0.$

Quantum Satisfying Assignment $x_j \mapsto X_j$

Rewrite constraints as polynomials over reals

$$x_1 \oplus x_2 = 0,$$

 $x_1 \oplus x_2 = 1.$ \longrightarrow $x_1 + x_2 - 2x_1x_2 = 0,$
 $x_1 + x_2 - 1 = 0.$

Quantum Satisfying Assignment $x_j \mapsto X_j$

- (a) Satisfy every polynomial constraints.
- (b) For all j, $X_j^2 = X_j$.
- (c) Each pair of operators X_j , X_k appearing in the same constraint commute.

Rewrite constraints as polynomials over reals

$$x_1 \oplus x_2 = 0,$$

 $x_1 \oplus x_2 = 1.$ \longrightarrow $x_1 + x_2 - 2x_1x_2 = 0,$
 $x_1 + x_2 - 1 = 0.$

Quantum Satisfying Assignment $x_j \mapsto X_j$

- (a) Satisfy every polynomial constraints.
- (b) For all j, $X_j^2 = X_j$.
- (c) Each pair of operators X_j , X_k appearing in the same constraint commute.

Locally Commutative Condition

Rewrite constraints as polynomials over reals

$$\begin{array}{c} x_1 \oplus x_2 = 0, \\ x_1 \oplus x_2 = 1. \end{array} \longrightarrow \begin{array}{c} x_1 + x_2 - 2x_1x_2 = 0, \\ x_1 + x_2 - 1 = 0. \\ Quantum \\ \end{array}$$
Quantum Satisfying Assignment $x_i \mapsto X_i$

(a) Cation (a church solar a church

- (a) Satisfy every polynomial constraints.
- (b) For all j, $X_j^2 = X_j$.
- (c) Each pair of operators X_j , X_k appearing in the same constraint commute.

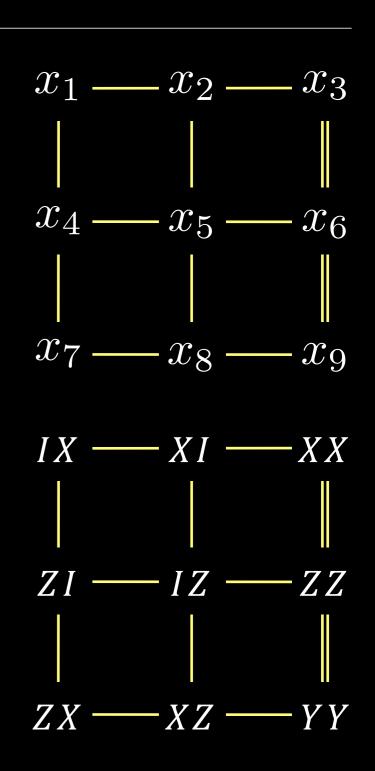
Locally Commutative Condition

Magic square revisited

 Quantum satisfying assignment for magic square

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

- Anti-commutativity gadget
- Glue magic squares together
- Add a trivial constraint $f(x_2, x_4) \equiv 1$
- 3-SAT* with such trivial constraints



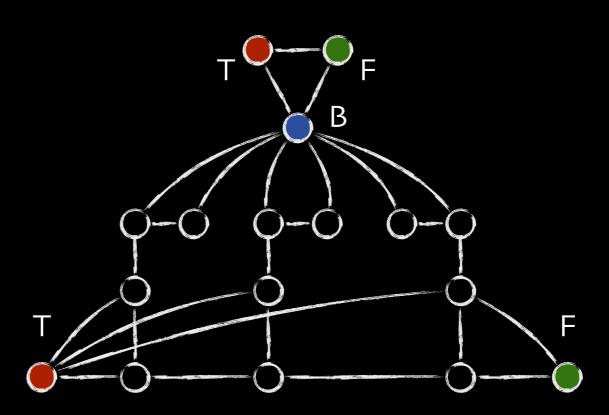
Theorem. 3-SAT* is Karp reducible to 3-COLORING*.

Theorem. 3-SAT* is Karp reducible to 3-COLORING*.

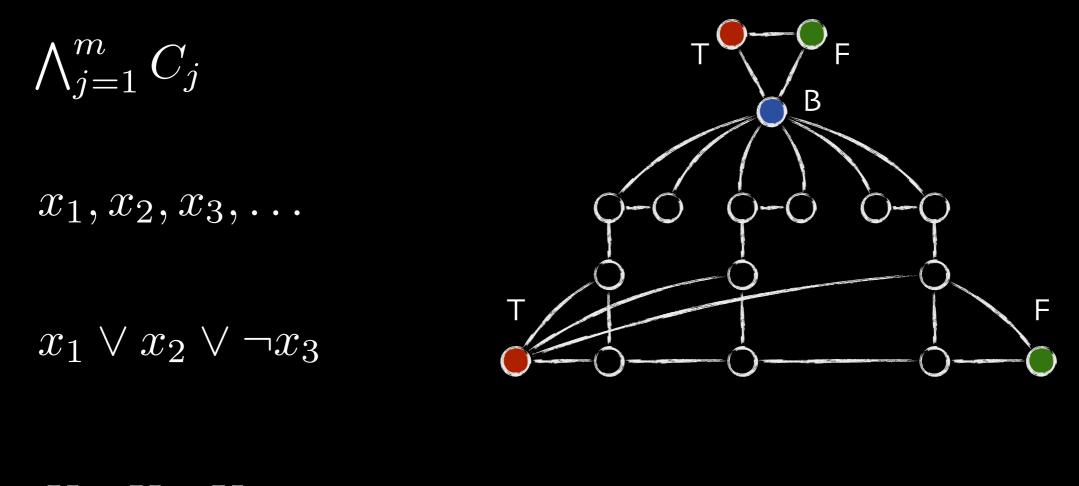
 x_1, x_2, x_3, \ldots

 $\bigwedge_{j=1}^m C_j$

 $x_1 \vee x_2 \vee \neg x_3$



Theorem. 3-SAT* is Karp reducible to 3-COLORING*.



 X_1, X_2, X_3, \ldots \longrightarrow Coloring measurements?

Theorem. 3-SAT* is Karp reducible to 3-COLORING*.

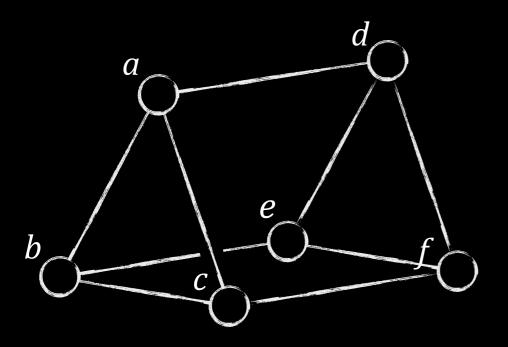
 X_1, X_2, X_3, \ldots \longrightarrow Coloring measurements?

Theorem. 3-SAT* is Karp reducible to 3-COLORING*.

 X_1, X_2, X_3, \ldots *Coloring measurements?*

Triangular prism gadget

Lemma. The only constraint on the coloring operators of vertices *a* and *e* in the gadget is that they commute.



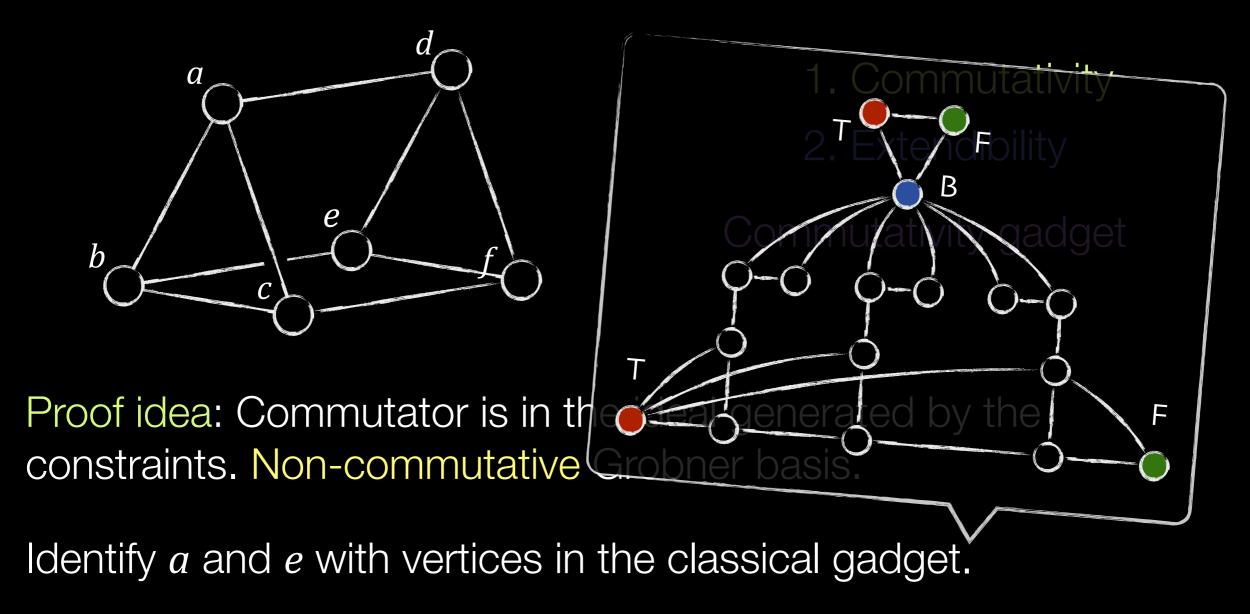
Commutativity
 Extendibility

Commutativity gadget

Proof idea: Commutator is in the ideal generated by the constraints. Non-commutative Grobner basis.

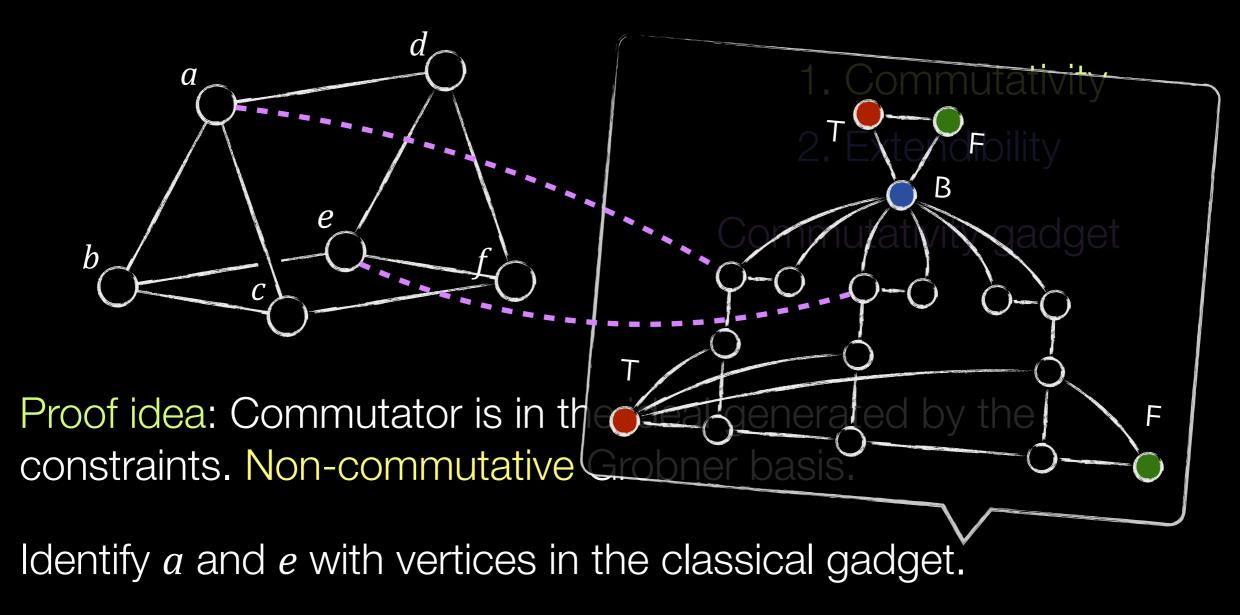
Triangular prism gadget

Lemma. The only constraint on the coloring operators of vertices *a* and *e* in the gadget is that they commute.



Triangular prism gadget

Lemma. The only constraint on the coloring operators of vertices *a* and *e* in the gadget is that they commute.



The complexity of 3-SAT*

NP-hardness of 3-SAT*

Commutativity gadget $x_1 \lor x_2 \lor y$

- Relation to the confusion check with x_1 and x_2
- 3-SAT* without confusion check is NP-hard (with inverse polynomial gap)
- Not known to be decidable

No dimension bound

• Relate it to approximate case?

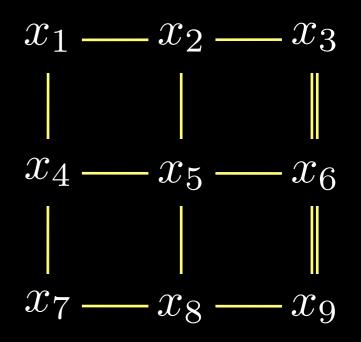
k-SAT*, 1-in-3-SAT*, KOCHEN-SPECKER*, 3-COLORING* and CLIQUE* are as hard as 3-SAT*
 A nonlocal NP theory

Schaefer's dichotomy theorem?

- 2-SAT* and HORN-SAT* are in P
- Affine-SAT* or parity BCS games? [Ark '12]
- EPR pairs are optimal for perfect BCS games

Yet another quantum PCP theorem/conjecture?

- Hardness of approximation
 - Constant approximation of ω^{\star} is NP-hard
 - Goal achieved with 3 players
 [Vid '13]
 - Constant approximation of ω^* is as hard as deciding $\omega^*=1?$
- Nonlocal PCPs? (as non-signalling PCPs) $\operatorname{Tr}_{\rho}(A_{q}^{a} \otimes A_{q'}^{a'} \otimes A_{q''}^{a''})$
- Locally-commutative PCPs?



Open problems

- Upper bound of MIP*
- NEXP in MIP*(2,1)?
- 3-player vs. 2-player
- Power of 2-out-of-3 MIP*?
- BCS related problems