Your Dreams May Come True with $MTP_2...$

Caroline Uhler (MIT)

Joint work with Steffen Lauritzen, Elina Robeva, Bernd Sturmfels, Ngoc Tran, Piotr Zwiernik

Simons Workshop: Hyperbolic Polynomials and Hyperbolic Programming

May 2, 2019

Positive dependence and MTP_2 distributions

A distribution (i.e. density function) ρ on $\mathcal{X} = \prod_{v \in V} \mathcal{X}_v$, with $\mathcal{X}_{\nu} \subseteq \mathbb{R}$ discrete or open subset, is **multivariate totally positive of** order $2 \, (\text{MTP}_2)$ if

 $p(x)p(y)$ \leq $p(x \wedge y)p(x \vee y)$ for all $x, y \in \mathcal{X}$,

where ∧ and ∨ are applied coordinate-wise.

Positive dependence and MTP_2 distributions

A distribution (i.e. density function) ρ on $\mathcal{X} = \prod_{v \in V} \mathcal{X}_v$, with $\mathcal{X}_{\nu} \subseteq \mathbb{R}$ discrete or open subset, is **multivariate totally positive of** order $2 \, (\text{MTP}_2)$ if

 $p(x)p(y)$ \leq $p(x \wedge y)p(x \vee y)$ for all $x, y \in \mathcal{X}$,

where ∧ and ∨ are applied coordinate-wise.

• A random vector X is **positively associated** if for any non-decreasing functions $\phi, \psi : \mathbb{R}^m \to \mathbb{R}$

$$
cov\{\phi(X),\psi(X)\}\geq 0.
$$

Theorem (FortuinKasteleynGinibre inequality, 1971, Karlin & Rinott, 1980) $MTP₂$ implies positive association.

No Yule-Simpson Paradox under $MTP₂!$

The Yule-Simpson paradox says that we may have two random variables X and Y positively associated, but X and Y negatively associated conditionally on a third variable Z.

Sentences in 4863 murder cases in Florida over the six years 1973-1978:

Overall greater proportion of white murderers receiving death sentence than black (3.2% vs. 2.3%); this trend is reversed given color of victim.

Data from: Range (1979)

Reminder: A distribution p on $\mathcal{X} \subseteq \mathbb{R}^m$ is MTP_2 if

 $p(x)p(y) \leq p(x \wedge y)p(x \vee y)$, for all $x, y \in \mathcal{X}$.

Theorem (Lebowitz, 1972; Karlin and Rinott, 1980)

If X is MTP_2 , then

- (i) any marginal distribution is MTP_2
- (ii) any conditional distribution is $MTP₂$

(iii) $X_A \perp\!\!\!\perp X_B \iff cov(X_u, X_v) = 0$ for all $u \in A, v \in B$

Theorem (Bølviken 1982, Karlin & Rinott, 1983)

A multivariate Gaussian distribution $p(x; K)$ is MTP_2 if and only if the inverse covariance matrix K is an M-matrix, that is

 $K_{uv} \leq 0$ for all $u \neq v$.

Theorem (Bølviken 1982, Karlin & Rinott, 1983)

A multivariate Gaussian distribution $p(x; K)$ is MTP_2 if and only if the inverse covariance matrix K is an M-matrix, that is

 $K_{\mu\nu}$ < 0 for all $\mu \neq \nu$.

Ex: 2016 Monthly correlations of global stock markets (InvestmentFrontier.com)

Theorem (Bølviken 1982, Karlin & Rinott, 1983)

A multivariate Gaussian distribution $p(x; K)$ is MTP_2 if and only if the inverse covariance matrix K is an M-matrix, that is

 K_{uv} < 0 for all $u \neq v$.

Ex: 2016 monthly correlations of global stock markets (InvestmentFrontier.com)

Sample distribution is MTP_2 ! If you sample a correlation matrix uniformly at random the probability of it being \rm{MTP}_2 is $< 10^{-6}$!

Reminder: A distribution p on $\mathcal{X} \subseteq \mathbb{R}^m$ is MTP_2 if $p(x)p(y) \leq p(x \wedge y)p(x \vee y)$, for all $x, y \in \mathcal{X}$.

• Distribution of 3 binary variables X, Y and Z is MTP_2 iff

• Dataset on **EPH-gestosis** analyzed by Wermuth & Marchetti (2014)

- edema (high body water retention)
- proteinuria (high amounts of urinary proteins)
- hypertension (elevated blood pressure)

 \bullet This sample distribution is $\text{MTP}_2!$ Although when you sample 3-dim binary distributions only about 2% are MTP_2 .

.

$MTP₂$ constraints are often implicit

$|X|$ is MTP_2 in:

- Gaussian / binary tree models
- Gaussian / binary latent tree models
	- Binary latent class models
	- Single factor analysis models

Hyperbolic MTP_2 exponential families

• An exponential family is a parametric model with density

$$
p_{\theta}(x) = \exp(\langle \theta, T(x) \rangle - A(\theta)),
$$

sample space $\mathcal X$ with measure ν , sufficient statistics $\mathcal T: \mathcal X \to \mathbb R^d$, and space of canonical parameters: $C = \{ \theta \in \mathbb{R}^d : A(\theta) < +\infty \}$

- Gaussian distribution: $A(\theta) = -\alpha \log \det(\theta)$, $C = \mathbb{S}^p_{\succ}$ \succ ⁰
- Hyperbolic exponential family: $A(\theta) = -\alpha \log(f(\theta))$, f hyperbolic with hyperbolicity cone C

Hyperbolic MTP_2 exponential families

An exponential family is a parametric model with density

$$
p_{\theta}(x) = \exp(\langle \theta, T(x) \rangle - A(\theta)),
$$

sample space $\mathcal X$ with measure ν , sufficient statistics $\mathcal T: \mathcal X \to \mathbb R^d$, and space of canonical parameters: $C = \{ \theta \in \mathbb{R}^d : A(\theta) < +\infty \}$

Gaussian distribution: $A(\theta) = -\alpha \log \det(\theta)$, $C = \mathbb{S}^p_{\succ}$ \succ ⁰

• Hyperbolic exponential family: $A(\theta) = -\alpha \log(f(\theta))$, f hyperbolic with hyperbolicity cone C

Theorem (Lauritzen, Uhler & Zwiernik, 2019)

The space of canonical parameters for any MTP_2 exponential family is given by $C \cap K$, where $K \subset \mathbb{R}$ is a closed convex cone whose dual is generated by

$$
\{\mathcal{T}(x \wedge y) + \mathcal{T}(x \vee y) - \mathcal{T}(x) - \mathcal{T}(y) : x, y \in \mathcal{X} \text{ differing in } 2 \text{ entries}\}.
$$

Given i.i.d. samples $X = \{x_1, \ldots, x_n\} \subset \mathbb{R}^m$ from an unknown distribution on \mathbb{R}^m with density p , can we estimate p ?

- \bullet parametric: assume p lies in some parametric family
	- finite-dimensional optimization problem (estimate parameters)
	- restrictive: real-world distribution might not lie in specified family
- \bullet non-parametric: assume that p lies in a non-parametric family:
	- infinite-dimensional optimization problem

Let $X_1,\ldots,X_n \sim \mathcal{N}(0,\Sigma)$, $S := \frac{1}{n}\sum_{i=1}^n X_i X_i^T$ sample covariance matrix.

Primal: Max-Likelihood:

Dual: Min-Entropy:

$$
\begin{array}{ll}\text{minimize} & -\log \det(\Sigma) - m\\ \Sigma \succeq 0 & \\ \text{subject to} & \Sigma_{vv} = S_{vv}, \ \Sigma_{uv} \ge S_{uv}. \end{array}
$$

 \bullet Maximum likelihood estimation under ${\rm MTP}_2$ is a convex optimization problem with strong duality

Let $X_1,\ldots,X_n \sim \mathcal{N}(0,\Sigma)$, $S := \frac{1}{n}\sum_{i=1}^n X_i X_i^T$ sample covariance matrix.

Primal: Max-Likelihood:

Dual: Min-Entropy:

$$
\begin{array}{ll}\text{minimize} & -\log \det(\Sigma) - m\\ \text{subject to} & \Sigma_{vv} = S_{vv}, \ \Sigma_{uv} \ge S_{uv}. \end{array}
$$

- \bullet Maximum likelihood estimation under ${\rm MTP}_2$ is a convex optimization problem with strong duality
	- the global optimum is characterized by KKT conditions
	- Complementary slackness implies that the MLE $\hat{K}^{-1} = \hat{\Sigma}$ satisfies $(\hat{\Sigma}_{uv} - S_{uv}) \hat{K}_{uv} = 0 \qquad \forall u \neq v$

Let $X_1,\ldots,X_n \sim \mathcal{N}(0,\Sigma)$, $S := \frac{1}{n}\sum_{i=1}^n X_i X_i^T$ sample covariance matrix.

Primal: Max-Likelihood:

Dual: Min-Entropy:

$$
\begin{array}{ll}\text{minimize} & -\log \det(\Sigma) - m\\ \text{subject to} & \Sigma_{vv} = S_{vv}, \ \Sigma_{uv} \ge S_{uv}. \end{array}
$$

- \bullet Maximum likelihood estimation under ${\rm MTP}_2$ is a convex optimization problem with strong duality
	- the global optimum is characterized by KKT conditions
	- Complementary slackness implies that the MLE $\hat{K}^{-1} = \hat{\Sigma}$ satisfies $(\hat{\Sigma}_{uv} - S_{uv}) \hat{K}_{uv} = 0 \qquad \forall u \neq v$
- Caroline Uhler (MIT) Estimating Covariance Matrices Vienna, June 2017 17 / 27 **Linear algebra:** If M is an M-matrix, then $(M^{-1})_{ij} \ge 0$ for all i, j

Let $X_1,\ldots,X_n \sim \mathcal{N}(0,\Sigma)$, $S := \frac{1}{n}\sum_{i=1}^n X_i X_i^T$ sample covariance matrix.

Primal: Max-Likelihood:

Dual: Min-Entropy:

$$
\begin{array}{ll}\text{minimize} & -\log \det(\Sigma) - m\\ \text{subject to} & \Sigma_{vv} = S_{vv}, \ \Sigma_{uv} \ge S_{uv}. \end{array}
$$

- \bullet Maximum likelihood estimation under ${\rm MTP}_2$ is a convex optimization problem with strong duality
	- the global optimum is characterized by KKT conditions
	- Complementary slackness implies that the MLE $\hat{K}^{-1} = \hat{\Sigma}$ satisfies $(\hat{\Sigma}_{uv} - S_{uv}) \hat{K}_{uv} = 0 \qquad \forall u \neq v$
- Caroline Uhler (MIT) Estimating Covariance Matrices Vienna, June 2017 17 / 27 **Linear algebra:** If M is an M-matrix, then $(M^{-1})_{ij} \ge 0$ for all i, j
	- Graphical model: \hat{G} (support of \hat{K}) is in general sparse!!!

Ultrametric matrices and inverse M-matrices

• *U* is ultrametric: $U_{ii} \ge U_{ij} = U_{ji} \ge \min(U_{ik}, U_{jk}) \ge 0$ for all *i*, *j*, *k*. Theorem (Dellacherie, Martinez and San Martin, 2014) Let U be an ultrametric matrix with strictly positive entries on the diagonal. Then U is non-singular if and only if no two rows are equal. Moreover, if U is non-singular, then U^{-1} is an M-matrix.

Theorem (Slawski and Hein, 2015)

The MLE in a Gaussian \rm{MTP}_2 model exists with probability 1 when $n \geq 2$.

Ultrametric matrices and inverse M-matrices

• U is ultrametric: $U_{ii} \ge U_{ii} = U_{ii} \ge \min(U_{ik}, U_{ik}) \ge 0$ for all i, j, k . Theorem (Dellacherie, Martinez and San Martin, 2014) Let U be an ultrametric matrix with strictly positive entries on the diagonal. Then U is non-singular if and only if no two rows are equal. Moreover, if U is non-singular, then U^{-1} is an M-matrix.

Theorem (Slawski and Hein, 2015)

The MLE in a Gaussian \rm{MTP}_2 model exists with probability 1 when $n \geq 2$.

New proof: Construct primal & dual feasible point by single-linkage clustering

$$
S = \begin{pmatrix} 1 & 0.7 & 0.6 & 0.2 & 0.1 \\ 0.7 & 1 & 0.5 & 0.1 & -0.5 \\ 0.6 & 0.5 & 1 & -0.3 & 0.1 \\ 0.1 & -0.5 & 0.1 & 0.4 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0.7 & 0.6 & 0.2 & 0.2 \\ 0.7 & 1 & 0.6 & 0.2 & 0.2 \\ 0.6 & 0.6 & 1 & 0.2 & 0.2 \\ 0.2 & 0.2 & 0.2 & 0.2 & 0.4 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0.7 & 0.6 & 0.2 & 0.2 \\ 0.6 & 0.6 & 1 & 0.4 & 0.2 \\ 0.2 & 0.2 & 0.2 & 0.2 & 0.4 & 1 \end{pmatrix}
$$

0.0

Density estimation

Given i.i.d. samples $X = \{x_1, \ldots, x_n\} \subset \mathbb{R}^m$ from an unknown distribution on \mathbb{R}^m with density ρ , can we estimate ρ ?

 \bullet parametric: assume p lies in some parametric family

- finite-dimensional optimization problem (estimate parameters)
- restrictive: real-world distribution might not lie in specified family
- \bullet non-parametric: assume that p lies in a non-parametric family:
	- infinite-dimensional optimization problem
	- need constraints that are:
		- strong enough so that there is no spiky behavior
		- weak enough so that function class is large

Shape-constrained density estimation

- monotonically decreasing densities: [Grenander 1956, R_{ao} 1969]
- convex densities: [Anevski 1994, Groeneboom, Jongbloed, and Wellner 2001]
- **.** log-concave densities: [Cule, Samworth, and Stewart 2010]
- **•** generalized additive models with shape constraints: [Chen and Samworth] 2016]

Shape-constrained density estimation

- monotonically decreasing densities: [Grenander 1956, Rao 1969]
- **CONVEX densities:** [Anevski 1994, Groeneboom, Jongbloed, and Wellner 2001]
- log-concave densities: [Cule, Samworth, and Stewart 2010]
- **•** generalized additive models with shape constraints: [Chen and Samworth] 2016]
- Maximum liklihood estimation under $MTP₂$: Given i.i.d. samples $X = \{x_1, ..., x_n\} \subset \mathbb{R}^m$,

maximize_p
$$
\sum_{i=1}^{n} \log(p(x_i))
$$

s.t. *p* is an MTP₂ density.

Shape-constrained density estimation

- monotonically decreasing densities: [Grenander 1956, Rao 1969]
- **CONVEX densities:** [Anevski 1994, Groeneboom, Jongbloed, and Wellner 2001]
- log-concave densities: [Cule, Samworth, and Stewart 2010]
- **•** generalized additive models with shape constraints: [Chen and Samworth] 2016]
- Maximum liklihood estimation under $MTP₂$: Given i.i.d. samples $X = \{x_1, ..., x_n\} \subset \mathbb{R}^m$,

$$
\begin{aligned}\n\text{maximize}_{p} \quad & \sum_{i=1}^{n} \log(p(x_i)) \\
\text{s.t.} \quad & p \text{ is an MTP}_2 \text{ density.}\n\end{aligned}
$$

$$
p
$$
 log-concave.

Log-concave density estimation

Log-concavity is natural assumption: ensures density is continuous and includes many distributions: Gaussian, Uniform (a, b) , Gamma (k, θ) for $k \ge 1$, Beta (a, b) for $a, b \ge 1$, etc.

Log-concave density estimation

Log-concavity is natural assumption: ensures density is continuous and includes many distributions: Gaussian, Uniform(a, b), Gamma(k, θ) for $k > 1$, Beta(a, b) for $a, b > 1$, etc.

Theorem (Cule, Samworth and Stewart, 2008)

When $n > m + 1$, a log-concave MLE \hat{p} exists and is unique with probability 1. Moreover, $log(\hat{p})$ is a tent-function supported on the convex hull of the data. Finite-dimensional optimization problem!

Questions:

- When does the MLE under log-concavity and MTP $_2$ / LLC exist? Is it unique?
- \bullet What is the shape of the MLE under log-concavity and MTP₂ / LLC?
	- \bullet Is the MLE always $\exp(\text{tent function})$?
- Can we compute the MLE?

$Log-L^µ-concave (LLC)$ functions

- A function $f : \mathbb{R}^m \to \mathbb{R}$ is MTP_2 if $f(x)f(y) \le f(x \wedge y) f(x \vee y)$ for all $x, y \in \mathbb{R}^m$.
- A function $f : \mathbb{R}^m \to \mathbb{R}$ is log- L^{\natural} -concave (LLC) if

 $f(x)f(y) \leq f((x+\alpha 1) \wedge y) f(x \vee (y-\alpha 1)) \quad \forall \alpha \geq 0 \text{ and } x, y \in \mathbb{R}^m.$

$Log-L^µ-concave (LLC)$ functions

- A function $f : \mathbb{R}^m \to \mathbb{R}$ is MTP_2 if $f(x)f(y) \le f(x \wedge y) f(x \vee y)$ for all $x, y \in \mathbb{R}^m$.
- A function $f : \mathbb{R}^m \to \mathbb{R}$ is log- L^{\natural} -concave (LLC) if

 $f(x)f(y) \leq f((x+\alpha 1) \wedge y) f(x \vee (y-\alpha 1)) \quad \forall \alpha \geq 0 \text{ and } x, y \in \mathbb{R}^m.$

Theorem (Murota, 2008)

A function $f : \mathbb{Z}^m \to \mathbb{R}$ is LLC if and only if it is log-concave, i.e., $f(x)f(y) \leq f\left(\left|\frac{x+y}{2}\right|\right)$ $\left(\left\lceil\frac{x+y}{2}\right\rceil\right)$ f $\left(\left\lceil\frac{x+y}{2}\right\rceil\right)$ $\left(\frac{+y}{2}\right)$ for all $x, y \in \mathbb{Z}^m$.

Ex.: A Gaussian distribution with covariance matrix Σ is LLC if and only if $K=\Sigma^{-1}$ is a diagonally dominant M-matrix, i.e.,

 $K_{ij} \leq 0$ for all $i \neq j$ and $\sum_{j=1}^{m} K_{ij} \geq 0$ for all $i = 1, \ldots m$.

Theorem (Robeva, Sturmfels, Tran and Uhler, 2018)

Let X_1, \ldots, X_n be i.i.d samples from a distribution with density f_0 supported on a full-dimensional subset of \mathbb{R}^m . The following hold with probability one:

- If $n > 3$, the MTP₂ log-concave MLE exists and is unique.
- \bullet If $n > 2$, the LLC log-concave MLE exists and is unique.

- This result is in contrast with existence of the MLE under log-concavity, where $n \ge m+1$ samples are needed for existence
- Proof uses convergence properties for log-concave distributions, and does not shed light on the shape of the MLE.

Support of the MLE

Under MTP_2 we need the density to be nonzero at additional points:

 \implies "Min-max convex hull" of X

Support of the MLE

Under MTP_2 we need the density to be nonzero at additional points:

 \implies "Min-max convex hull" of X

- $MM(X) :=$ smallest min-max closed set S containing X, i.e. $x, y \in S \Rightarrow x \wedge y, x \vee y \in S$
- MMconv (X) := smallest min-max closed & convex set containing X

Is it always true that MMconv $(X) = \text{conv}(\text{MM}(X))$?

Support of the MLE

Under MTP_2 we need the density to be nonzero at additional points:

 \implies "Min-max convex hull" of X

• $MM(X) :=$ smallest min-max closed set S containing X, i.e. $x, y \in S \Rightarrow x \wedge y, x \vee y \in S$

• $MMonv(X) :=$ smallest min-max closed & convex set containing X

Is it always true that MMconv $(X) = \text{conv}(\text{MM}(X))$?

Lemma

If $X \subseteq \mathbb{R}^2$ or $X \subseteq \{0,1\}^m$, then $MMonv(X) = conv(MM(X)).$

Support of the MLE in higher dimensions

Support of the MLE in higher dimensions

Theorem (Robeva, Sturmfels, Tran and Uhler, 2018)

Let $X \subset \mathbb{R}^m$ be a finite set of points. The exponential of a tent function $h_{X,y}$ is MTP₂ if and only if all of the walls of the subdivision h induces are bimonotone.

A linear inequality $a \cdot x + b \leq 0$ is bimonotone if it has the form $a_i x_i + a_i x_i + b \leq 0$, where $a_i a_j \leq 0$.

Shape of the MLE

Theorem (Robeva, Sturmfels, Tran and Uhler, 2018)

If $X \subseteq \mathbb{R}^2$ or $X \subseteq \{0,1\}^m$ $(X \subseteq \mathbb{Q}^m)$, then the MTP_2 (LLC) MLE is of the form $exp(tent$ function) and the set of MTP_2 (LLC) tent pole heights define a convex polytope.

 \implies We can use the conditional gradient method to compute the MLE

Conclusions

- \bullet We conjecture that the MTP₂-MLE is always the exponential of a tent function (we provide conjectured tent pole locations)
- LLC estimate provides an MTP_2 estimate (might not be the MLE)
- Total positivity constraints are often implicit and reflect real processes
	- **•** ferromagnetism
	- **a** latent tree models
- Total positivity represents interesting shape constraint for non-parametric density estimation: broad enough class to be of interest in applications, constrained enough to obtain good density estimates with few samples
- \bullet MTP₂ / LLC is well-suited for high-dimensional applications

References

MTP2 distributions not only have broad applications for data analysis, but also lead to interesting new problems in combinatorics, geometry & algebra.

- Fallat, Lauritzen, Sadeghi, Uhler, Wermuth, & Zwiernik: Total positivity in Markov structures, Annals of Statistics 45 (2017)
- Lauritzen, Uhler, & Zwiernik: Maximum likelihood estimation in Gaussian models under total positivity, to appear in Annals of Statistics (arXiv:1702.04031)
- Robeva, Sturmfels, & Uhler: Geometry of log-concave density estimation, Discrete & Computational Geometry 61 (2019)
- Robeva, Sturmfels, Tran & Uhler: Maximum likelihood estimation for totally positive log-concave densities (arXiv:1806.10120) $\frac{1}{2}$ $\frac{1}{2}$ $\sqrt{2}$
- Lauritzen, Uhler, & Zwiernik: Total positivity in structured binary distributions (to appear on the arXiv today!)

 $Inank$ you!