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Application I	





Privacy amplification	



•  A1 shares  n   uniformly random bits  X  with  A2	



•  Eve obtains some information in the form of a quantum 
state    Y	



•  Can they distill a more secure key ?	
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Randomness extraction	



•  A1 generates uniformly random bits  Z,  sends to  A2	



•  Both compute   K = E(X,Z)   where   E   is a suitable 
randomness extractor	



•  Eve sees the seed   Z,   may measure   Y   depending on   Z	



•  Would like   K   to be nearly uniform, even given   Y,Z	
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Ta-Shma construction	



•  Based on Trevisan extractor, assuming   Y   has   b   qubits	



•  Reconstruction paradigm 	

=> 	

Random access code	



If Eve can distinguish   K   from uniform, there is a “short” 
string   A,   such that given any index   i   and   q   
independent copies of   Y,    outputs bit   Xi   with 
probability    ≥ p .	



•  Code length is linear in   n	



•  Superadditivity of information   =>	



	

(1 – H(p)) n   ≤   Σi  I(Xi : Q)   ≤   S(Q)   ≤   |A| + qb	



	

[Ambainis, N., Ta-Shma, Vazirani; N.]	



•  If   b   is “small”, no such distinguisher exists. So   E   is 
quantum-proof.	





Application II	





Local Hamiltonian problem in 1-D	



•  n   particles on a line, each   d-level	



•  nearest neighbour interaction   Hi   between   i   and   i+1,   
Hermitian,   || Hi ||    ≤   1	



•  Would like to understand properties of the ground state of 
the Hamiltonian   H   =   Σi  Hi   	



•  QMA-hard to estimate ground energy to within additive 
error 1/poly    [Aharonov, Gottesman, Irani, Kempe]	



•  If    H   has spectral gap   Ω(1), such approximation is 
tractable    [Landau, Vazirani, Vidick]	
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Area law	



•  A general state may be highly entangled across an interval	



•  Example:   particles paired above may each be in the 
maximally entangled state    (1/√d) Σj ej × ej   	



	

 	

So, the entropy of the reduced state of an interval of 	


	

length   L 	

may be    L log d   (maximal)	



•  If    H   has spectral gap   Ω(1),   the entropy is constant, 
independent of   L    [Hastings; Aharonov, Arad, Kitaev, 
Landau, Vazirani ]	



•  Basis for efficient algorithm	





Key step in Hastings’ proof	



•  If the entropy at cut   i   is “high”,    entropy for all cuts up 
to   i + m   is high	



•  Let   A, B   be contiguous intervals of length   L  within this	



•  Let   S(ρAB), S(ρA), S(ρB)   be the entropies of the 
corresponding reduced states	



•  In general,   S(ρAB)   may be as high as   S(ρA) + S(ρB)	



•  Lieb-Robinson bound   =>  entanglement mostly within	



•  There is a measurement that distinguishes   ρAB   from    
ρA × ρB    with    exp(– c L)   probability of error	
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Hastings’ proof continued…	



•  By monotonicity of relative entropy (data processing 
inequality),    	



	

c’ L   ≤   S(ρA) + S(ρB)  –   S(ρAB)	



=> 	

S2L    ≤    2 SL  – c’ L	



⇒    SL     ≈    L log d  -  c’’ L log L	



•  Contradiction, if   L   is large. So entropy is small across 
every cut.	
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Application III	





Short quantum proofs for 3Sat	



•  NP witness for 3Sat has length   n	


	

(shorter proofs would imply a subexponential algorithm)	



	


•  Surprisingly, two unentangled quantum provers can convince an 

efficient quantum verifier of satisfiability with constant soundness and 
with proofs of length   O(√n polylog(n) )	


	

[Aaronson, Beigi, Drucker, Fefferman, Shor; Chen and Drucker;	


	

 Harrow and Montanaro]	



•  How short can the quantum proofs be?	



satisfiable
or not

φ	



φ	



φ	



ρ	

 σ	





Optimality of the proof system	



•  Unentangled quantum proofs of length shorter than  n1/2 –ε   would 
imply subexponential time algorithm for 3Sat 	


	

[Brandao and Harrow]	



	


•  Goal of the algorithm is to optimize verifier’s acceptance over 

product states (a quadratic objective function)	



•  Instead, optimize over states which are approximately so	



•  Observation:   Product states are infinitely extendible  	



•  A bipartite state   ρ×σ  over   AB   may be extended to   
ρ×σ×σ×σ×σ…   AB1B2B3B4 …	


	

	



•  Every reduced state on   ABi   is identical to that on   AB	





Monogamy of entanglement	



•  A   k-extendible state   τAB    is “close” to the convex hull   SA:B   of 
the set of product states	


	

 	

||τAB - SA:B ||locc-1   ≤   c (log dim(A) / k )1/2	



	

	



	

[Brandao, Christandl, Yard; Brandao and Harrow]	


	


•  Consequence of the chain rule for mutual information and the 

Pinsker inequality	


	


•  Intuition:   system   A   cannot be simultaneously strongly entangled 

with all   k   subsystems    Bi	



•  k-extendibility can be expressed using semi-definite programming 
constraints	



•  Optimization over   k-extendible states for   k ≈ log dim(A)   within 
error   ε  doable in time    exp( (log dim(A))2 / ε2 )	
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Quantum information theory is being 
	

reinvented as we speak���

���
	

Information measures tailored to the task at 
	

hand, are replacing traditional notions���
	

 	

Conditional min-entropy for privacy 	

 	


	

 	

amplification, tensor rank for 	

 	

 	


	

 	

approximation of one-D ground states���

���
	

Much sought: measure for the information 
	

gained by receiving an additional part of a 
	

state���
	

 	

Conditional mutual information? 	




