
Approximation power of deep networks

Matus Telgarsky <mjt@illinois.edu>

(with help from many friends!)

mailto:mjt@illinois.edu

Goal: in some prediction problem,

replace f : Rd → R with neural network g : Rd → R.

Primary setting: statistical learning theory, thus∫
`(f(x), y) dP (x, y) vs.

∫
`(g(x), y) dP (x, y).

I Upper bounds: If `(·, y) is 1-Lipschitz,∫ [
`(g(x), y)− `(f(x), y)

]
dP (x, y) ≤

∣∣g(x)− f(x)
∣∣dP (x, y);

we make this small everywhere
(universal/uniform/L∞(P) apx), or in L1(P).

I Lower bounds: we want large error on a large set;
as a surrogate, |g − f | large in L1(P) or L1(Unif).

Goal: in some prediction problem,

replace f : Rd → R with neural network g : Rd → R.

Primary setting: statistical learning theory, thus∫
`(f(x), y) dP (x, y) vs.

∫
`(g(x), y) dP (x, y).

I Upper bounds: If `(·, y) is 1-Lipschitz,∫ [
`(g(x), y)− `(f(x), y)

]
dP (x, y) ≤

∣∣g(x)− f(x)
∣∣dP (x, y);

we make this small everywhere
(universal/uniform/L∞(P) apx), or in L1(P).

I Lower bounds: we want large error on a large set;
as a surrogate, |g − f | large in L1(P) or L1(Unif).

Goal: in some prediction problem,

replace f : Rd → R with neural network g : Rd → R.

Primary setting: statistical learning theory, thus∫
`(f(x), y) dP (x, y) vs.

∫
`(g(x), y) dP (x, y).

I Upper bounds: If `(·, y) is 1-Lipschitz,∫ [
`(g(x), y)− `(f(x), y)

]
dP (x, y) ≤

∣∣g(x)− f(x)
∣∣dP (x, y);

we make this small everywhere
(universal/uniform/L∞(P) apx), or in L1(P).

I Lower bounds: we want large error on a large set;
as a surrogate, |g − f | large in L1(P) or L1(Unif).

Goal: in some prediction problem,

replace f : Rd → R with neural network g : Rd → R.

Primary setting: statistical learning theory, thus∫
`(f(x), y) dP (x, y) vs.

∫
`(g(x), y) dP (x, y).

I Upper bounds: If `(·, y) is 1-Lipschitz,∫ [
`(g(x), y)− `(f(x), y)

]
dP (x, y) ≤

∣∣g(x)− f(x)
∣∣dP (x, y);

we make this small everywhere
(universal/uniform/L∞(P) apx), or in L1(P).

I Lower bounds: we want large error on a large set;
as a surrogate, |g − f | large in L1(P) or L1(Unif).

By deep networks we mostly mean

x 7→ ALσL−1

(
· · ·σ1(A1x+ b1) · · ·

)
+ bL,

where nonlinearity/activation/transfer σi
is applied coordinate-wise.

There are many conventions;
we will briefly discuss others.

We’ll mostly stick to the ReLU z 7→ max{0, z} (Fukushima ’80);
it’s easy to convert.

By deep networks we mostly mean

x 7→ ALσL−1

(
· · ·σ1(A1x+ b1) · · ·

)
+ bL,

where nonlinearity/activation/transfer σi
is applied coordinate-wise.

There are many conventions;
we will briefly discuss others.

We’ll mostly stick to the ReLU z 7→ max{0, z} (Fukushima ’80);
it’s easy to convert.

By deep networks we mostly mean

x 7→ ALσL−1

(
· · ·σ1(A1x+ b1) · · ·

)
+ bL,

where nonlinearity/activation/transfer σi
is applied coordinate-wise.

There are many conventions;
we will briefly discuss others.

We’ll mostly stick to the ReLU z 7→ max{0, z} (Fukushima ’80);
it’s easy to convert.

Elementary universal approximation.

Classical universal approximation.

Benefits of depth.

1

0 1

Sobolev spaces.

Odds & ends.

Univariate functions via step activations

x 7→ 2·1[x−3 ≥ 0]+1[x−5 ≥ 0]+2·1[x−7 ≥ 0]−1[x−13 ≥ 0] · · ·

Remark. By contrast, polynomials struggle with flat regions.

Univariate functions via step activations

x 7→ 2·1[x−3 ≥ 0]+1[x−5 ≥ 0]+2·1[x−7 ≥ 0]−1[x−13 ≥ 0] · · ·

Remark. By contrast, polynomials struggle with flat regions.

Univariate functions via step activations

x 7→ 2·1[x−3 ≥ 0]+1[x−5 ≥ 0]+2·1[x−7 ≥ 0]−1[x−13 ≥ 0] · · ·

Remark. By contrast, polynomials struggle with flat regions.

Smooth univariate functions via step activations

Approach #1: subdivide range, Lip/ε steps.
Approach #2: by FTC, for x ≥ 0,

f(x) = f(0) +

∫ x

0
f ′(b) db = f(0) +

∫ ∞
0

1[x− b ≥ 0]f ′(b) db.

This is a density over infinitely many steps/nodes!
Sample avg Lip/ε2 steps.
Remarks.

I Infinite width network!

I Refined average-case estimate! (Captures flat regions.)

Smooth univariate functions via step activations

Approach #1: subdivide range, Lip/ε steps.
Approach #2: by FTC, for x ≥ 0,

f(x) = f(0) +

∫ x

0
f ′(b) db = f(0) +

∫ ∞
0

1[x− b ≥ 0]f ′(b) db.

This is a density over infinitely many steps/nodes!
Sample avg Lip/ε2 steps.
Remarks.

I Infinite width network!

I Refined average-case estimate! (Captures flat regions.)

Smooth univariate functions via step activations

Approach #1: subdivide range, Lip/ε steps.
Approach #2: by FTC, for x ≥ 0,

f(x) = f(0) +

∫ x

0
f ′(b) db = f(0) +

∫ ∞
0

1[x− b ≥ 0]f ′(b) db.

This is a density over infinitely many steps/nodes!
Sample avg Lip/ε2 steps.
Remarks.

I Infinite width network!

I Refined average-case estimate! (Captures flat regions.)

Smooth univariate functions via step activations

Approach #1: subdivide range, Lip/ε steps.

Approach #2: by FTC, for x ≥ 0,

f(x) = f(0) +

∫ x

0
f ′(b) db = f(0) +

∫ ∞
0

1[x− b ≥ 0]f ′(b) db.

This is a density over infinitely many steps/nodes!
Sample avg Lip/ε2 steps.
Remarks.

I Infinite width network!

I Refined average-case estimate! (Captures flat regions.)

Smooth univariate functions via step activations

Approach #1: subdivide range, Lip/ε steps.
Approach #2: by FTC, for x ≥ 0,

f(x) = f(0) +

∫ x

0
f ′(b) db = f(0) +

∫ ∞
0

1[x− b ≥ 0]f ′(b) db.

This is a density over infinitely many steps/nodes!
Sample avg Lip/ε2 steps.

Remarks.

I Infinite width network!

I Refined average-case estimate! (Captures flat regions.)

Smooth univariate functions via step activations

Approach #1: subdivide range, Lip/ε steps.
Approach #2: by FTC, for x ≥ 0,

f(x) = f(0) +

∫ x

0
f ′(b) db = f(0) +

∫ ∞
0

1[x− b ≥ 0]f ′(b) db.

This is a density over infinitely many steps/nodes!
Sample avg Lip/ε2 steps.
Remarks.

I Infinite width network!

I Refined average-case estimate! (Captures flat regions.)

Univariate functions via ReLU activations

Include ReLU z 7→ max{0, z} with change of slope.

How about smooth functions? For x ≥ 0,

f(x) = f(0) + σr(x)f ′(0) +

∫ ∞
0

σr(x− b)f ′′(b) d(b).

Need to sample avg smooth/ε2 ReLU!

(In some sense optimal (Savarese-Evron-Soudry-Srebro ’19).)

Univariate functions via ReLU activations

Include ReLU z 7→ max{0, z} with change of slope.

How about smooth functions? For x ≥ 0,

f(x) = f(0) + σr(x)f ′(0) +

∫ ∞
0

σr(x− b)f ′′(b) d(b).

Need to sample avg smooth/ε2 ReLU!

(In some sense optimal (Savarese-Evron-Soudry-Srebro ’19).)

Univariate functions via ReLU activations

Include ReLU z 7→ max{0, z} with change of slope.

How about smooth functions?

For x ≥ 0,

f(x) = f(0) + σr(x)f ′(0) +

∫ ∞
0

σr(x− b)f ′′(b) d(b).

Need to sample avg smooth/ε2 ReLU!

(In some sense optimal (Savarese-Evron-Soudry-Srebro ’19).)

Univariate functions via ReLU activations

Include ReLU z 7→ max{0, z} with change of slope.

How about smooth functions? For x ≥ 0,

f(x) = f(0) + σr(x)f ′(0) +

∫ ∞
0

σr(x− b)f ′′(b) d(b).

Need to sample avg smooth/ε2 ReLU!

(In some sense optimal (Savarese-Evron-Soudry-Srebro ’19).)

Univariate functions via ReLU activations

Include ReLU z 7→ max{0, z} with change of slope.

How about smooth functions? For x ≥ 0,

f(x) = f(0) + σr(x)f ′(0) +

∫ ∞
0

σr(x− b)f ′′(b) d(b).

Need to sample avg smooth/ε2 ReLU!

(In some sense optimal (Savarese-Evron-Soudry-Srebro ’19).)

Multivariate, but finitely many points

With probability 1, a random line has unique projections.
We’ve reduced to the univariate case.

Caveats:

I Representation size may have blown up.

I Not our original goal.

Multivariate, but finitely many points

With probability 1, a random line has unique projections.
We’ve reduced to the univariate case.

Caveats:

I Representation size may have blown up.

I Not our original goal.

Multivariate, but finitely many points

With probability 1, a random line has unique projections.
We’ve reduced to the univariate case.

Caveats:

I Representation size may have blown up.

I Not our original goal.

Multivariate, but finitely many points

With probability 1, a random line has unique projections.
We’ve reduced to the univariate case.

Caveats:

I Representation size may have blown up.

I Not our original goal.

Approximate a multivariate box.

Supporting hyperplanes! . . . oops.

Fix #1: product halfspaces together! (we’ll return to this...)
Fix #2: add a layer, thresholding at 3.5!
...how about one ReLU/hidden layer?

Approximate a multivariate box.

Supporting hyperplanes!

. . . oops.

Fix #1: product halfspaces together! (we’ll return to this...)
Fix #2: add a layer, thresholding at 3.5!
...how about one ReLU/hidden layer?

Approximate a multivariate box.

Supporting hyperplanes!

. . . oops.

Fix #1: product halfspaces together! (we’ll return to this...)
Fix #2: add a layer, thresholding at 3.5!
...how about one ReLU/hidden layer?

Approximate a multivariate box.

4

2 2

22

3

3

3

3

Supporting hyperplanes! . . . oops.

Fix #1: product halfspaces together! (we’ll return to this...)
Fix #2: add a layer, thresholding at 3.5!
...how about one ReLU/hidden layer?

Approximate a multivariate box.

4

2 2

22

3

3

3

3

Supporting hyperplanes! . . . oops.

Fix #1: product halfspaces together! (we’ll return to this...)

Fix #2: add a layer, thresholding at 3.5!
...how about one ReLU/hidden layer?

Approximate a multivariate box.

1

0 0

00

0

0

0

0

Supporting hyperplanes! . . . oops.

Fix #1: product halfspaces together! (we’ll return to this...)
Fix #2: add a layer, thresholding at 3.5!

...how about one ReLU/hidden layer?

Approximate a multivariate box.

1

0 0

00

0

0

0

0

Supporting hyperplanes! . . . oops.

Fix #1: product halfspaces together! (we’ll return to this...)
Fix #2: add a layer, thresholding at 3.5!
...how about one ReLU/hidden layer?

Approximate a multivariate ball.

Fix #3: add all the hyperplanes!

Resulting radial function is constant within ball,
attenuates away from it.

Bad news: good apx seems to require 2d nodes. . .
(We’ll come back to this.)

Approximate a multivariate ball.

Fix #3: add all the hyperplanes!

Resulting radial function is constant within ball,
attenuates away from it.

Bad news: good apx seems to require 2d nodes. . .
(We’ll come back to this.)

Approximate a multivariate ball.

Fix #3: add all the hyperplanes!
Resulting radial function is constant within ball,
attenuates away from it.

Bad news: good apx seems to require 2d nodes. . .
(We’ll come back to this.)

Approximate a multivariate ball.

Fix #3: add all the hyperplanes!
Resulting radial function is constant within ball,
attenuates away from it.

Bad news: good apx seems to require 2d nodes. . .
(We’ll come back to this.)

Combinations of radial bumps.

Normalize bumps/RBFs into density p; convolve with f .

∣∣∣∣f(x)−
∫
f(z)p(x− z) dz

∣∣∣∣ =

∣∣∣∣f(x)−
∫
f(x− z)p(z) dz

∣∣∣∣
=

∣∣∣∣∫ f(x)p(z) dz −
∫
f(x− z)p(z) dz

∣∣∣∣ ≤ ∫ ∣∣f(x)− f(x− z)
∣∣ p(z) dz,

which is small if p(z) ≈ 0 for large ‖z‖.
Size estimate:

(
d·Lip/ε

)O(d)
.

(Mhaskar-Michelli ’92, BJTX ’19.)

Combinations of radial bumps.

Normalize bumps/RBFs into density p; convolve with f .∣∣∣∣f(x)−
∫
f(z)p(x− z) dz

∣∣∣∣ =

∣∣∣∣f(x)−
∫
f(x− z)p(z) dz

∣∣∣∣
=

∣∣∣∣∫ f(x)p(z) dz −
∫
f(x− z)p(z) dz

∣∣∣∣ ≤ ∫ ∣∣f(x)− f(x− z)
∣∣ p(z) dz,

which is small if p(z) ≈ 0 for large ‖z‖.

Size estimate:
(
d·Lip/ε

)O(d)
.

(Mhaskar-Michelli ’92, BJTX ’19.)

Combinations of radial bumps.

Normalize bumps/RBFs into density p; convolve with f .∣∣∣∣f(x)−
∫
f(z)p(x− z) dz

∣∣∣∣ =

∣∣∣∣f(x)−
∫
f(x− z)p(z) dz

∣∣∣∣
=

∣∣∣∣∫ f(x)p(z) dz −
∫
f(x− z)p(z) dz

∣∣∣∣ ≤ ∫ ∣∣f(x)− f(x− z)
∣∣ p(z) dz,

which is small if p(z) ≈ 0 for large ‖z‖.
Size estimate:

(
d·Lip/ε

)O(d)
.

(Mhaskar-Michelli ’92, BJTX ’19.)

So far:

I Easy univariate constructions.

I 3-layer box constructions over Rd: size
(

Lip/ε
)O(d)

.

I 2-layer RBF convolutions over Rd: size
(
d·Lip/ε

)O(d)
.

Remarks.

I Impractical constructions! Bad Lipschitz constants.

I Contrast with polynomials: flat pieces.

I Usefuleness of infinite width! Note also:

Eσr(a
Tx) =

1

2
E|aTx| = ‖x‖√

2π
.

I Poor complexity measures outside univariate!

Interlude: three questions

1. Are fixed DN architectures closed under addition?

2. Can RNNs model Turing Machines?

f f f
s1 s2 s3

y1 y2 y3

x1 x2 x3

3. Given continuous g : Rd → R,
can we construct custom univariate activations so that

g(x)
!

=

2d∑
i=0

fi

 d∑
j=1

hi,j(xj)

?

Elementary universal approximation.

Classical universal approximation.

Benefits of depth.

1

0 1

Sobolev spaces.

Odds & ends.

Bumps via multiplication

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0.0

0.2

0.4

0.6

0.8

1.0 cos(x)

cos(x)2

cos(x)4

cos(x)8

cos(x)16

cos(x)32

Univariate bump: cos(x)p for large p. Multivariate bump:

1
[
‖x‖∞ ≤ 1

]
=

d∏
i=1

1
[
|xi| ≤ 1

]
and

d∏
i=1

cos(xi)
p.

To remove the product:

cos(x) cos(x) =
1

2

(
cos(2x) + 1

)
,

2 cos(x1) cos(x2) = cos(x1 + x2) + cos(x1 − x2).

Bumps via multiplication

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0.0

0.2

0.4

0.6

0.8

1.0 cos(x)

cos(x)2

cos(x)4

cos(x)8

cos(x)16

cos(x)32

Univariate bump: cos(x)p for large p.

Multivariate bump:

1
[
‖x‖∞ ≤ 1

]
=

d∏
i=1

1
[
|xi| ≤ 1

]
and

d∏
i=1

cos(xi)
p.

To remove the product:

cos(x) cos(x) =
1

2

(
cos(2x) + 1

)
,

2 cos(x1) cos(x2) = cos(x1 + x2) + cos(x1 − x2).

Bumps via multiplication

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0.0

0.2

0.4

0.6

0.8

1.0 cos(x)

cos(x)2

cos(x)4

cos(x)8

cos(x)16

cos(x)32

Univariate bump: cos(x)p for large p. Multivariate bump:

1
[
‖x‖∞ ≤ 1

]
=

d∏
i=1

1
[
|xi| ≤ 1

]
and

d∏
i=1

cos(xi)
p.

To remove the product:

cos(x) cos(x) =
1

2

(
cos(2x) + 1

)
,

2 cos(x1) cos(x2) = cos(x1 + x2) + cos(x1 − x2).

Bumps via multiplication

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0.0

0.2

0.4

0.6

0.8

1.0 cos(x)

cos(x)2

cos(x)4

cos(x)8

cos(x)16

cos(x)32

Univariate bump: cos(x)p for large p. Multivariate bump:

1
[
‖x‖∞ ≤ 1

]
=

d∏
i=1

1
[
|xi| ≤ 1

]
and

d∏
i=1

cos(xi)
p.

To remove the product:

cos(x) cos(x) =
1

2

(
cos(2x) + 1

)
,

2 cos(x1) cos(x2) = cos(x1 + x2) + cos(x1 − x2).

Weierstrass approximation theorem

Theorem (Weierstrass, 1885). Polynomials can uniformly
approximate continuous functions over compact sets.

Remarks.

I Not a consequence of interpolation:
must control behavior between interpolants.

I Proofs are interesting; e.g., Bernstein (Bernstein
polynomials and tail bounds), Weierstrass (Gaussian
smoothing gives analytic functions). . . .

I Stone-Weierstrass theorem: Polynomial-like function
families (e.g., closed under multiplication) also approximate
continuous function.

Weierstrass approximation theorem

Theorem (Weierstrass, 1885). Polynomials can uniformly
approximate continuous functions over compact sets.

Remarks.

I Not a consequence of interpolation:
must control behavior between interpolants.

I Proofs are interesting; e.g., Bernstein (Bernstein
polynomials and tail bounds), Weierstrass (Gaussian
smoothing gives analytic functions). . . .

I Stone-Weierstrass theorem: Polynomial-like function
families (e.g., closed under multiplication) also approximate
continuous function.

Theorem (Hornik-Stinchcombe-White ’89).
Let σ : R→ R be given with

lim
z→−∞

σ(z) = 0, lim
z→+∞

σ(z) = 1,

and define Hσ :=
{
x 7→ σ(aTx− b) : (a, b) ∈ Rd+1

}
.

Then span(Hσ) uniformly approximates
continuous functions on compact sets.

Theorem (Hornik-Stinchcombe-White ’89).
Let σ : R→ R be given with

lim
z→−∞

σ(z) = 0, lim
z→+∞

σ(z) = 1,

and define Hσ :=
{
x 7→ σ(aTx− b) : (a, b) ∈ Rd+1

}
.

Then span(Hσ) uniformly approximates
continuous functions on compact sets.

Proof #1. Hcos is closed under products since

2 cos(a) cos(b) = cos(a+ b) + cos(a− b).

Now uniformly approximate fixed Hcos with span(Hσ).
(Univariate fitting.)

Proof #2. Hexp is closed under products since eaeb = ea+b.
Now uniformly approximate fixed Hexp with span(Hσ).
(Univariate fitting.)

Theorem (Hornik-Stinchcombe-White ’89).
Let σ : R→ R be given with

lim
z→−∞

σ(z) = 0, lim
z→+∞

σ(z) = 1,

and define Hσ :=
{
x 7→ σ(aTx− b) : (a, b) ∈ Rd+1

}
.

Then span(Hσ) uniformly approximates
continuous functions on compact sets.

Theorem (Hornik-Stinchcombe-White ’89).
Let σ : R→ R be given with

lim
z→−∞

σ(z) = 0, lim
z→+∞

σ(z) = 1,

and define Hσ :=
{
x 7→ σ(aTx− b) : (a, b) ∈ Rd+1

}
.

Then span(Hσ) uniformly approximates
continuous functions on compact sets.

Remarks.

I ReLU is fine: use σ(z) := σr(z)− σr(z − 1).

I Size estimate: expanding terms, seem to get
(

Lip/ε
)Ω(d)

.

I Best conditions on σ (Leshno-Lin-Pinkus-Schocken ’93):
theorem holds iff σ not a polynomial.

I Inner hint about DN:
no need for explicit multiplication?

Other proofs.

I (Cybenko ’89.)
Assume contradictorily you miss some functions.
By duality, 0 =

∫
σ(aTx− b) dµ(x)

for some signed measure µ, all (a, b).
Using Fourier, can show this implies µ = 0. . .

I (Leshno-Lin-Pinkus-Schocken ’93.)
If σ a polynomial, . . . ;
else can (roughly) get derivatives of all orders,

polynomials of all orders.

I (Barron ’93.)
Consider activation x 7→ exp(iaTx),

infinite width form

∫
exp(iaTx)f̃(a) da.

Take real part and sample (Maurey) to get g ∈ span(Hcos);
convert to span(Hσ) as before.

I (Funahashi ’89.) Also Fourier, measure-theoretic.

“Universal approximation”
(Uniform approximation of cont. functions on compact sets).

I Elementary proof: RBF (Mhaskar-Michelli ’92; BJTX ’19).

I Slick proof: Stone-Weierstrass and Hcos or Hexp

(Hornik-Stinchcombe-White, ’89).

I Proof with size estimates beating
(

Lip/ε
)d

,
indeed norm of Fourier transform of gradient,
related to “sampling measure”: (Barron ’93).

Remarks.

I Exhibits nothing special about DN;
indeed, same proofs work for boosting, RBF SVM, . . .

I Size estimates huge (soon we’ll see dΩ(d)).

I Proofs use nice representation “tricks”;
(e.g., Leshno et al “iff not polynomial”).

Elementary universal approximation.

Classical universal approximation.

Benefits of depth.

1

0 1

Sobolev spaces.

Odds & ends.

Radial functions are easy with two ReLU layers

Consider f(‖x‖2) with Lipschitz constant Lip.

I Pick h(x) ≈ε ‖x‖22 =
∑

i x
2
i with d·Lip/ε ReLU.

I Pick g ≈ε f with Lip/ε ReLU; then∣∣∣f(‖x‖2)− g(h(x))
∣∣∣ ≤ ∣∣∣f(‖x‖2)− f(h(x))

∣∣∣+
∣∣f(h(x))− g(h(x))

∣∣
≤ Lip

∣∣∣‖x‖2 − h(x)
∣∣∣+ ε ≤ 2ε.

Remarks.

I Final size of g ◦ h is poly(Lip, d, 1/ε).

I Proof style is “typical”/lazy;
(problematically) pays with Lipschitz constant.

I That was easy/intuitive; how about the 2 layer case?...

Radial functions are easy with two ReLU layers

Consider f(‖x‖2) with Lipschitz constant Lip.

I Pick h(x) ≈ε ‖x‖22 =
∑

i x
2
i with d·Lip/ε ReLU.

I Pick g ≈ε f with Lip/ε ReLU; then∣∣∣f(‖x‖2)− g(h(x))
∣∣∣ ≤ ∣∣∣f(‖x‖2)− f(h(x))

∣∣∣+
∣∣f(h(x))− g(h(x))

∣∣
≤ Lip

∣∣∣‖x‖2 − h(x)
∣∣∣+ ε ≤ 2ε.

Remarks.

I Final size of g ◦ h is poly(Lip, d, 1/ε).

I Proof style is “typical”/lazy;
(problematically) pays with Lipschitz constant.

I That was easy/intuitive; how about the 2 layer case?...

Radial functions are easy with two ReLU layers

Consider f(‖x‖2) with Lipschitz constant Lip.

I Pick h(x) ≈ε ‖x‖22 =
∑

i x
2
i with d·Lip/ε ReLU.

I Pick g ≈ε f with Lip/ε ReLU; then∣∣∣f(‖x‖2)− g(h(x))
∣∣∣ ≤ ∣∣∣f(‖x‖2)− f(h(x))

∣∣∣+
∣∣f(h(x))− g(h(x))

∣∣
≤ Lip

∣∣∣‖x‖2 − h(x)
∣∣∣+ ε ≤ 2ε.

Remarks.

I Final size of g ◦ h is poly(Lip, d, 1/ε).

I Proof style is “typical”/lazy;
(problematically) pays with Lipschitz constant.

I That was easy/intuitive; how about the 2 layer case?...

Radial functions are not easy with only one ReLU layer (I)

Theorem (Eldan-Shamir, 2015).
There exists a radial function f ,

expressible with two ReLU layers of width poly(d),
and a probability measure P
so that every g with a single ReLU layer of width 2O(d) satisfies∫ (

f(x)− g(x)
)2

dP (x) ≥ Ω(1).

Proof hints.
Apply Fourier isometry and consider the transforms.
Transform of g is supported on a small set of tubes;
transform of f has large mass they can’t reach.

Radial functions are not easy with only one ReLU layer (I)

Theorem (Eldan-Shamir, 2015).
There exists a radial function f ,

expressible with two ReLU layers of width poly(d),
and a probability measure P
so that every g with a single ReLU layer of width 2O(d) satisfies∫ (

f(x)− g(x)
)2

dP (x) ≥ Ω(1).

Proof hints.
Apply Fourier isometry and consider the transforms.
Transform of g is supported on a small set of tubes;
transform of f has large mass they can’t reach.

Radial functions are not easy with only one ReLU layer (II)

Theorem (Daniely, 2017).
Let (x, x′) ∼ P be uniform on two sphere surfaces,

define h(x, x′) = sin(πd3xTx′).
For any g with a single ReLU layer

of width dO(d) and weight magnitude O(2d),∫ (
h(x, x′)− g(x, x′)

)2
dP (x, x′) ≥ Ω(1),

and h can be approximated to accuracy ε
by f with two ReLU layers of size poly(d, 1/ε).

Proof hints.
Spherical harmonics reduce this to a univariate problem;
apply region counting.

Radial functions are not easy with only one ReLU layer (II)

Theorem (Daniely, 2017).
Let (x, x′) ∼ P be uniform on two sphere surfaces,

define h(x, x′) = sin(πd3xTx′).
For any g with a single ReLU layer

of width dO(d) and weight magnitude O(2d),∫ (
h(x, x′)− g(x, x′)

)2
dP (x, x′) ≥ Ω(1),

and h can be approximated to accuracy ε
by f with two ReLU layers of size poly(d, 1/ε).

Proof hints.
Spherical harmonics reduce this to a univariate problem;
apply region counting.

Approximation of high-dimensional radial functions

(A radial function contour plot.)

If we can approximate each shell,
we can approximate the overall function.

Approximation of high-dimensional radial shell

Let’s approximate a single shell; consider

x 7→ 1
[
‖x‖ ∈ [1− 1/d , 1]

]
,

which has a constant fraction of sphere volume.

Can’t cut too deeply; get bad error on inner zero part. . .

. . . but then we need to cover exponentially many caps.

Approximation of high-dimensional radial shell

Let’s approximate a single shell; consider

x 7→ 1
[
‖x‖ ∈ [1− 1/d , 1]

]
,

which has a constant fraction of sphere volume.

Can’t cut too deeply; get bad error on inner zero part. . .

. . . but then we need to cover exponentially many caps.

Approximation of high-dimensional radial shell

Let’s approximate a single shell; consider

x 7→ 1
[
‖x‖ ∈ [1− 1/d , 1]

]
,

which has a constant fraction of sphere volume.

Can’t cut too deeply; get bad error on inner zero part. . .

. . . but then we need to cover exponentially many caps.

Let’s go back to the drawing board;
what do shallow representations do exceptionally badly?

One weakness: their complexity scales with #bumps.

Let’s go back to the drawing board;
what do shallow representations do exceptionally badly?

One weakness: their complexity scales with #bumps.

Consider the tent map

∆(x) := σr(2x)− σr(4x− 2) =

{
2x x ∈ [0, 1/2),

2(1− x) x ∈ [1/2, 1].

1

0 1

∆.

1

0 1

∆2 = ∆ ◦∆.

1

0 1

∆k.

What is the effect of composition?

f(∆(x)) =

{
x ∈ [0, 1/2) =⇒ f(2x) = f squeezed into [0, 1/2],

x ∈ [1/2, 1] =⇒ f
(
2(1− x)

)
= f reversed, squeezed.

∆k uses O(k) layers & nodes, but has O(2k) bumps.

Consider the tent map

∆(x) := σr(2x)− σr(4x− 2) =

{
2x x ∈ [0, 1/2),

2(1− x) x ∈ [1/2, 1].

1

0 1

∆.

1

0 1

∆2 = ∆ ◦∆.

1

0 1

∆k.

What is the effect of composition?

f(∆(x)) =

{
x ∈ [0, 1/2) =⇒ f(2x) = f squeezed into [0, 1/2],

x ∈ [1/2, 1] =⇒ f
(
2(1− x)

)
= f reversed, squeezed.

∆k uses O(k) layers & nodes, but has O(2k) bumps.

Consider the tent map

∆(x) := σr(2x)− σr(4x− 2) =

{
2x x ∈ [0, 1/2),

2(1− x) x ∈ [1/2, 1].

1

0 1

∆.

1

0 1

∆2 = ∆ ◦∆.

1

0 1

∆k.

What is the effect of composition?

f(∆(x)) =

{
x ∈ [0, 1/2) =⇒ f(2x) = f squeezed into [0, 1/2],

x ∈ [1/2, 1] =⇒ f
(
2(1− x)

)
= f reversed, squeezed.

∆k uses O(k) layers & nodes, but has O(2k) bumps.

Consider the tent map

∆(x) := σr(2x)− σr(4x− 2) =

{
2x x ∈ [0, 1/2),

2(1− x) x ∈ [1/2, 1].

1

0 1

∆.

1

0 1

∆2 = ∆ ◦∆.

1

0 1

∆k.

What is the effect of composition?

f(∆(x)) =

{
x ∈ [0, 1/2) =⇒ f(2x) = f squeezed into [0, 1/2],

x ∈ [1/2, 1] =⇒ f
(
2(1− x)

)
= f reversed, squeezed.

∆k uses O(k) layers & nodes, but has O(2k) bumps.

Consider the tent map

∆(x) := σr(2x)− σr(4x− 2) =

{
2x x ∈ [0, 1/2),

2(1− x) x ∈ [1/2, 1].

1

0 1

∆.

1

0 1

∆2 = ∆ ◦∆.

1

0 1

∆k.

What is the effect of composition?

f(∆(x)) =

{
x ∈ [0, 1/2) =⇒ f(2x) = f squeezed into [0, 1/2],

x ∈ [1/2, 1] =⇒ f
(
2(1− x)

)
= f reversed, squeezed.

∆k uses O(k) layers & nodes, but has O(2k) bumps.

Theorem (T ’15).
Let #layers k ≥ 1 be given.

Exists ReLU network f : [0, 1]→ [0, 1]
with 4 distinct parameters, 3k2 + 9 nodes, 2k2 + 6 layers,

such that every ReLU network g : Rd → R
with ≤ k layers, ≤ 2k nodes

satisfies ∫
[0,1]
|f(x)− g(x)|dx ≥ 1

32
.

Proof.

1. g with few oscillations can’t apx oscillatory regular f .

2. There exists a regular, oscillatory f . (f = ∆k2+3.)

3. Width m depth L =⇒ few (O(mL)) oscillations.
Rediscovered many times;
(T ’15) gives elementary univariate argument;
multivariate arguments in (Warren ’68), (Arnold ?),
(Montufar, Pascanu, Cho, Bengio, ’14), (BT ’18), . . .

Theorem (T ’15).
Let #layers k ≥ 1 be given.
Exists ReLU network f : [0, 1]→ [0, 1]

with 4 distinct parameters, 3k2 + 9 nodes, 2k2 + 6 layers,

such that every ReLU network g : Rd → R
with ≤ k layers, ≤ 2k nodes

satisfies ∫
[0,1]
|f(x)− g(x)|dx ≥ 1

32
.

Proof.

1. g with few oscillations can’t apx oscillatory regular f .

2. There exists a regular, oscillatory f . (f = ∆k2+3.)

3. Width m depth L =⇒ few (O(mL)) oscillations.
Rediscovered many times;
(T ’15) gives elementary univariate argument;
multivariate arguments in (Warren ’68), (Arnold ?),
(Montufar, Pascanu, Cho, Bengio, ’14), (BT ’18), . . .

Theorem (T ’15).
Let #layers k ≥ 1 be given.
Exists ReLU network f : [0, 1]→ [0, 1]

with 4 distinct parameters, 3k2 + 9 nodes, 2k2 + 6 layers,
such that every ReLU network g : Rd → R

with ≤ k layers, ≤ 2k nodes

satisfies ∫
[0,1]
|f(x)− g(x)|dx ≥ 1

32
.

Proof.

1. g with few oscillations can’t apx oscillatory regular f .

2. There exists a regular, oscillatory f . (f = ∆k2+3.)

3. Width m depth L =⇒ few (O(mL)) oscillations.
Rediscovered many times;
(T ’15) gives elementary univariate argument;
multivariate arguments in (Warren ’68), (Arnold ?),
(Montufar, Pascanu, Cho, Bengio, ’14), (BT ’18), . . .

Theorem (T ’15).
Let #layers k ≥ 1 be given.
Exists ReLU network f : [0, 1]→ [0, 1]

with 4 distinct parameters, 3k2 + 9 nodes, 2k2 + 6 layers,
such that every ReLU network g : Rd → R

with ≤ k layers, ≤ 2k nodes
satisfies ∫

[0,1]
|f(x)− g(x)| dx ≥ 1

32
.

Proof.

1. g with few oscillations can’t apx oscillatory regular f .

2. There exists a regular, oscillatory f . (f = ∆k2+3.)

3. Width m depth L =⇒ few (O(mL)) oscillations.
Rediscovered many times;
(T ’15) gives elementary univariate argument;
multivariate arguments in (Warren ’68), (Arnold ?),
(Montufar, Pascanu, Cho, Bengio, ’14), (BT ’18), . . .

Theorem (T ’15).
Let #layers k ≥ 1 be given.
Exists ReLU network f : [0, 1]→ [0, 1]

with 4 distinct parameters, 3k2 + 9 nodes, 2k2 + 6 layers,
such that every ReLU network g : Rd → R

with ≤ k layers, ≤ 2k nodes
satisfies ∫

[0,1]
|f(x)− g(x)| dx ≥ 1

32
.

Proof.

1. g with few oscillations can’t apx oscillatory regular f .

2. There exists a regular, oscillatory f . (f = ∆k2+3.)

3. Width m depth L =⇒ few (O(mL)) oscillations.
Rediscovered many times;
(T ’15) gives elementary univariate argument;
multivariate arguments in (Warren ’68), (Arnold ?),
(Montufar, Pascanu, Cho, Bengio, ’14), (BT ’18), . . .

g with few oscillations;
f highly oscillatory

, regular
?

=⇒
∫

[0,1]
|g − f | large .

f g

Let’s use f = ∆k2+3.

g with few oscillations;
f highly oscillatory

, regular
?

=⇒
∫

[0,1]
|g − f | large .

f g

Let’s use f = ∆k2+3.

g with few oscillations;
f highly oscillatory

, regular

?
=⇒

∫
[0,1]
|g − f | large .

f
g

Let’s use f = ∆k2+3.

g with few oscillations;
f highly oscillatory, regular

?

=⇒
∫

[0,1]
|g − f | large .

gf

Let’s use f = ∆k2+3.

g with few oscillations;
f highly oscillatory, regular

?

=⇒
∫

[0,1]
|g − f | large .

gf

Let’s use f = ∆k2+3.

g with few oscillations;
f highly oscillatory, regular

?

=⇒
∫

[0,1]
|g − f | large .

gf

Let’s use f = ∆k2+3.

g with few oscillations;
f highly oscillatory, regular

?

=⇒
∫

[0,1]
|g − f | large .

gf

Let’s use f = ∆k2+3.

g with few oscillations;
f highly oscillatory, regular

?

=⇒
∫

[0,1]
|g − f | large .

gf

Let’s use f = ∆k2+3.

Story from benefits of depth:

I Certain radial functions have
polynomial width 2 ReLU layer representation,
exponential width 1 ReLU layer representation.

I ∆k2+3 can be written with O(k2) depth and O(1) width,
requires width Ω(2k) if depth O(k).

Remarks.

I ∆k is 2k-Lipschitz;
possibly nonsensical, unrealistic.

I These results have stood a few years now;
many “technical” questions,
also “realistic” questions.

Story from benefits of depth:

I Certain radial functions have
polynomial width 2 ReLU layer representation,
exponential width 1 ReLU layer representation.

I ∆k2+3 can be written with O(k2) depth and O(1) width,
requires width Ω(2k) if depth O(k).

Remarks.

I ∆k is 2k-Lipschitz;
possibly nonsensical, unrealistic.

I These results have stood a few years now;
many “technical” questions,
also “realistic” questions.

Elementary universal approximation.

Classical universal approximation.

Benefits of depth.

1

0 1

Sobolev spaces.

Odds & ends.

hk := piecewise-affine interpolation of x2 at {0, 1
2k
, 2

2k
, . . . , 2k

2k
}.

h1.

h2.

hk := piecewise-affine interpolation of x2 at {0, 1
2k
, 2

2k
, . . . , 2k

2k
}.

h1. h2.

hk := piecewise-affine interpolation of x2 at {0, 1
2k
, 2

2k
, . . . , 2k

2k
}.

h1. h2.

h1 − h2.

Thus hk(x) = x−∑i≤k ∆i(x)/4i.

hk := piecewise-affine interpolation of x2 at {0, 1
2k
, 2

2k
, . . . , 2k

2k
}.

h1. h2.

h1 − h2.

Thus hk(x) = x−∑i≤k ∆i(x)/4i.

hk := piecewise-affine interpolation of x2 at {0, 1
2k
, 2

2k
, . . . , 2k

2k
}.

h1. h2.

h1 − h2.

Thus hk(x) = x−∑i≤k ∆i(x)/4i.

hk := piecewise-affine interpolation of x2 at {0, 1
2k
, 2

2k
, . . . , 2k

2k
}.

h1. h2.

h1 − h2.

Thus hk(x) = x−∑i≤k ∆i(x)/4i.

hk := piecewise-affine interpolation of x2 at {0, 1
2k
, 2

2k
, . . . , 2k

2k
}.

h1. h2.

Thus hk(x) = x−∑i≤k ∆i(x)/4i.

I hk needs k = O(ln(1/ε)) to ε-apx x 7→ x2 (Yarotsky, ’16),
with matching lower bounds.

I Squaring implies multiplication via polarization:

xTy =
1

2

(
‖x+ y‖2 − ‖x‖2 − ‖y‖2

)
.

I This implies efficient approximation of polynomials;
can we do more?

hk := piecewise-affine interpolation of x2 at {0, 1
2k
, 2

2k
, . . . , 2k

2k
}.

h1. h2.

Thus hk(x) = x−∑i≤k ∆i(x)/4i.

I hk needs k = O(ln(1/ε)) to ε-apx x 7→ x2 (Yarotsky, ’16),
with matching lower bounds.

I Squaring implies multiplication via polarization:

xTy =
1

2

(
‖x+ y‖2 − ‖x‖2 − ‖y‖2

)
.

I This implies efficient approximation of polynomials;
can we do more?

hk := piecewise-affine interpolation of x2 at {0, 1
2k
, 2

2k
, . . . , 2k

2k
}.

h1. h2.

Thus hk(x) = x−∑i≤k ∆i(x)/4i.

I hk needs k = O(ln(1/ε)) to ε-apx x 7→ x2 (Yarotsky, ’16),
with matching lower bounds.

I Squaring implies multiplication via polarization:

xTy =
1

2

(
‖x+ y‖2 − ‖x‖2 − ‖y‖2

)
.

I This implies efficient approximation of polynomials;
can we do more?

Theorem (Yarotsky ’16).
Let dimension d and smoothness order r be given. Given
f : [0, 1]d → R, all rth order derivatives bounded by 1,
exists a network g

with Cd,r ln(e/ε) layers and Cd,rε
−d/r ln(e/ε) nodes

so that
sup

x∈[0,1]d
|f(x)− g(x)| ≤ ε.

Theorem (Yarotsky ’16).
Let dimension d and smoothness order r be given. Given
f : [0, 1]d → R, all rth order derivatives bounded by 1,
exists a network g

with Cd,r ln(e/ε) layers and Cd,rε
−d/r ln(e/ε) nodes

so that
sup

x∈[0,1]d
|f(x)− g(x)| ≤ ε.

Proof.
Conditions imply accurate local Taylor expansions.
Therefore can write f as a linear combination of this basis:

polynomials multiplied by local bumps.

Theorem (Yarotsky ’16).
Let dimension d and smoothness order r be given. Given
f : [0, 1]d → R, all rth order derivatives bounded by 1,
exists a network g

with Cd,r ln(e/ε) layers and Cd,rε
−d/r ln(e/ε) nodes

so that
sup

x∈[0,1]d
|f(x)− g(x)| ≤ ε.

Theorem (Yarotsky ’16).
Let dimension d and smoothness order r be given. Given
f : [0, 1]d → R, all rth order derivatives bounded by 1,
exists a network g

with Cd,r ln(e/ε) layers and Cd,rε
−d/r ln(e/ε) nodes

so that
sup

x∈[0,1]d
|f(x)− g(x)| ≤ ε.

Remarks.

I There is depth, but it is function independent:
only the basis coefficients use f .

I This is a shallow representation:
only the basis coefficients

I Lipschitz constant is possibly bad:
∆1/ε is 1/ε-Lipschitz,
the bumps are 1/εd/r-Lipschitz.

Theorem (Yarotsky ’16).
Let dimension d and smoothness order r be given. Given
f : [0, 1]d → R, all rth order derivatives bounded by 1,
exists a network g

with Cd,r ln(e/ε) layers and Cd,rε
−d/r ln(e/ε) nodes

so that
sup

x∈[0,1]d
|f(x)− g(x)| ≤ ε.

Remarks.

Theorem (Yarotsky ’16).
Let dimension d and smoothness order r be given. Given
f : [0, 1]d → R, all rth order derivatives bounded by 1,
exists a network g

with Cd,r ln(e/ε) layers and Cd,rε
−d/r ln(e/ε) nodes

so that
sup

x∈[0,1]d
|f(x)− g(x)| ≤ ε.

Remarks.

I There is parallel and subsequent work with similar proof
ideas and Lipschitz constants:
(Safran-Shamir ’16), (Petersen-Voigtlaender ’17),
(Schmidt-Hieber ’17).

I Another appearance of polynomials in DN:
Sum-product networks.
These were the first to have depth separation
(Delalleau-Bengio ’11).

Theorem (Yarotsky ’16).
Let dimension d and smoothness order r be given. Given
f : [0, 1]d → R, all rth order derivatives bounded by 1,
exists a network g

with Cd,r ln(e/ε) layers and Cd,rε
−d/r ln(e/ε) nodes

so that
sup

x∈[0,1]d
|f(x)− g(x)| ≤ ε.

Remarks.

Theorem (Yarotsky ’16).
Let dimension d and smoothness order r be given. Given
f : [0, 1]d → R, all rth order derivatives bounded by 1,
exists a network g

with Cd,r ln(e/ε) layers and Cd,rε
−d/r ln(e/ε) nodes

so that
sup

x∈[0,1]d
|f(x)− g(x)| ≤ ε.

Remarks.

I DN can approximate polynomials efficiently,
but the reverse is false:
a single ReLU requires degree 1/ε.

I Polynomials can not handle flat regions well;
this is used above,
and in approximated rational functions (T ’17).

Theorem (Yarotsky ’16).
Let dimension d and smoothness order r be given. Given
f : [0, 1]d → R, all rth order derivatives bounded by 1,
exists a network g

with Cd,r ln(e/ε) layers and Cd,rε
−d/r ln(e/ε) nodes

so that
sup

x∈[0,1]d
|f(x)− g(x)| ≤ ε.

Remarks.

Theorem (Yarotsky ’16).
Let dimension d and smoothness order r be given. Given
f : [0, 1]d → R, all rth order derivatives bounded by 1,
exists a network g

with Cd,r ln(e/ε) layers and Cd,rε
−d/r ln(e/ε) nodes

so that
sup

x∈[0,1]d
|f(x)− g(x)| ≤ ε.

Remarks.

I Corresponding lower bounds indicate depth is needed.

Interlude: three questions

1. Are fixed DN architectures closed under addition?
No, add together perturbed copies of ∆k.

2. Can RNNs model Turing Machines?

f f f
s1 s2 s3

y1 y2 y3

x1 x2 x3

Hint. ReLU networks can do exact Boolean formulae.
Set f to state transition table,
encode tape on s.

3. Given continuous g : Rd → R,
can we construct custom univariate activations so that

g(x)
!

=

2d∑
i=0

fi

 d∑
j=1

hi,j(xj)

?

Hint? Contradicts a Hilbert problem?

Elementary universal approximation.

Classical universal approximation.

Benefits of depth.

1

0 1

Sobolev spaces.

Odds & ends.

Generative modeling

Typical setup: pushforward measure g#µ, meaning

sample x ∼ µ, output g(x).

Many easy constructions have bad/∞ Lipschitz constants!
E.g., mapping uniform into [0, 1/2], (3/2, 2].

Some literature:
(Arora-Ge-Liang-Ma-Zhang ’17, BT ’18, Bai-Ma-Risteski ’19,
Elchanan’s talk this week!)

Randomly initialized networks

Approximation fact in recent optimization papers:
a small perturbation of random initialization
gives any function you want!

(Du-Lee-Li-Wang-Zhai ’18, AllenZhu-Li-Song ’18).

There is residual error from the noise
approximating high-Lipschitz functions is problematic!
(BJTX ’19.)

Randomly sampled networks

Theorem. With probability ≥ 1− 1/e,

sup
‖x‖2≤1

∣∣∣∣∣∣
∫
σr(a

Tx− b) dµ(a, b)− ‖µ‖1
N

N∑
i=1

σr(a
T
i x− bi)

∣∣∣∣∣∣
≤ O

(
B‖µ‖1√

N

)
,

where support of µ has ‖(a, b)‖ ≤ B.

Proof. Invoke Rademacher complexity,
but swap inputs and parameters.

(Koiran-Gurvits ’97, Sun-Gilbert-Tewari ’18, BJTX ’19.)
Also Maurey’s Lemma (Barron ’93).

Randomly sampled networks

Theorem. With probability ≥ 1− 1/e,

sup
‖x‖2≤1

∣∣∣∣∣∣
∫
σr(a

Tx− b) dµ(a, b)− ‖µ‖1
N

N∑
i=1

σr(a
T
i x− bi)

∣∣∣∣∣∣
≤ O

(
B‖µ‖1√

N

)
,

where support of µ has ‖(a, b)‖ ≤ B.

Proof. Invoke Rademacher complexity,
but swap inputs and parameters.

(Koiran-Gurvits ’97, Sun-Gilbert-Tewari ’18, BJTX ’19.)
Also Maurey’s Lemma (Barron ’93).

Adversarial stability

Adversarial examples lower bound the Lipschitz constant. . .

. . . but a bad Lipschitz constant
can be good for adversarial examples!

Given the existence of adversarial examples,
uniform approximation too stringent?

Adversarial stability

Adversarial examples lower bound the Lipschitz constant. . .

. . . but a bad Lipschitz constant
can be good for adversarial examples!

Given the existence of adversarial examples,
uniform approximation too stringent?

Adversarial stability

Adversarial examples lower bound the Lipschitz constant. . .

. . . but a bad Lipschitz constant
can be good for adversarial examples!

Given the existence of adversarial examples,
uniform approximation too stringent?

Turing machines and RNNs

f f f
s1 s2 s3

y1 y2 y3

x1 x2 x3

I Make f the TM state transition table,
s the tape.

I x 7→ 1[x ≥ 0] is not computable;
bits need a special encoding within s.

I Use a robust “cantor-like” encoding.

(Siegelmann-Sontag ’94.)

Turing machines and RNNs

f f f
s1 s2 s3

y1 y2 y3

x1 x2 x3

I Make f the TM state transition table,
s the tape.

I x 7→ 1[x ≥ 0] is not computable;
bits need a special encoding within s.

I Use a robust “cantor-like” encoding.

(Siegelmann-Sontag ’94.)

Turing machines and RNNs

f f f
s1 s2 s3

y1 y2 y3

x1 x2 x3

I Make f the TM state transition table,
s the tape.

I x 7→ 1[x ≥ 0] is not computable;
bits need a special encoding within s.

I Use a robust “cantor-like” encoding.

(Siegelmann-Sontag ’94.)

Kolmogorov-Arnold ’56

There exist continuous ((hi,j)
2d
i=0)dj=1 : R→ R,

so that for any continuous g : Rd → R,
there exist continuous (fi)

2d
i=0 : R→ R

with

g(x) =

2d∑
i=0

fi

(d∑
j=1

hi,j(xj)
)
.

Kolmogorov-Arnold ’56

There exist continuous ((hi,j)
2d
i=0)dj=1 : R→ R,

so that for any continuous g : Rd → R,
there exist continuous (fi)

2d
i=0 : R→ R

with

g(x) =

2d∑
i=0

fi

(d∑
j=1

hi,j(xj)
)
.

Step 1.
Fix target accuracy ε > 0.

Kolmogorov-Arnold ’56

There exist continuous ((hi,j)
2d
i=0)dj=1 : R→ R,

so that for any continuous g : Rd → R,
there exist continuous (fi)

2d
i=0 : R→ R

with

g(x) =

2d∑
i=0

fi

(d∑
j=1

hi,j(xj)
)
.

Step 2.
Choose f : R→ R,
nearly injective Q : Rd → R,
g ≈ f(Q(x))

Kolmogorov-Arnold ’56

There exist continuous ((hi,j)
2d
i=0)dj=1 : R→ R,

so that for any continuous g : Rd → R,
there exist continuous (fi)

2d
i=0 : R→ R

with

g(x) =

2d∑
i=0

fi

(d∑
j=1

hi,j(xj)
)
.

Step 3.
Replace near-injection Q : Rd → R
with

∑
j hj(xj).

1 2 3 4

2
√
2

3
√
2

4
√
2

Kolmogorov-Arnold ’56

There exist continuous ((hi,j)
2d
i=0)dj=1 : R→ R,

so that for any continuous g : Rd → R,
there exist continuous (fi)

2d
i=0 : R→ R

with

g(x) =

2d∑
i=0

fi

(d∑
j=1

hi,j(xj)
)
.

Step 4.
Replace f(

∑
j hj(xj))

with staggered versions
∑

i fi(
∑

j hi,j(xj));

for any x ∈ [0, 1]d,
≥ half are correct.

Kolmogorov-Arnold ’56

There exist continuous ((hi,j)
2d
i=0)dj=1 : R→ R,

so that for any continuous g : Rd → R,
there exist continuous (fi)

2d
i=0 : R→ R

with

g(x) =

2d∑
i=0

fi

(d∑
j=1

hi,j(xj)
)
.

Step 5.
Embed the solutions for infinitely many ε
into one.

Main story.

I Can fit continuous functions in various ways;

the size is bad (
(
d·Lip/ε

)O(d)
).

I Composition and depth bring some concrete benefits;
exponential reductions in width!

I Polynomials may be efficiently approximated,
but also some non-polynomials
(Sobolov balls, rational functions, flat regions, . . .).

Remarks.

I Refined depth separations (e.g., a single new layer)
and practical depth separations
are still elusive.

I Refined, average-case complexity measures are elusive.

Elementary universal approximation.

Classical universal approximation.

Benefits of depth.

1

0 1

Sobolev spaces.

Odds & ends.

Elementary universal approximation.

Classical universal approximation.

Benefits of depth.

1

0 1

Sobolev spaces.

Odds & ends.

Thanks. . . any questions?

