Your Dreams May Come True with MTP₂...

Caroline Uhler (MIT)

Joint work with Steffen Lauritzen, Elina Robeva, Bernd Sturmfels, Ngoc Tran, Piotr Zwiernik

Simons Workshop: Hyperbolic Polynomials and Hyperbolic Programming

May 2, 2019

Positive dependence and MTP_2 distributions

A distribution (i.e. density function) p on X = ∏_{v∈V} X_v, with X_v ⊆ ℝ discrete or open subset, is multivariate totally positive of order 2 (MTP₂) if

 $p(x)p(y) \leq p(x \wedge y)p(x \vee y)$ for all $x, y \in \mathcal{X}$,

where \land and \lor are applied coordinate-wise.

Positive dependence and MTP_2 distributions

A distribution (i.e. density function) p on X = ∏_{v∈V} X_v, with X_v ⊆ ℝ discrete or open subset, is multivariate totally positive of order 2 (MTP₂) if

 $p(x)p(y) \leq p(x \wedge y)p(x \vee y)$ for all $x, y \in \mathcal{X}$,

where \land and \lor are applied coordinate-wise.

• A random vector X is **positively associated** if for any non-decreasing functions $\phi, \psi : \mathbb{R}^m \to \mathbb{R}$

$$\operatorname{cov}\{\phi(X),\psi(X)\}\geq 0.$$

Theorem ($F_{ortuin}K_{asteleyn}G_{inibre}$ inequality, 1971, Karlin & Rinott, 1980) MTP₂ implies positive association.

No Yule-Simpson Paradox under MTP₂!

The **Yule-Simpson paradox** says that we may have two random variables X and Y positively associated, but X and Y negatively associated conditionally on a third variable Z.

Sentences in 4863 murder cases in Florida over the six years 1973-1978:

						Sent	ence
	Sent	ence		Victim	Murderer	Death	Other
Murderer	Death	Other		Plack	Black	11	2309
Black	59	2547		DIACK	White	0	111
White	72	2185		\//b:+o	Black	48	238
			,	vvnite	White	72	2074

Overall greater proportion of white murderers receiving death sentence than black (3.2% vs. 2.3%); this trend is reversed given color of victim.

Data from: Range (1979)

Reminder: A distribution p on $\mathcal{X} \subseteq \mathbb{R}^m$ is MTP₂ if

 $p(x)p(y) \leq p(x \wedge y)p(x \vee y), \text{ for all } x, y \in \mathcal{X}.$

Theorem (Lebowitz, 1972; Karlin and Rinott, 1980)

If X is MTP_2 , then

- (i) any marginal distribution is MTP₂
- (ii) any conditional distribution is MTP₂

(iii) $X_A \perp X_B \iff \operatorname{cov}(X_u, X_v) = 0$ for all $u \in A, v \in B$

Theorem (Bølviken 1982, Karlin & Rinott, 1983)

A multivariate Gaussian distribution p(x; K) is MTP_2 if and only if the inverse covariance matrix K is an *M*-matrix, that is

 $K_{uv} \leq 0$ for all $u \neq v$.

Theorem (Bølviken 1982, Karlin & Rinott, 1983)

A multivariate Gaussian distribution p(x; K) is MTP_2 if and only if the inverse covariance matrix K is an *M*-matrix, that is

 $K_{uv} \leq 0$ for all $u \neq v$.

Ex: 2016 Monthly correlations of global stock markets (InvestmentFrontier.com)

	Nasdaq	Canada	Europe	UK	Australia	
	/ 1.000	0.606	0.731	0.618	0.613	Nasdaq
	0.606	1.000	0.550	0.661	0.598	Canada
<i>S</i> =	0.731	0.550	1.000	0.644	0.569	Europe
	0.618	0.661	0.644	1.000	0.615	UK
	0.613	0.598	0.569	0.615	1.000 /	Australia

Theorem (Bølviken 1982, Karlin & Rinott, 1983)

A multivariate Gaussian distribution p(x; K) is MTP_2 if and only if the inverse covariance matrix K is an *M*-matrix, that is

 $K_{uv} \leq 0$ for all $u \neq v$.

Ex: 2016 monthly correlations of global stock markets (InvestmentFrontier.com)

	Nasdaq	Canada	Europe	UK	Australia	
	2.629	-0.480	-1.249	-0.202	-0.490	Nasdaq
	-0.480	2.109	-0.039	-0.790	-0.459	Canada
$S^{-1} =$	-1.249	-0.039	2.491	-0.675	-0.213	Europe
	-0.202	-0.790	-0.675	2.378	-0.482	UK
	∖_0.490	-0.459	-0.213	-0.482	1.992/	Australia

Sample distribution is $\rm MTP_2!$ If you sample a correlation matrix uniformly at random the probability of it being $\rm MTP_2$ is $<10^{-6}!$

Reminder: A distribution p on $\mathcal{X} \subseteq \mathbb{R}^m$ is MTP₂ if $p(x)p(y) \leq p(x \land y)p(x \lor y)$, for all $x, y \in \mathcal{X}$.

• Distribution of 3 binary variables X, Y and Z is MTP_2 iff

$p_{001}p_{110} \leq p_{000}p_{111}$	$p_{010}p_{101} \leq p_{000}p_{111}$	$p_{100}p_{011} \leq p_{000}p_{111}$
$p_{011}p_{101} \leq p_{001}p_{111}$	$p_{011}p_{110} \leq p_{010}p_{111}$	$p_{101}p_{110} \leq p_{100}p_{111}$
$p_{001}p_{010} \leq p_{000}p_{011}$	$p_{001}p_{100} \leq p_{000}p_{101}$	$p_{010}p_{100} \leq p_{000}p_{110}$

• Dataset on EPH-gestosis analyzed by Wermuth & Marchetti (2014)

- edema (high body water retention)
- proteinuria (high amounts of urinary proteins)
- hypertension (elevated blood pressure)

n ₀₀₀	<i>n</i> 010	<i>n</i> ₀₀₁	n ₀₁₁	_	3299	107	1012	58	
<i>n</i> ₁₀₀	<i>n</i> ₁₁₀	n_{101}	<i>n</i> ₁₁₁	_	78	11	65	19	

• This sample distribution is MTP₂! Although when you sample 3-dim binary distributions only about 2% are MTP₂.

MTP_2 constraints are often implicit

|X| is MTP₂ in:

- Gaussian / binary tree models
- Gaussian / binary latent tree models
 - Binary latent class models
 - Single factor analysis models

Hyperbolic MTP_2 exponential families

• An exponential family is a parametric model with density

$$p_{\theta}(x) = \exp(\langle \theta, T(x) \rangle - A(\theta)),$$

sample space \mathcal{X} with measure ν , sufficient statistics $T : \mathcal{X} \to \mathbb{R}^d$, and space of canonical parameters: $C = \{\theta \in \mathbb{R}^d : A(\theta) < +\infty\}$

- Gaussian distribution: $A(\theta) = -\alpha \log \det(\theta), \ C = \mathbb{S}_{\succ 0}^{p}$
- Hyperbolic exponential family: $A(\theta) = -\alpha \log(f(\theta))$, f hyperbolic with hyperbolicity cone C

Hyperbolic MTP_2 exponential families

• An exponential family is a parametric model with density

$$p_{\theta}(x) = \exp(\langle \theta, T(x) \rangle - A(\theta)),$$

sample space \mathcal{X} with measure ν , sufficient statistics $T : \mathcal{X} \to \mathbb{R}^d$, and space of canonical parameters: $C = \{\theta \in \mathbb{R}^d : A(\theta) < +\infty\}$

• Gaussian distribution: $A(\theta) = -\alpha \log \det(\theta), \ C = \mathbb{S}_{\succ 0}^{p}$

• Hyperbolic exponential family: $A(\theta) = -\alpha \log(f(\theta))$, f hyperbolic with hyperbolicity cone C

Theorem (Lauritzen, Uhler & Zwiernik, 2019)

The space of canonical parameters for any MTP_2 exponential family is given by $C \cap K$, where $K \subset \mathbb{R}$ is a closed convex cone whose dual is generated by

 $\{T(x \wedge y) + T(x \vee y) - T(x) - T(y) : x, y \in \mathcal{X} \text{ differing in } 2 \text{ entries}\}.$

Given i.i.d. samples $X = \{x_1, \ldots, x_n\} \subset \mathbb{R}^m$ from an unknown distribution on \mathbb{R}^m with density p, can we estimate p?

- parametric: assume p lies in some parametric family
 - finite-dimensional optimization problem (estimate parameters)
 - restrictive: real-world distribution might not lie in specified family
- non-parametric: assume that p lies in a non-parametric family:
 - infinite-dimensional optimization problem

Let $X_1, \ldots, X_n \sim \mathcal{N}(0, \Sigma)$, $S := \frac{1}{n} \sum_{i=1}^n X_i X_i^T$ sample covariance matrix.

Primal: Max-Likelihood:

$\max_{\substack{K \succeq 0}}$	$\log \det(K) - \operatorname{trace}(KS)$
subiect to	$K_{uv} < 0, \forall \ u \neq v.$

Dual: Min-Entropy:

$$\begin{array}{ll} \underset{\Sigma \succeq 0}{\text{minimize}} & -\log \det(\Sigma) - m \\ \\ \text{subject to} & \Sigma_{vv} = S_{vv}, \; \Sigma_{uv} \geq S_{uv}. \end{array}$$

 \bullet Maximum likelihood estimation under MTP_2 is a convex optimization problem with strong duality

Let $X_1, \ldots, X_n \sim \mathcal{N}(0, \Sigma)$, $S := \frac{1}{n} \sum_{i=1}^n X_i X_i^T$ sample covariance matrix.

Primal: Max-Likelihood:

$\max_{\substack{K \succeq 0}}$	$\log \det(K) - \operatorname{trace}(KS)$
subject to	$K_{uv} \leq 0, \forall u \neq v.$

Dual: Min-Entropy:

$$\begin{array}{ll} \underset{\Sigma \succeq 0}{\text{minimize}} & -\log \det(\Sigma) - m \\ \\ \text{subject to} & \Sigma_{vv} = S_{vv}, \ \Sigma_{uv} \geq S_{uv}. \end{array}$$

- \bullet Maximum likelihood estimation under MTP_2 is a convex optimization problem with strong duality
- the global optimum is characterized by KKT conditions
- Complementary slackness implies that the MLE $\hat{K}^{-1} = \hat{\Sigma}$ satisfies $(\hat{\Sigma}_{uv} S_{uv}) \hat{K}_{uv} = 0 \qquad \forall u \neq v$

Let $X_1, \ldots, X_n \sim \mathcal{N}(0, \Sigma)$, $S := \frac{1}{n} \sum_{i=1}^n X_i X_i^T$ sample covariance matrix.

Primal: Max-Likelihood:

$\max_{\substack{K \succeq 0}}$	$\log \det(K) - \operatorname{trace}(KS)$
subject to	$K_{uv} \leq 0, \forall u \neq v.$

Dual: Min-Entropy:

- \bullet Maximum likelihood estimation under ${\rm MTP}_2$ is a convex optimization problem with strong duality
- the global optimum is characterized by KKT conditions
- Complementary slackness implies that the MLE $\hat{K}^{-1} = \hat{\Sigma}$ satisfies $(\hat{\Sigma}_{uv} S_{uv}) \hat{K}_{uv} = 0 \qquad \forall u \neq v$
- Linear algebra: If M is an M-matrix, then $(M^{-1})_{ij} \ge 0$ for all i, j

Let $X_1, \ldots, X_n \sim \mathcal{N}(0, \Sigma)$, $S := \frac{1}{n} \sum_{i=1}^n X_i X_i^T$ sample covariance matrix.

Primal: Max-Likelihood:

$\max_{\substack{K \succeq 0}}$	$\log \det(K) - \operatorname{trace}(KS)$
subject to	$K_{uv} \leq 0, \forall u \neq v.$

Dual: Min-Entropy:

- \bullet Maximum likelihood estimation under MTP_2 is a convex optimization problem with strong duality
- the global optimum is characterized by KKT conditions
- Complementary slackness implies that the MLE $\hat{K}^{-1} = \hat{\Sigma}$ satisfies $(\hat{\Sigma}_{uv} S_{uv}) \hat{K}_{uv} = 0 \qquad \forall u \neq v$
- Linear algebra: If M is an M-matrix, then $(M^{-1})_{ij} \ge 0$ for all i, j
- Graphical model: \hat{G} (support of \hat{K}) is in general sparse!!!

Ultrametric matrices and inverse M-matrices

• U is ultrametric: $U_{ii} \ge U_{ij} = U_{ji} \ge \min(U_{ik}, U_{jk}) \ge 0$ for all i, j, k. Theorem (Dellacherie, Martinez and San Martin, 2014) Let U be an ultrametric matrix with strictly positive entries on the diagonal. Then U is non-singular if and only if no two rows are equal. Moreover, if U is non-singular, then U^{-1} is an M-matrix.

Theorem (Slawski and Hein, 2015)

The MLE in a Gaussian MTP_2 model exists with probability 1 when $n \ge 2$.

Ultrametric matrices and inverse M-matrices

• U is ultrametric: $U_{ii} \ge U_{ij} = U_{ji} \ge \min(U_{ik}, U_{jk}) \ge 0$ for all i, j, k. Theorem (Dellacherie, Martinez and San Martin, 2014) Let U be an ultrametric matrix with strictly positive entries on the diagonal. Then U is non-singular if and only if no two rows are equal. Moreover, if U is non-singular, then U^{-1} is an M-matrix.

Theorem (Slawski and Hein, 2015)

The MLE in a Gaussian MTP_2 model exists with probability 1 when $n \ge 2$.

New proof: Construct primal & dual feasible point by single-linkage clustering

Density estimation

Given i.i.d. samples $X = \{x_1, \ldots, x_n\} \subset \mathbb{R}^m$ from an unknown distribution on \mathbb{R}^m with density p, can we estimate p?

• parametric: assume *p* lies in some parametric family

- finite-dimensional optimization problem (estimate parameters)
- restrictive: real-world distribution might not lie in specified family
- non-parametric: assume that *p* lies in a non-parametric family:
 - infinite-dimensional optimization problem
 - need constraints that are:
 - strong enough so that there is no spiky behavior
 - weak enough so that function class is large

Shape-constrained density estimation

- monotonically decreasing densities: [Grenander 1956, Rao 1969]
- convex densities: [Anevski 1994, Groeneboom, Jongbloed, and Wellner 2001]
- log-concave densities: [Cule, Samworth, and Stewart 2010]
- generalized additive models with shape constraints: [Chen and Samworth 2016]

Shape-constrained density estimation

- monotonically decreasing densities: [Grenander 1956, Rao 1969]
- convex densities: [Anevski 1994, Groeneboom, Jongbloed, and Wellner 2001]
- log-concave densities: $[C_{ule}, S_{amworth, and} S_{tewart} 2010]$
- \bullet generalized additive models with shape constraints: [C_{hen and} S_{amworth} 2016]
- Maximum liklihood estimation under MTP₂: Given i.i.d. samples $X = \{x_1, ..., x_n\} \subset \mathbb{R}^m$,

maximize_p
$$\sum_{i=1}^{n} \log(p(x_i))$$

s.t. p is an MTP₂ density.

Shape-constrained density estimation

- monotonically decreasing densities: [Grenander 1956, Rao 1969]
- convex densities: [Anevski 1994, Groeneboom, Jongbloed, and Wellner 2001]
- log-concave densities: $[C_{ule}, S_{amworth, and} S_{tewart} 2010]$
- \bullet generalized additive models with shape constraints: [C_{hen and} S_{amworth} 2016]
- Maximum liklihood estimation under MTP₂: Given i.i.d. samples $X = \{x_1, ..., x_n\} \subset \mathbb{R}^m$,

maximize_p
$$\sum_{i=1}^{n} \log(p(x_i))$$

s.t. *p* is an MTP₂ density.

Log-concave density estimation

 Log-concavity is natural assumption: ensures density is continuous and includes many distributions: Gaussian, Uniform(a, b), Gamma(k, θ) for k ≥ 1, Beta(a, b) for a, b ≥ 1, etc.

Log-concave density estimation

 Log-concavity is natural assumption: ensures density is continuous and includes many distributions: Gaussian, Uniform(a, b), Gamma(k, θ) for k ≥ 1, Beta(a, b) for a, b ≥ 1, etc.

Theorem (Cule, Samworth and Stewart, 2008)

When $n \ge m + 1$, a log-concave MLE \hat{p} exists and is unique with probability 1. Moreover, $log(\hat{p})$ is a tent-function supported on the convex hull of the data. **Finite-dimensional optimization problem!**

Questions:

- \bullet When does the MLE under log-concavity and $\mathsf{MTP}_2\ /\ \mathsf{LLC}\ \mathsf{exist}?$ Is it unique?
- What is the shape of the MLE under log-concavity and $MTP_2 / LLC?$
 - Is the MLE always exp(tent function)?
- Can we compute the MLE?

Log- L^{\natural} -concave (LLC) functions

- A function $f : \mathbb{R}^m \to \mathbb{R}$ is MTP_2 if $f(x)f(y) \le f(x \land y) f(x \lor y)$ for all $x, y \in \mathbb{R}^m$.
- A function $f : \mathbb{R}^m \to \mathbb{R}$ is log-*L*^{\natural}-concave (LLC) if

 $f(x)f(y) \leq f((x + \alpha \mathbf{1}) \wedge y) f(x \vee (y - \alpha \mathbf{1})) \quad \forall \alpha \geq 0 \text{ and } x, y \in \mathbb{R}^m.$

Log- L^{\natural} -concave (LLC) functions

- A function $f : \mathbb{R}^m \to \mathbb{R}$ is MTP_2 if $f(x)f(y) \le f(x \land y) f(x \lor y)$ for all $x, y \in \mathbb{R}^m$.
- A function $f : \mathbb{R}^m \to \mathbb{R}$ is log- L^{\natural} -concave (LLC) if

 $f(x)f(y) \leq f((x + \alpha \mathbf{1}) \wedge y) f(x \vee (y - \alpha \mathbf{1})) \quad \forall \alpha \geq 0 \text{ and } x, y \in \mathbb{R}^m.$

Theorem (Murota, 2008)

A function $f : \mathbb{Z}^m \to \mathbb{R}$ is LLC if and only if it is log-concave, i.e., $f(x)f(y) \le f\left(\left\lfloor \frac{x+y}{2} \right\rfloor\right) f\left(\left\lceil \frac{x+y}{2} \right\rceil\right)$ for all $x, y \in \mathbb{Z}^m$.

Ex.: A Gaussian distribution with covariance matrix Σ is LLC if and only if $K = \Sigma^{-1}$ is a diagonally dominant M-matrix, i.e.,

 $K_{ij} \leq 0$ for all $i \neq j$ and $\sum_{j=1}^{m} K_{ij} \geq 0$ for all $i = 1, \dots m$.

Theorem (Robeva, Sturmfels, Tran and Uhler, 2018)

Let X_1, \ldots, X_n be i.i.d samples from a distribution with density f_0 supported on a full-dimensional subset of \mathbb{R}^m . The following hold with probability one:

- If $n \ge 3$, the MTP_2 log-concave MLE exists and is unique.
- If $n \ge 2$, the LLC log-concave MLE exists and is unique.

- This result is in contrast with existence of the MLE under log-concavity, where n ≥ m + 1 samples are needed for existence
- Proof uses convergence properties for log-concave distributions, and does not shed light on the shape of the MLE.

Support of the MLE

Under MTP_2 we need the density to be nonzero at additional points:

 \implies "Min-max convex hull" of X

Support of the MLE

Under MTP_2 we need the density to be nonzero at additional points:

 \implies "Min-max convex hull" of X

- MM(X) := smallest min-max closed set S containing X, i.e.
 x, y ∈ S ⇒ x ∧ y, x ∨ y ∈ S
- MMconv(X) := smallest min-max closed & convex set containing X

Is it always true that MMconv(X) = conv(MM(X))?

Support of the MLE

Under MTP_2 we need the density to be nonzero at additional points:

 \implies "Min-max convex hull" of X

- $\mathbf{MM}(X) :=$ smallest min-max closed set S containing X, i.e. $x, y \in S \Rightarrow x \land y, x \lor y \in S$
- MMconv(X) := smallest min-max closed & convex set containing X

Is it always true that MMconv(X) = conv(MM(X))?

Lemma

If $X \subseteq \mathbb{R}^2$ or $X \subseteq \{0,1\}^m$, then MMconv(X) = conv(MM(X)).

Support of the MLE in higher dimensions

Support of the MLE in higher dimensions

Exponentials of tent functions $h_{X,y}$

Theorem (Robeva, Sturmfels, Tran and Uhler, 2018)

Let $X \subset \mathbb{R}^m$ be a finite set of points. The exponential of a tent function $h_{X,y}$ is MTP_2 if and only if all of the walls of the subdivision h induces are **bimonotone**.

A linear inequality $a \cdot x + b \le 0$ is bimonotone if it has the form $a_i x_i + a_j x_j + b \le 0$, where $a_i a_j \le 0$.

Shape of the MLE

Theorem (Robeva, Sturmfels, Tran and Uhler, 2018)

If $X \subseteq \mathbb{R}^2$ or $X \subseteq \{0,1\}^m$ ($X \subseteq \mathbb{Q}^m$), then the MTP₂ (LLC) MLE is of the form exp(tent function) and the set of MTP₂ (LLC) tent pole heights define a convex polytope.

 \Longrightarrow We can use the conditional gradient method to compute the MLE

Caroline Uhler (MIT)

Conclusions

- We conjecture that the MTP_2 -MLE is always the exponential of a tent function (we provide conjectured tent pole locations)
- LLC estimate provides an MTP_2 estimate (might not be the MLE)
- Total positivity constraints are often implicit and reflect real processes
 - ferromagnetism
 - latent tree models
- Total positivity represents interesting shape constraint for non-parametric density estimation: broad enough class to be of interest in applications, constrained enough to obtain good density estimates with few samples
- $\bullet~\mathrm{MTP}_2$ / LLC is well-suited for high-dimensional applications

References

MTP2 distributions not only have broad applications for data analysis, but also lead to interesting new problems in combinatorics, geometry & algebra.

- Fallat, Lauritzen, Sadeghi, Uhler, Wermuth, & Zwiernik: Total positivity in Markov structures, *Annals of Statistics* 45 (2017)
- Lauritzen, Uhler, & Zwiernik: Maximum likelihood estimation in Gaussian models under total positivity, to appear in *Annals of Statistics* (arXiv:1702.04031)
- Robeva, Sturmfels, & Uhler: Geometry of log-concave density estimation, Discrete & Computational Geometry 61 (2019)
- Robeva, Sturmfels, Tran & Uhler: Maximum likelihood estimation for totally positive log-concave densities (arXiv:1806.10120)
- Lauritzen, Uhler, & Zwiernik: Total positivity in structured binary distributions (to appear on the arXiv today!)

Thank you!