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Problem: If f is a polynomial of degree 2d
in n variables, decide whether f(x) > 0 for all x € R”

Polynomial nonnegativity — Hyperbolic optimization

This talk: Find tractable sufficient conditions for
nonnegativity of f based on hyperbolic programming




Hyperbolic polynomials

A polynomial p homogeneous of degree d in n variables is
hyperbolic with respect to e € R" if

> p(e) >0
» for all x € R”, all roots of t — p(x — te) are real
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p(X7.y7Z):_X —y2+Z p(Xay?Z):_X —y4+Z4

hyperbolic w.r.t. e = (0,0, 1) not hyperbolic



Hyperbolic polynomials

A polynomial p homogeneous of degree d in n variables is
hyperbolic with respect to e € R” if

» p(e) >0
» for all x € W, all roots of t — p(x — te) are real
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hyperbolic w.r.t. e =(0,0,1) not hyperbolic



Hyperbolicity cones
If p is hyperbolic w.r.t. e € R” define hyperbolicity cone as

Ai(p,e) = {x € R" : all roots of t — p(te — x) non-negative}

Theorem (Garding 1959)
If pis hyperbolic w.r.t. e then A, (p, e) is convex.

Example

2 2

p(x,y,2) = —x* -y’ +z
» hyperbolic w.r.t. e =(0,0,1)
» Hyperbolicity cone is

second-order/Lorentz/ice-cream cone



Hyperbolic programming

Ax=0b

minimize,(c, x) subject to
< > ! {X € /\+(p7 e)

Theorem (Giiler 1997)
—log.(p) is a self-concordant barrier for A, (p, e)

Consequence: if can evaluate p, get ‘efficient’ algorithms
Special cases

» Linear programming: p(x) = xyx2 -+ x,, e =1

» Second-order cone programming

» Semidefinite programming: p(X) = det(X), e = ldentity



Testing for hyperbolicity

Hermite matrix: entries are power sums of eigenvalues
d

[Hp,e(x)]; = Z(_M(X))"H’2

(=1

Netzer-Plaumann-Thom (2013):
p hyperbolic with respect to e <= H, (x) > 0 for all x

(See Dey-Plaumann (2018) for more tests for hyperbolicity)




Testing for hyperbolicity

Hermite matrix: entries are power sums of eigenvalues
d

[Hp,e ()5 = D _(=Ae(x)) 7% = higja(x)

/=1

Netzer-Plaumann-Thom (2013):
p hyperbolic with respect to e <= H, (x) > 0 for all x

(See Dey-Plaumann (2018) for more tests for hyperbolicity)

Alternative view: Expand univariate rational function at infinity

Dep +te J
X—l—te ; th

k>1

Corresponding Hankel matrix is H, o(x).



Characterization of hyperbolicity cones

For any u € R” Corresponding Hankel matrix:
Dup X + te)
hi( t~ H, e i = hiyi_
o) " O bl = i)l

If p hyperbolic w.r.t. e then

Hpe(x)[u] = 0 forall x <= wuveli(pe)

» Equivalent formulation in terms of
Bézoutian of D,p(x + te) and p(x + te)

» Very closely related to Kummer-Plaumann-Vinzant (2015)



Example: symmetric determinant

If p(X) =det(X) and e =1

Hpe(X)[U]; = tr((=X)"72V)




Example: symmetric determinant

If p(X) =det(X) and e =1

Hpe(X)[U]; = tr((=X)"72V)

» U > 0 get Gram matrix
Hpe(X)[U]; = <(_X)i—1 U1/2, (_X)j—l U1/2>
» U # 0, explicitly construct y s.t.

yTHp,e(U)[U]y = Amin(U) <0



Example: symmetric determinant

If p(X) =det(X) and e =1

Hpe(X)[U]; = tr((=X)"72V)

» U > 0 get Gram matrix
Hpe(X)[U]; = <(_X)i—1 U1/2, (_X)j—l U1/2>
» U # 0, explicitly construct y s.t.

yTHp,e(U)[U]y = Amin(U) <0

Can use this to prove general case via Helton-Vinnikov theorem



Hyperbolicity cones — non-negative polynomials

If p hyperbolic with respect to e define

Ope(x, Y)[u] = y " Hpe(x)[uly

(polynomial in x, y, linear in u)

» Globally nonnegative if and only if u in hyperbolicity cone

» Convex set of nonnegative polynomials that is
linearly isomorphic to hyperbolicity cone

{0pe(x,y)lu] = ueAi(p e)}



Hyperbolic certificates of nonnegativity

Suppose
» p is hyperbolic with respect ot e € R”
» f:R” — R" polynomial
» g :R™ — R9 polynomial

If there exists u € A (p, e) such that

q(z) = ¢pe(f(z),8(2))[u] forall z

say g has hyperbolic certificate of nonnegativity

Get convex set of non-negative polynomials:

{9p.e(f(2), 8(2))[u] = vei(p e)}

» |s projection of the hyperbolicity cone
» Can search over these using hyperbolic programming



Sum-of-squares certificates of nonnegativity

If can write g as a sum of squares (SOS)

q(z) = Z[q;(z)]z then g(z) > 0 for all z

11



Sum-of-squares certificates of nonnegativity

If can write g as a sum of squares (SOS)

q(z) = Z[q;(z)]z then g(z) > 0 for all z

Can search for SOS certificate via semidefinite optimization
» g polynomial of degree 2d in n variables
» mgy(z) vector of monomials of degree at most d

q(z) is a sum of squares
=

3Q = 0 such that g(z) = mg(z)" @my(2)
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Hyperbolic certificates capture sums of squares

q SOS:  q(z) = myg(2)" @mg(z) with @ =0

Data for hyperbolic certificates
» p(X) = det(X), e = identity

>

[0 m@T
f(z)_{md(z) 0 } g( )_[0 10 0}

Using these choices. . .

Ope(f(2).8(2)) [8&] = tr (F(2)* [8 &]) = ma(2)" Qma(2).
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Can we go beyond sums of squares?

In general: is ¢, (x, y)[u] always a sum of squares?

Definition: p is SOS-hyperbolic w.r.t. e
if ¢pe(x,y)[u] is a sum of squares whenever u € AL (p, e)

For which n, d are there
hyperbolic polynomials that are not SOS-hyperbolic?
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‘Bad’ news

If a power of p has a definite determinantal representation
then p is SOS hyperbolic

(common generalization of Kummer-Plaumann-Vinzant 2015
and Netzer-Plaumann-Thom 2013)

Defnite determinantal representation:
p(x) = det (Aixy + Axxo + - - - + Apxy)

where
» A, ..., A, are d X d symmetric
» > Aiej = 0 (definite)
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‘Bad’ news

If a power of p has a definite determinantal representation
then p is SOS hyperbolic

(common generalization of Kummer-Plaumann-Vinzant 2015
and Netzer-Plaumann-Thom 2013)

= hyperbolic polynomials in 3 vars are SOS-hyperbolic
(using Helton-Vinnikov 2007, or via a direct argument)

—> hyperbolic quadratics are SOS-hyperbolic
(using Netzer-Thom 2011, or via direct argument)

= hyperbolic cubics in 4 vars are SOS-hyperbolic
(using Buckley-Kosir 2007, direct argument??)
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‘Good’ news

Theorem (S. 2018)

There are hyperbolic, but not SOS-hyperbolic, polynomials
of degree d in n variables whenever

» d>4and n>4
» d=3and n>43

» Case of cubics in 5 < n < 42 variables open
» Two key examples:
» n=d=4
» d =3and n=143
» Constructions to increase d or n and
preserve being not SOS-hyperbolic
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Quartic example: specialized Vamos polynomial

p(X17X27X37X4) -

2.2
x5x5 +4(x1 + x2 + x3 + x4)(x1x2x3 + X1X2X4 + X1X3X4 + X2X3X4)

Can show:
» p is hyperbolic w.r.t. e =(0,0,1,1)
» u=1(0,0,0,1) € Ay (p,e)
> Op.e(x,y)[u] not SOS

X4 X3

X4 X2

Special case of construction due to Amini and Brandén
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Hyperbolic cubics

Renaissance fact (16th century):
t3 — 3at + 2b has real roots if and only if a3 — b?> > 0

» Recover this from determinant of
Bézoutian/Hermite matrix of p and p’

» Focus on cubics in n + 1 variables of the form

p(x0, x) = x3 — 3x0||x[|* + 2q(x)
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Hyperbolic cubics <— extreme values on sphere

Consequence:
Homogeneous cubic in n + 1 variables of the form

p(x0, x) = x5 — 3xl|x||* + 29(x)

is hyperbolic with respect to ¢y = (1,0,...,0)

— q(x)? < ||x||® V¥x€R"

<= max g(x) <1

[Ix[12=1
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Hardness of deciding hyperbolicity

Given graph G = (V, E) define cubic g¢(x, y) Z XiX;Yij
(ig)eE

Nesterov 2003: if w(G) is size of maximum clique in G

_ 2 i
HxH2T|?y)ﬁ2:1qG(X’y ) =Vayl-oe

Corollary: Given G = (V/, E) and a positive integer k

p(x0, x) = 258 — xollx|* + g6 (x. ¥)

is hyperbolic w.r.t. & if and only if w(G) < k.

—> co-NP hard to decide hyperbolicity of cubics
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Necessary condition for SOS-hyperbolicity

Homogeneous cubic in n + 1 variables of the form
p(x0, x) = x§ — 3xallx|1> + 2q(x)

Recall:
p hyperbolic w.rt. eg < |[|x||® — g(x)? > 0 for all x

Turns out:
p SOS-hyperbolic w.r.t. e = ||x||® — g(x)? is SOS
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A hyperbolic cubic that is not SOS-hyperbolic

If G =(V,E) is the icosahedral graph,

p(x0, %, y) = x5 — 3x([IxII* + IY1I*) + 93 jyee X%y

is not SOS-hyperbolic

V| =12, |E| =30
20 maximum cliques

21



A hyperbolic cubic that is not SOS-hyperbolic

If G =(V,E) is the icosahedral graph,

p(x0, %, y) = x5 — 3x([IxII* + IY1I*) + 93 jyee X%y

is not SOS-hyperbolic

Corollary: Explicit hyperbolic cubic
no power of which has

definite determinantal rep.

V| =12, |E| =30
20 maximum cliques
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A hyperbolic cubic that is not SOS-hyperbolic

If G =(V,E) is the icosahedral graph,

p(x0, %, y) = x5 — 3x([IxII* + IY1I*) + 93 jyee X%y

is not SOS-hyperbolic

Corollary: Explicit hyperbolic cubic
no power of which has
definite determinantal rep.

Conjecture: There is hyp. cubic in

¢ ® 5 variables that is not SOS-hyperbolic
V| =12, |E| =30

20 maximum cliques
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Hyperbolic certificates

Strange ‘certificates’
» Proof of nonnegativity relies on proof of hyperbolicity
» But proof of hyperbolicity may not be simple!
» Different from SOS in this regard

Many choices
» Possibility to tailor to problem class

» Too many choices: where to start?

Are these features or bugs?
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Summary

» Sufficient conditions for polynomial nonnegativity
that can search for via hyperbolic programming
» Hyperbolic polynomials
» all SOS-hyperbolic if n=3 or d =2 or (n,d) = (4,3)
» possibly not SOS-hyperbolic if
d>4and n>40ord=3and n> 43
» Unknown: cubics with 5 < n <42
» On the way. ..
» co-NP hard to decide hyperbolicity of cubics
» example of hyperbolic cubic such that
no power has definite determinatal rep.

Step toward generic way to obtain hyperbolic programming
relaxations of polynomial optimization problems
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Preprint:

» ‘Certifying polynomial nonnegativity via hyperbolic
optimization’ https://arxiv.org/abs/1904.00491

THANK YOU!
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