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Prelude

I Let h be hyperbolic with hyperbolicity cone Λ+.

I If v ∈ Λ+, then the directional derivative

Dvh = v1
∂h

∂x1
+ · · ·+ vn

∂h

∂xn

is hyperbolic with hyperbolicity cone Λ
(1)
+ ⊇ Λ+.

I Hence we get a sequence of relaxations

Λ+ ⊆ Λ
(1)
+ ⊆ Λ

(2)
+ ⊆ · · · ⊆ Λ

(d−1)
+ , d = deg h.

I The map h 7→ Dvh defines a linear operator which preserves
hyperbolicity, under which hyperbolicity cones behave
“nicely”.

I Questions. Are there other such preservers? Can we
determine how they deform hyperbolicity cones?



Stable polynomials

I Let K = R or C, and x = (x1, . . . , xn) a tuple of variables.

I A polynomial f ∈ K[x] is stable if

Im(zj) > 0 for all j =⇒ f(z) 6= 0.

I We also consider the identically zero polynomial to be stable.

I x1 − 2 + 5i, −1 + x1 + 5x2 + 3x3 and 1− 2x1x2 are stable.

I A polynomial f ∈ R[x1] is stable iff f is real-rooted.

I Let
h = xd0f(x1/x0, . . . , xn/x0).

I Lemma. Let f ∈ R[x]. Then f is stable iff h is hyperbolic
with respect to (0, 1, 1, . . . , 1), and Λ+(F ) ⊇ {0} × Rn≥0.

I Question. Which linear operators preserve stability?



Brief history
I RH is equivalent to that

Ξ(t) =
1

2
s(s− 1)π−s/2Γ

(s
2

)
ζ(s), s =

1

2
+ it,

may be approximated, uniformly on compacts, by real-rooted
polynomials.

I This motivated Hermite, Laguerre, Jensen, Pólya, Schur, De
Bruijn, ... to study linear operators preserving real-rootedness.

I Lee and Yang (1952) used ideas and results of Pólya to prove
their celebrated Lee-Yang theorem of multivariate stability of
the partition function of the Ising model.

I Choe-Oxley-Sokal-Wagner, Gurvits, B., Borcea-B.-Liggett
studied stability (preservers) from a combinatorial point of
view.

I Marcus, Srivastava, Spielman used stability preservers in their
work on Ramanujan graphs and the Kadison-Singer problem.

I Anari and Oveis Gharan used stability in computer science
(e.g. for Traveling salesman problem).



Stability preservers

I Example. T = ∂
∂xj

preserves stability (Gauss-Lucas theorem).

I For κ ∈ Nn, let

Kκ[x] = {f ∈ K[x] : degxj (f) ≤ κj for all j}.

I The symbol of a linear operator T : Kκ[x]→ K[x] is

GT = T
(
(x + y)κ

)
=

∑
0≤α≤κ

(
κ

α

)
T (xα)yκ−α,

where xα = xα1
1 · · ·xαnn and

(
κ
α

)
=
(
κ1
α1

)
· · ·
(
κn
αn

)
.

I G ∂
∂x1

= κ1(x1 + y1)
κ1−1(x2 + y2)

κ2 · · · (xn + yn)κn



Pólya-Schur master theorem

I Pólya and Schur (1914) characterized diagonal operators
xn → λnx

n preserving real-rootedness.

I Theorem (Borcea, B., 2009). Let T : Cκ[x]→ C[x] be a
linear operator of rank > 1. Then T preserves stability iff GT
is stable.

I G ∂
∂x1

= κ1(x1 + y1)
κ1−1(x2 + y2)

κ2 · · · (xn + yn)κn is stable.

I Theorem (Borcea, B., 2009). Let T : Rκ[x]→ R[x] be a
linear operator of rank > 2. Then T preserves real stability iff

I GT (x,y) is stable, or
I GT (−x,y) is stable.

I Example. T (f)(x) = f(−x) preserves real stability, and
GT (−x,y) = (x + y)κ.



Transcendental characterization

I The Laguerre–Pólya class, L−Pn, is the class of entire
functions which are limits, uniformly on compacts, of real
stable polynomials.

I Example.

e−x·y = e−(x1y1+···+xnyn) = lim
k→∞

(
1− x1y1

k

)k
· · ·
(

1− xnyn
k

)k
I The symbol of a linear operator T : R[x]→ R[x] is

ḠT (x,y) = T (e−x·y) =
∑
α∈Nn

T (xα)
(−y)α

α!
.

I Theorem (Borcea, B., 2009). Let T : R[x]→ R[x] be a linear
operator of rank > 2. Then T preserves real stability iff

I ḠT (x,y) ∈ L−P2n, or
I ḠT (−x,y) ∈ L−P2n.



Transcendental characterization

I Example. If T = −1 + 2 ∂
∂x1

+ 3 ∂
∂x2

, then

ḠT (x,y) = T (e−x·y) = (−1 + 2y1 + 3y2)e
−x·y ∈ L−P4.

I Corollary. Let T : R[x]→ R[x] be a linear operator of rank
> 2. Then T preserves real-rootedness iff

I ḠT (x, y) ∈ L−P2, or
I ḠT (−x, y) ∈ L−P2.

I Question. Is there a transcendental Helton–Vinnikov theorem?
If f(x, y) ∈ L−P2, then

f(x, y) = det(A+ xB + yC),

where A,B,C?? and det??



Discrete convexity

I A finite subset M of Zn is a polymatroid (or M-convex) if

α, β ∈M and αi > βi =⇒
there is a j such that βj > αj and α− ei + ej ∈M.

I The support of a polynomial f =
∑

α∈Nn a(α)xα is

supp(f) = {α ∈ Nn : a(α) 6= 0}.

I Theorem[Choe-Oxley-Sokal-Wagner, 2004]. The support of a
homogeneous and stable polynomial is a polymatroid.

I Theorem[B., 2007]. The set of bases of the Fano matroid F7

is not the support of any stable polynomial.



Lorentzian (CLC, SLC) polynomials

I Consider a quadratic f written as f =
∑n

i,j=1 aijxixj , where
A = (aij)

n
i,j=1 is a symmetric matrix with nonnegative entries.

I Lemma. f is stable iff A has exactly one positive eigenvalue.

I Definition. A homogeneous degree d polynomial f ∈ R[x]
with positive coefficients is strictly Lorentzian if for all
i1, i2, . . . , id−2, the quadratic

∂

∂xi1
· · · ∂

∂xid−2

f

has Lorentz signature (+,−,−, . . .), i.e., exactly one positive
eigenvalue and n− 1 negative eigenvalues.

I Definition. A polynomial is Lorentzian if it is the limit of
strictly Lorentzian polynomials.



Lorentzian polynomials

I Theorem[B., Huh, 2019]. A homogeneous degree d
polynomial f ∈ R≥0[x] is Lorentzian if

I supp(f) is a polymatroid, and
I For all i1, i2, . . . , id−2, the quadratic

∂

∂xi1
· · · ∂

∂xid−2

f

is stable.

I Example. A polynomial
∑N

k=M akx
kyd−k, ak > 0, is

Lorentzian iff

a2k(
d
k

)2 ≥ ak−1(
d

k−1
) · ak+1(

d
k+1

) , M < k < N.



Lorentzian polynomials

I Example. If M is a polymatroid, then
∑

α∈M
xα

α! , is
Lorentzian.

I Example. If r : 2[n] → N is the rank function of a matroid and
0 < q ≤ 1, then ∑

A⊆[n]

q−r(A)x
n−|A|
0

∏
i∈A

xi

is Lorentzian.

I A matrix A ∈ Rn×n is an M -matrix if all off-diagonal entries
are nonpositive and all principal minors are nonnegative.

I Theorem[B., Huh, 2019]. If A is an M -matrix, then

det(x0I + diag(x1, . . . , xn)A) =
∑
S⊆[n]

A(S)x
n−|S|
0

∏
i∈S

xi

is Lorentzian.



Lorentzian preservers

I Question. Which linear operators preserve the Lorentzian
property?

I Theorem (B., Huh, 2019+). Let T : Rκ[x]→ R[x]. If GT is
Lorentzian, then T preserves the Lorentzian property.

I Corollary. If GT is homogeneous and stable, then T preserves
the Lorentzian property.

I Example. Let α ≤ β ∈ Nn. The operator

T

∑
γ∈Nn

a(γ)xγ

 =
∑

α≤γ≤β
a(γ)xγ

preserves the Lorentzian property (but not stability).

I Nonexample. The operator T : Rκ[x]→ Rκ[x] defined by
T (f)(x) = xκf(1/x1, . . . , 1/xn) preserves real stability but
not the Lorentzian property.



How do zeros move under preservers?

I The symmetric additive convolution of two univariate
polynomials p, q ∈ Rd[x] is

(f �d g)(x) =
1

d!

d∑
k=0

f (k)(0) · g(d−k)(x).

I Let λmax(f) be the largest zero of a real-rooted polynomial f .

I For α ≥ 0, let Uα = 1− α d
dx .

I Theorem (Marcus, Srivastava, Spielman, 2015).

λmax(Uα(f �d g)) ≤ λmax(Uα(f)) + λmax(Uα(g))− dα.

I Theorem (Leake, Ryder, 2018).

λmax(f �d g�d h) +λmax(h) ≤ λmax(g�d h) +λmax(f �d h).



I What is the max-root of a real stable polynomial f?

I Definition. The hyperbolicity set of f is

C[f ] = {x ∈ Rn : f(x)f(y) > 0 for all y ≥ x}
= Λ++(h) ∩ {x0 = 1},

where h = xd0f(x1/x0, . . . , xn/x0).

I If λ is the largest zero of f(x1), then C[f ] = {x ∈ R : x > λ}.
I For f, g ∈ Rκ[x], let

(f �κ g)(x) =
1

κ!

∑
α≤κ

(∂αf)(0) · (∂κ−αg)(x),

where

∂α =

n∏
i=1

(
∂

∂xi

)αi
.



I Lemma. �κ preserves stability on Cκ[x]× Cκ[x].

Proof. Fix stable g and consider T (f) = f �κ g. Then

GT = (x + y)κ �κ g = g(x + y)

is stable.

I Lemma. If f is stable and w ∈ Rn≥0, then f −Dwf is stable,

where Dw = w1
∂
∂x1

+ · · ·+ wn
∂
∂xn

.

Proof. Let T = 1−Dw. Then

ḠT = T (e−x·y) = (1 + w1y1 + · · ·+ wnyn)e−x·y ∈ L−Pn.

I Let Cw[f ] = C[f −Dwf ]. Then u ≤ w =⇒ Cw[f ] ⊆ Cu[f ].



I Theorem (B., Marcus, 2019+). If f, g ∈ Rκ[x], then

Cw[P �κ Q] ⊇ Cw[P ] + Cw[Q]− κw
= {x + y − κw : x ∈ Cw[P ] and y ∈ Cw[Q]},

where κw = (κ1w1, . . . , κnwn).

I If T : Rκ[x]→ Rγ [x] is a linear operator with symbol GT ,
then

T (f(x + y)) = (xγf(y))�γ⊕κ GT (x,y),

where γ ⊕ κ = (γ1, . . . , γm, κ1, . . . , κn).

I Unifies the proofs for the different convolutions considered by
Marcus, Spielman and Srivastava (2015).

I Conjecture(Leake, Ryder, 2018).

C[P �κ Q�κ R] + C[R] ⊇ C[P �κ R] + C[Q�κ R].


