Certifying polynomial nonnegativity via hyperbolic optimization

James Saunderson

Electrical and Computer Systems Engineering, Monash University, Australia

Simons Institute, 30 April, 2019

Problem: If f is a polynomial of degree 2d in n variables, decide whether $f(x) \geq 0$ for all $x \in \mathbb{R}^n$

This talk: Find tractable sufficient conditions for nonnegativity of *f* based on hyperbolic programming

Hyperbolic polynomials

A polynomial p homogeneous of degree d in n variables is hyperbolic with respect to $e \in \mathbb{R}^n$ if

- ▶ p(e) > 0
- ▶ for all $x \in \mathbb{R}^n$, all roots of $t \mapsto p(x te)$ are real

$$p(x, y, z) = -x^2 - y^2 + z^2$$

hyperbolic w.r.t. e = (0, 0, 1)

$$p(x, y, z) = -x^4 - y^4 + z^4$$

not hyperbolic

Hyperbolic polynomials

A polynomial p homogeneous of degree d in n variables is hyperbolic with respect to $e \in \mathbb{R}^n$ if

- p(e) > 0
- ▶ for all $x \in W$, all roots of $t \mapsto p(x te)$ are real

$$p(x, y, z) = -x^2 - y^2 + z^2$$

hyperbolic w.r.t. e = (0, 0, 1)

$$p(x, y, z) = -x^4 - y^4 + z^4$$

not hyperbolic

Hyperbolicity cones

If p is hyperbolic w.r.t. $e \in \mathbb{R}^n$ define hyperbolicity cone as

$$\Lambda_+(p,e) = \{x \in \mathbb{R}^n : \text{all roots of } t \mapsto p(te-x) \text{ non-negative} \}$$

Theorem (Gårding 1959)

If p is hyperbolic w.r.t. e then $\Lambda_+(p, e)$ is convex.

Example

$$p(x, y, z) = -x^2 - y^2 + z^2$$

- ▶ hyperbolic w.r.t. e = (0, 0, 1)
- Hyperbolicity cone is second-order/Lorentz/ice-cream cone

Hyperbolic programming

$$\mathsf{minimize}_x\langle c, x \rangle \;\; \mathsf{subject to} \;\; egin{cases} \mathsf{A} x = b \ x \in \Lambda_+(p,e) \end{cases}$$

Theorem (Güler 1997)
$$-\log_e(p) \text{ is a self-concordant barrier for } \Lambda_+(p,e)$$

Consequence: if can evaluate p, get 'efficient' algorithms Special cases

- ▶ Linear programming: $p(x) = x_1 x_2 \cdots x_n$, e = 1
- Second-order cone programming
- ▶ Semidefinite programming: p(X) = det(X), e = Identity

Testing for hyperbolicity

Hermite matrix: entries are power sums of eigenvalues

$$[H_{p,e}(x)]_{ij} = \sum_{\ell=1}^{d} (-\lambda_{\ell}(x))^{i+j-2}$$

Netzer-Plaumann-Thom (2013):

p hyperbolic with respect to $e \iff H_{p,e}(x) \succeq 0$ for all x

(See Dey-Plaumann (2018) for more tests for hyperbolicity)

Testing for hyperbolicity

Hermite matrix: entries are power sums of eigenvalues

$$[H_{p,e}(x)]_{ij} = \sum_{\ell=1}^d (-\lambda_\ell(x))^{i+j-2} = h_{i+j-1}(x)$$

Netzer-Plaumann-Thom (2013):

p hyperbolic with respect to $e \iff H_{p,e}(x) \succeq 0$ for all x

(See Dey-Plaumann (2018) for more tests for hyperbolicity)

Alternative view: Expand univariate rational function at infinity

$$\frac{D_e p(x + te)}{p(x + te)} = \sum_{i=1}^d \frac{1}{t + \lambda_i(x)} = \sum_{k>1} h_k(x) t^{-k}$$

Corresponding Hankel matrix is $H_{p,e}(x)$.

Characterization of hyperbolicity cones

For any $u \in \mathbb{R}^n$

Corresponding Hankel matrix:

$$\frac{D_u p(x+te)}{p(x+te)} = \sum_{k \ge 1} h_k(x)[u] t^{-k} \qquad [H_{p,e}(x)[u]]_{ij} = h_{i+j-1}(x)[u]$$

If p hyperbolic w.r.t. e then

$$H_{p,e}(x)[u] \succeq 0$$
 for all $x \iff u \in \Lambda_+(p,e)$

- Equivalent formulation in terms of Bézoutian of $D_{\mu}p(x+te)$ and p(x+te)
- Very closely related to Kummer-Plaumann-Vinzant (2015)

Example: symmetric determinant

If
$$p(X) = \det(X)$$
 and $e = I$
$$H_{p,e}(X)[U]_{ij} = \operatorname{tr}((-X)^{i+j-2}U)$$

Example: symmetric determinant

If
$$p(X) = \det(X)$$
 and $e = I$
$$H_{p,e}(X)[U]_{ij} = \operatorname{tr}((-X)^{i+j-2}U)$$

▶ $U \succeq 0$ get Gram matrix

$$H_{p,e}(X)[U]_{ij} = \langle (-X)^{i-1}U^{1/2}, (-X)^{j-1}U^{1/2} \rangle$$

▶ $U \not\succeq 0$, explicitly construct y s.t.

$$y^T H_{p,e}(U)[U]y = \lambda_{\min}(U) < 0$$

Example: symmetric determinant

If
$$p(X) = \det(X)$$
 and $e = I$
$$H_{p,e}(X)[U]_{ij} = \operatorname{tr}((-X)^{i+j-2}U)$$

▶ $U \succeq 0$ get Gram matrix

$$H_{p,e}(X)[U]_{ij} = \langle (-X)^{i-1}U^{1/2}, (-X)^{j-1}U^{1/2} \rangle$$

▶ $U \not\succeq 0$, explicitly construct y s.t.

$$y^T H_{p,e}(U)[U]y = \lambda_{\min}(U) < 0$$

Can use this to prove general case via Helton-Vinnikov theorem

Hyperbolicity cones → non-negative polynomials

If p hyperbolic with respect to e define

$$\phi_{p,e}(x,y)[u] = y^T H_{p,e}(x)[u]y$$
(polynomial in x, y , linear in u)

- Globally nonnegative if and only if u in hyperbolicity cone
- Convex set of nonnegative polynomials that is linearly isomorphic to hyperbolicity cone

$$\{\phi_{p,e}(x,y)[u] : u \in \Lambda_+(p,e)\}$$

g

Hyperbolic certificates of nonnegativity

Suppose

- ▶ p is hyperbolic with respect of $e \in \mathbb{R}^n$
- $f: \mathbb{R}^m \to \mathbb{R}^n$ polynomial
- $g: \mathbb{R}^m \to \mathbb{R}^d$ polynomial

If there exists $u \in \Lambda_+(p, e)$ such that

$$q(z) = \phi_{p,e}(f(z), g(z))[u]$$
 for all z

say q has hyperbolic certificate of nonnegativity

Get convex set of non-negative polynomials:

$$\{\phi_{p,e}(f(z),g(z))[u]:u\in\Lambda_+(p,e)\}$$

- Is projection of the hyperbolicity cone
- ► Can search over these using hyperbolic programming

Sum-of-squares certificates of nonnegativity

If can write q as a sum of squares (SOS)

$$q(z) = \sum_{i=1}^{n} [q_i(z)]^2$$
 then $q(z) \ge 0$ for all z

Sum-of-squares certificates of nonnegativity

If can write q as a sum of squares (SOS)

$$q(z) = \sum_{i=1}^{n} [q_i(z)]^2$$
 then $q(z) \ge 0$ for all z

Can search for SOS certificate via semidefinite optimization

- ightharpoonup q polynomial of degree 2d in n variables
- $ightharpoonup m_d(z)$ vector of monomials of degree at most d

$$q(z)$$
 is a sum of squares \iff $\exists Q\succeq 0 \;\; ext{such that} \;\; q(z)=m_d(z)^TQm_d(z)$

Hyperbolic certificates capture sums of squares

q SOS:
$$q(z) = m_d(z)^T Q m_d(z)$$
 with $Q \succeq 0$

Data for hyperbolic certificates

 $ightharpoonup p(X) = \det(X), e = identity$

$$f(z) = \begin{bmatrix} 0 & m_d(z)^T \\ m_d(z) & 0 \end{bmatrix}$$
 $g(z) = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \end{bmatrix}^T$

Using these choices...

$$\phi_{p,e}(f(z),g(z))\left[\begin{smallmatrix} 0 & 0 \\ 0 & Q \end{smallmatrix} \right] = \operatorname{tr}\left(f(z)^2 \left[\begin{smallmatrix} 0 & 0 \\ 0 & Q \end{smallmatrix} \right] \right) = m_d(z)^T Q m_d(z).$$

Can we go beyond sums of squares?

In general: is $\phi_{p,e}(x,y)[u]$ always a sum of squares?

Definition: p is SOS-hyperbolic w.r.t. e if $\phi_{p,e}(x,y)[u]$ is a sum of squares whenever $u \in \Lambda_+(p,e)$

For which n, d are there hyperbolic polynomials that are not SOS-hyperbolic?

'Bad' news

If a power of p has a definite determinantal representation then p is SOS hyperbolic

(common generalization of Kummer-Plaumann-Vinzant 2015 and Netzer-Plaumann-Thom 2013)

Defnite determinantal representation:

$$p(x) = \det (A_1x_1 + A_2x_2 + \cdots + A_nx_n)$$

where

- ▶ $A_1, ..., A_n$ are $d \times d$ symmetric
- ▶ $\sum_i A_i e_i \succ 0$ (definite)

'Bad' news

If a power of p has a definite determinantal representation then p is SOS hyperbolic

(common generalization of Kummer-Plaumann-Vinzant 2015 and Netzer-Plaumann-Thom 2013)

- ⇒ hyperbolic polynomials in 3 vars are SOS-hyperbolic (using Helton-Vinnikov 2007, or via a direct argument)
- ⇒ hyperbolic quadratics are SOS-hyperbolic (using Netzer-Thom 2011, or via direct argument)
- ⇒ hyperbolic cubics in 4 vars are SOS-hyperbolic (using Buckley-Košir 2007, direct argument??)

'Good' news

Theorem (S. 2018)

There are hyperbolic, but not SOS-hyperbolic, polynomials of degree d in n variables whenever

- ▶ $d \ge 4$ and $n \ge 4$
- ▶ d = 3 and $n \ge 43$
- ▶ Case of cubics in $5 \le n \le 42$ variables open
- Two key examples:
 - ▶ n = d = 4
 - d = 3 and n = 43
- ► Constructions to increase *d* or *n* and preserve being not SOS-hyperbolic

Quartic example: specialized Vámos polynomial

$$p(x_1, x_2, x_3, x_4) = x_3^2 x_4^2 + 4(x_1 + x_2 + x_3 + x_4)(x_1 x_2 x_3 + x_1 x_2 x_4 + x_1 x_3 x_4 + x_2 x_3 x_4)$$

Can show:

- ightharpoonup p is hyperbolic w.r.t. e = (0, 0, 1, 1)
- $u = (0, 0, 0, 1) \in \Lambda_{+}(p, e)$
- $\phi_{p,e}(x,y)[u]$ not SOS

Special case of construction due to Amini and Brändén

Hyperbolic cubics

Renaissance fact (16th century):

 $t^3 - 3at + 2b$ has real roots if and only if $a^3 - b^2 \ge 0$

- ▶ Recover this from determinant of Bézoutian/Hermite matrix of p and p'
- ▶ Focus on cubics in n+1 variables of the form

$$p(x_0,x) = x_0^3 - 3x_0||x||^2 + 2q(x)$$

Hyperbolic cubics ←→ extreme values on sphere

Consequence:

Homogeneous cubic in n+1 variables of the form

$$p(x_0, x) = x_0^3 - 3x_0 ||x||^2 + 2q(x)$$

is hyperbolic with respect to $e_0 = (1, 0, \dots, 0)$

$$\iff q(x)^2 \le ||x||^6 \quad \forall x \in \mathbb{R}^n$$

$$\iff \max_{\|x\|^2=1} q(x) \le 1$$

Hardness of deciding hyperbolicity

Given graph
$$G = (V, E)$$
 define cubic $q_G(x, y) = \sum_{(i, i) \in E} x_i x_j y_{ij}$

Nesterov 2003: if $\omega(G)$ is size of maximum clique in G

$$\max_{\|x\|^2 + \|y\|^2 = 1} q_G(x, y) = \sqrt{\frac{2}{27}} \sqrt{1 - \frac{1}{\omega(G)}}$$

Corollary: Given
$$G = (V, E)$$
 and a positive integer k

$$p(x_0, x) = \frac{2k}{k-1}x_0^3 - x_0||x||^2 + q_G(x, y)$$

is hyperbolic w.r.t. e_0 if and only if $\omega(G) \leq k$.

⇒ co-NP hard to decide hyperbolicity of cubics

Necessary condition for SOS-hyperbolicity

Homogeneous cubic in n+1 variables of the form

$$p(x_0,x) = x_0^3 - 3x_0||x||^2 + 2q(x)$$

Recall:

p hyperbolic w.r.t.
$$e_0 \iff ||x||^6 - q(x)^2 \ge 0$$
 for all x

Turns out:

p SOS-hyperbolic w.r.t.
$$e_0 \implies ||x||^6 - q(x)^2$$
 is SOS

A hyperbolic cubic that is not SOS-hyperbolic

If G = (V, E) is the icosahedral graph,

$$p(x_0, x, y) = x_0^3 - 3x_0(||x||^2 + ||y||^2) + 9\sum_{(i,j)\in E} x_i x_j y_{ij}$$

is not SOS-hyperbolic

A hyperbolic cubic that is not SOS-hyperbolic

If G = (V, E) is the icosahedral graph,

$$p(x_0, x, y) = x_0^3 - 3x_0(\|x\|^2 + \|y\|^2) + 9\sum_{(i,j)\in E} x_i x_j y_{ij}$$

is not SOS-hyperbolic

Corollary: Explicit hyperbolic cubic no power of which has definite determinantal rep.

A hyperbolic cubic that is not SOS-hyperbolic

If
$$G = (V, E)$$
 is the icosahedral graph,

$$p(x_0, x, y) = x_0^3 - 3x_0(||x||^2 + ||y||^2) + 9\sum_{(i,j)\in E} x_i x_j y_{ij}$$

is not SOS-hyperbolic

Corollary: Explicit hyperbolic cubic no power of which has definite determinantal rep.

Conjecture: There is hyp. cubic in 5 variables that is not SOS-hyperbolic

Hyperbolic certificates

Strange 'certificates'

- Proof of nonnegativity relies on proof of hyperbolicity
- But proof of hyperbolicity may not be simple!
- Different from SOS in this regard

Many choices

- Possibility to tailor to problem class
- ▶ Too many choices: where to start?

Are these features or bugs?

Summary

- Sufficient conditions for polynomial nonnegativity that can search for via hyperbolic programming
- Hyperbolic polynomials
 - ▶ all SOS-hyperbolic if n = 3 or d = 2 or (n, d) = (4, 3)
 - possibly not SOS-hyperbolic if

$$d \ge 4$$
 and $n \ge 4$ or $d = 3$ and $n \ge 43$

- ▶ Unknown: cubics with $5 \le n \le 42$
- ▶ On the way...
 - co-NP hard to decide hyperbolicity of cubics
 - example of hyperbolic cubic such that

no power has definite determinatal rep.

Step toward generic way to obtain hyperbolic programming relaxations of polynomial optimization problems

Preprint:

 'Certifying polynomial nonnegativity via hyperbolic optimization' https://arxiv.org/abs/1904.00491

THANK YOU!