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Genetic variation, Association, and Descent

e For genetic analysis, the data are genetic marker (SNP) data X
at known locations in the genome, and trait data Y (qualitative or
quantitative).

e [ he goal is to find where in the genome are there DNA variants
that affect the trait values Y.

e Direct testing for an association between Y and allelic type X at
each SNP location ignores the fact that DNA descends in blocks.

e Also ignores the fact that functional genes are blocks of DNA
and is confounded by allelic heterogeneity: many ways to mess up
a local block of DNA that is a functional gene.

e Instead consider association in descent of X and Y.
DNA is identical by descent (ibd) relative to some ancestral popu-
lation, if it is a copy of the same DNA in that population.

e Idea of /bd-based mapping is to detect excess location-specific
relatedness (identity by descent, ibd) Z at test locations, among
individuals of similar phenotype, Y.



An ibd model too complex to use

e e Full specification of ances-
M try is the ancestral recombi-
cesfers B nation graph or ARG: Figure
A ——— due to Chaozhi Zheng.

e MCMC sampling of the
ARG (Kuhner et al.) or
of its sequential Markov ap-
proximations, (Zheng et al.)
is hard (even for 500 kbp).

e Main problem: Our inter-
est is in long lengths (> 1

Mbp) and short time depths
< 50 generations. Most of
the ARG is irrelevant.
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ibd in remote relatives; (K. P. Donnelly, 1983)

Relatives separated

by m meioses.

Pr(2 kids get same)
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Length of ibd segment ~ m~1 x 108 bp.

m =12 m = 20
ibd at point 0.0005 2x10°°
any ibd (L = 30) 0.148 0.001
length ibd segment | 8.5 Mbp 5 Mbp

e /bd segments are rare but not short. The human genome is s4hort.



Identity by descent is sufficient for analysis

e Given /bd, the pedigree is no longer relevant.
The ibd may come from a pedigree or population inference.
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e In a population (e.g. e and »),
a population probability model is needed to provide h.

e In a pedigree/population: marker (SNP) data and
pedigree/population prior give probabilities and realizations of ibd.
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Case-Control Simulation Study of ibd

e Browning and Thompson, Genetics, 2012: Is there enough power?

e Long population evolutionary simulation at Ne = 104 with mu-
tation, selection and recombination. Then run forward at larger
population (Ne = 105) for G = 25 generations.

e Relative to G = 25 the location-specific ibd, Z, is assumed known.

1 2 3 47 48 49 50 oy | 52 53 98 99 100
B0—08—0— - - - 00— o—01 —0— - - - -—0—0F—0n
e Each simulation is a 200kb region, with central 10kb containing
also causal SNPs arising in the population simulation.

e Retain 100 common SNPs; best in alternating 1kb blocks.
These are used for association mapping.

e Total number of variants in the population in the 5 central 1kb
blocks ranged from 7-10 (strongest selection) to 11-16 (weakest
selection).

e Individuals with > 1 of these causal variant alleles are cases with
probability 0.1.



Case-control study: EXxcess relatedness among cases

e In association tests, we compare frequency of an allele in N1 cases
vs N» controls, at test SNP locations across the 200 kb region.

e In /bd test, we compare the frequency of /ibd between M4 case-case
pairs and M»> case-(non-case) or (non-case)-(non-case) pairs.

e [0 adjust for population heterogeneity or structure, adjust for the
genome-wide average in each group.

e Assess significance by permutation of case-control labels.
(No distributional assumptions.)

e Power of tests in large population: Ne = 10° for G = 25.

selec tot.freq aSSsoC. # cases— power power association
-tion variants max R2 # contr. assocC. ibd vs. ibd
0.0005 0.045-0.13 0.91-1.00 500 0.87 0.57 aSSoC.
0.001 0.019-0.05 0.28-1.00 500 0.65 0.53 Not-Sig
0.002 0.010-0.03 0.06-0.52 1000 0.53 0.87 ibd
0.005 0.004-0.01 0.03-0.16 3000 0.47 0.90 ibd
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Joint trait-related ibd in population samples

e In a population, trait-related /ibd can indicate causal locations, but
we gain by considering ibd among multiple individuals.

e Edges are individuals observed for a trait. Two edges sharing a
node indicate ibd of those individuals at that locus.
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e In regions of the genome with causal DNA, we should detect
a clustering of ibd associated with trait similarity, and can assess
significance by permutation of trait values.

e A trait model — even ranked quantitative values — increases power.
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First, detect the ibd among individuals

e Model-based inference of ibd Z from SNP data X:

provides measures of uncertainty, not a point estimate,

allows realizations from the probability distribution given the data,
i.e. from the joint distribution across the genome segment.

e Each SNP alone gives almost no information, but /bd comes in
segments, with more and larger segments in closer relatives.

e DNA chunks that are ibd from a recent common ancestor are the
same allelic type for the SNPs in the chunk (with high probability).

DNA that is not ibd will be of “independent” allelic type—
basically, there will be differences at many SNPs.

e Need a model for the process of ibd Z along the chromosome,
Need a model for the SNP data X given Z.

e For model-based inference of ibd, use common variation!

Models require allele and/or haplotype frequencies;

Only for common SNPs can we have good estimates of the relevant
population allele and local haplotype frequencies.



Realizing ibd segments from X in populations

e Two-gamete model (Leutenegger et al. 2003)

allele-1 p p p_P p_p

ibd 0/1

allele-2 b b b b b b

e [T wo-parameter Markov model: marginal prob g, rate change «.
In reality, ibd is not Markovian and expected segment length de-
pends on # meioses to the common ancestor.

e /bd = same allele; non-ibd = independent alleles.
Allow error so different alleles can still be ibd.

e Given a model, a standard HMM forward-backward algorithm gives
realizations of ibd {Z(j);j = 1,...,4} given X, jointly over j,
where X are allele types on the gametes over all loci.
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Model for pointwise ibd among multiple gametes

e Ewens’ sampling formula (ESF; Ewens, 1971) was originally de-
veoped to model allelic variation, but provides a one-parameter
model for the partition of any n exchangeable objects.

e Each partition Z of n gametes into k = |Z| ibd groups v

() 0zl
Fn o) vng(IvI — 1)!

wn(Z) =

o If |Z| =k and Z has a; groups of size j
r(6) o
F(n+ 0)
with k = DA, M=) ;7a;.

e Note for two gametes b and ¢, the probability of 1 group size 2 is

r(Z={bec}) = — (2-1H = — _ = 8

0(1+6) (1+6)
is the probability of ibd between two gametes.
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11



Changing ibd partitions across the chromosome

e Partition: ({A1},{A0, B0, JO,G1},{G0, DO, F0},{C1,C0,E1, H1},
{B1,J1,D1, E0},{HO, F1},{K1},{KO0,U1,W1},{U0,V1}, {W0,VO0}).

e Becomes: ({41}, {A0, BO, JO,G1},{G0, DO, F0O, K1},{C1,C0, E1, H1},
{B1,J1,D1,E0},{HO, F1},{K0,U1,W1},{U0,V1},{W0,V0}).

e Becomes:({A1},{A0, BO,G1},{G0, DO, FO,K1},{C1,C0, E1, H1},
{B1,J1, D1, E0},{JO},{HO, F1},{K0,U1,W1},{U0,V1},{WO0,VO0}).

e Recombination events in the ancestry of the gametes will move
them among elements of the partition — we need a model for this
process.
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The Chinese restaurant process for building the ESF

e Tavaré and Ewens, 1997.

e GGiven a state with n people, at k tables, with a; tables at which
there are 53 people.

— New person sits at an empty table with probability « (1 — 3),
and to join each group of size 53 with prob. «x j8.

° kzzjaj, nzzjjaj.

e Example: New gamete g added to
Z = (a,c, f),(b,e),(d) ~ mg(-) which has k=3, a3 =a» = a1 = 1:

g joins probability new state Z* state character

(a’acaf) 36/(14_55) (a,c,f,g),(b,e),(d) k:37a’4:a’2:a’1 =1
(b, e) 28/(1+ 50) (a,c, f),(b,e,g),(d) k=3, a3=2,a1=1
(d) B/(1+50) (a,c, ), (b,e),(d,g) k=3, ag=1ap =2
() @A-8)/14+58) (a,cf) (be)(d),(g) k=4,a3=ap=1a =2

If Z ~mg(-), then Z* ~ n7(-). (n changes from 6 to 7.)
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Model for changing ibd among multiple gametes

e Modified CRP due to Chaozhi Zheng, allows any 1 gamete to
move from one ibd subset to another, and has ESF as equil. dsn.

e Potential changes in ibd occur at some rate o per Mbp along the
chromosome, a normalized recombination rate p.

e At a potential change point:

— First, an extra gamete, * is proposed as a singleton with prob.
x (1 — /), and to join each group of size 5 with prob. «< jg.

— Next, one of the n 4+ 1 gametes is selected for deletion, and, if
not deleted, * is given the identity of the deleted gamete.

e Examples only, (each “dies” prob 1/7):
* Jjoins probability interim state dies new Z*

(a,c,f)  3B8/(1+585) (a,c, f,*),(be),(d) d  (a,cd,[f), (be)
(b, e) 28/(1+58) (a,c, f),(bye,*),(d) b (a,c[f),(be),(d)
() A-=-8)/A+58) (a¢cf) (be)(d),(*) * (ac/f)(be),(d)

e Now if Z ~ mg(-), then Z* ~ wg(-).
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realization

HMM realizations for six gametes
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e 2000 SNPs in 51.4 Mbp from simulated 200-generation population

e One truth, and 10 independent realizations given SNP data

e Gamete /bd states are labelled in canonical ordering

2000
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realization

LLabel switching problems of representation

I I
500 1000 1500 2000

o

Marker number
e Now gamete changes color only if involved in an ibd transition.

e However, colors lose identity across the chromosome.

e \Weight realizations by using relative local likelihoods under LD.
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Ibd graph equivalences across genomes

e The (unlabeled) nodes of an ibd
graph have identity only through the
(labeled) edges that connect them.
e /bd graphs are slowly changing
v across the genome (on bp scale)
— in realizations only changes are

recorded.

e Any feature of the graph (e.g. set of edges at a given node) has
a marker or bp-range over which it exists.

e [ he IBDgraph software incorporates these features, identifying
graph equivalences. (Koepke and Thompson, JCB, 2013).

e IBDgraph allows for efficient insertion, querying, equality testing,
and set operations on ibd-graph collections, at or over markers.

e The IBDgraph software takes only a few seconds to run, and can
reduce trait likelihood computations by two orders of magnitude.

e Allows trait models based on joint ibd at more than one locus.
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Realizing ibd partitions among multiple gametes

e \We want joint inference, but for more than 6 gametes, the HMM
is impractical — the number of partitions (ibd states) gets huge.

e Two possible MCMC approaches (for haploid gametes) :
—Chaozhi Zheng — full Bayesian MCMC of parameters, transition
points and ibd transitions, given haplotype data (in press; JCB).
—Chris Glazner — particle filter Monte Carlo approach.

e Another approach (due to Chris Glazner); (Results below).
Building the ibd state across a chromosome by adding diploid in-
dividuals successively to the ibd state, sampling from approximate
conditionals, constrained by current state:

Sample ibd among A, B, C: first sample (Z(A, B)| X4, Xpg), then
(Z(B,C)|Z(A,B),Xp, X), then (Z(A,C)|Z(B,C),Z(A,B), X 4, X¢).
Likelihood is “Product of approximate conditionals’

e Using Markov models for latent ibd, with marker data X dependent
on the latent ibd state, we can realize ibd Z among gametes of
individuals not known to be related.
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An example of related individuals in a population

e A simulation:

e Causal DNA descends from

magenta founder to the three
families.

e QQuantitative trait is simulated

on green families, given geno-

types at the causal locus.

e Descent across the chromo-

some is simulated given descent

at the causal locus.

e SNP marker data are simu-

lated on the three families,

given each SNP marker location

descent.
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LOD score

LLod scores based on inferred ibd; No pedigree info!

e Results due to Chris Glazner.

—— True simulated IBD o Results
S - - - - Estimated from phased markers assessed
- - - Estimated from unphased markers by ability
: to recover
© linkage lod
score.
o e Information
. comes from
Trait locus
between
Lo
I | | | | family ibd
0 50 100 150 200

Position (cM)

e If data can be phased (i.e. we can identify the haplotypes that
make up the genotypes of the observed individuals) we can almost
perfectly recover the true-ibd lod-score curve.
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Summary:
Genetic analyses can be based on inferred ibd

e In populations, modern SNP data enable realizations of ibd.

e The pedigree/population source of the ibd inference is irrelevant
to analysis — lod scores and test statistics are funtions of /bd.

e Modeling descent is important: ibd measures relevant location-
specific relatedness, whether in pedigrees or in populations

e Modeling genomes is important: our genomes are not 3 million
exchangeable SNPs. In terms of /bd segments, human genomes are
short.

e Models are important: Models do not mimic reality. Models pro-
vide a map to assess inferences and information.

e Models should be flexible:

— assuming a pedigree structure is not flexible.

— assuming no error in marker data is not flexible.

— assuming only transitions of a single gametes is not flexible.
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