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Deterministic Counting, Probability, and Zeros of Partition Functions,



For a graph G = (V, E), and A, B € C, the partition function of the Ising
model is defined as

Zo(A.p) = Y Al glsO

ucv

Here [6(U)| denotes the number of edges between U and V' \ U.
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For a graph G = (V, E), and A, B € C, the partition function of the Ising
model is defined as

Zs(AB) =) AlUL. glé(U)l,

ucv

Invented to study ferromagnetism in statistical physics.
Zs(1, B) is generating functions of edge cuts in G.
Zs(1, B) is the partition function of the 2-state Potts model.

Zs (A, B) for non-real B, A relates to output probabilities for certain
quantum circuits (Mann, Brenner 2018+)
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Theorem (Lee and Yang, 1952)

Fix B € [—1,1]. Then for any graph G, the zeros of the univariate
polynomial, Zc;()t, ,8) lie on the unit circle in the complex plane.
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Theorem (Lee and Yang, 1952)

Fix B € [—1,1]. Then for any graph G, the zeros of the univariate
polynomial, Zg()t, ,8) lie on the unit circle in the complex plane.

A lot of follow up work by many many people )

@ Today: where on the circle are these zeros?
o Ifp=12Zc=(1 +/\)‘V|, which has only one zero: —1.
@ For any other B, the roots of all graphs are in fact dense on the circle.

@ We will consider the class of bounded degree graphs.
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Results for all bounded degree graphs
Algorithmic consequences

Ideas of proof (use of complex dynamics)

Open problems and questions
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Gg11 is collection of all graphs of maximum degree at most d + 1.
Denote unit circle by dD; identified with [—7r, 77).
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Gg11 is collection of all graphs of maximum degree at most d + 1.
Denote unit circle by dD; identified with [—7r, 77).

Theorem (Peters, R. 18+)

Let d € N> and let B € (Z—j&, 1). Then there exists 6 = g € (—7t, 7T)
such that the following holds:

(i) for any A = e ||9| < 0 and any graph G € G4.1 we have
Zg(A.B) #0;
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Gg11 is collection of all graphs of maximum degree at most d + 1.
Denote unit circle by dD; identified with [—7r, 77).

Theorem (Peters, R. 18+)
Let d € N> and let B € (Z—j&, ). Then there exists 0 = 05 € (—, 7T)

such that the following holds:
(i) for any A = e ||9| < 0 and any graph G € G4.1 we have
Zg(A.B) #0;
(i) the set {A € C | Zg(A,B) = 0 for some G € Gg41} is dense in
oD\ (—6,6).

@ Part (ii) independently proved by Chio, He, Ji, and Roeder (2018+).

@ Extends some results of Barata and Marchetti and Barata and
Goldbaum for d = 2 on Cayley trees.
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G411 is collection of all graphs of maximum degree at most d + 1.
Theorem (Peters, R. 18+)

Let d € N>p and let B € (1, 911). Then there exists a = ag € (—7, 1)
such that the following holds:
(i) forany A = e, |0| < &, any r > 0 and any graph G € G4, 1 we
have Zg(r- A, B) #0;
(ii) the set {A € C| Zg(A, B) = 0 for some G € Ggi1} accumulates on

e'* and e '*.
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Corollary

There exists an FPTAS for computing Zg (A, B) for each fixed p and A as
above and G € Ggy1.
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Corollary

There exists an FPTAS for computing Zg (A, B) for each fixed p and A as
above and G € Ggy1.

(What is known about approximating Zg when G € Gy.1)

o FPRAS on all graphs when 0 < g < 1and A > 0 (Jerrum and
Sinclair 1993)

@ FPTAS when A =1 and B € (1, t1) (Sinclair, P. Srivastava, and
Thurley, 2014)

@ FPTAS when A =1 and | —1| < O(1/d), (Barvinok and Soberén
2017 combined with Patel, R. 2017)

o FPTAS when B € [—1,1] and |A| < 1 (Liu, Sinclair, P. Srivastava,
2017)

v
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@ Transform the problem to ratios of partition functions.

@ Express the ratio as an iteration of a rational map and apply
techniques/ideas from complex dynamics.

@ Same structure/idea was used by Peters and R. to solve a conjecture
of Sokal concerning the location of zeros for the independence
polynomial.
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Ratios of partition functions

Ze(AB) = Y AlUl. gl

ucv

ZG = ZG,v,in + ZG,v,out
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Ze(AB) = Y Al gl

Ucv
ZG = ZG,v,in 4 ZG,v,out J
ZG v,in
Rg, = =——
¢ ZG,v,out J

Then (‘ignoring’ the situation that Zg , in = ZG.v.out = 0),

Zc #0 < Rg, # —1. J
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@ Step 1: Analyse the ratio on Cayley trees using complex dynamics.
(This allows to prove parts (ii))

@ Step 2: Extend results to all trees with boundary conditions.

@ Step 3: Use Weitz' self avoiding walk tree to go from trees to all
graphs.
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Let Ty 4 be the rooted Cayley tree of down degree d with k layers , i.e.
To,q consists of a single vertex and Ty 4 consists of d copies of Ty_1 4
connected to the root.

Lemma

R d
Rde =A (Tkl'd R 'B > .
’ BR7, 1,a+1
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Define

N R+B\7
f: R )
C —Cby HA(/&R+1>

Lemma
For Cayley trees Ty = Ty 4:

Z7.(B.A) £ 0 forall k <= k(1) # —1 for all k.
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Let

Basic observations when 8 € (0,1)
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Let
R+ B

:,BR—l—l then f(R) = A - g(R)?

g(R)

@ g is a Mobius transformation and preserves the circle, dD, its interior
and its exterior. (Implies Lee-Yang Thm. for trees.)
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Let
R+ B

T BR+1

g(R) then f(R) = A - g(R)?

@ g is a Mobius transformation and preserves the circle, dD, its interior
and its exterior. (Implies Lee-Yang Thm. for trees.)

@ f is an orientation preserving d-fold covering of dID
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Let
_ R+B
- BR+1

g(R) then f(R) = A - g(R)?

@ g is a Mobius transformation and preserves the circle, dD, its interior
and its exterior. (Implies Lee-Yang Thm. for trees.)

@ f is an orientation preserving d-fold covering of dID
°

/ o d(l_ﬁQ)
PR =R Ry pBR D)

So |f'(R)| is minimal at R = 1 and increasing with |Arg(R)|.
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Definition (Informal)

The Fatou set F is the set of points for which nearby points behave
similarly under iteration of the map . The Julia set J is the complement

of the Fatou set F.
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Definition (Informal)

The Fatou set F is the set of points for which nearby points behave
similarly under iteration of the map . The Julia set J is the complement
of the Fatou set F. A fixed point R (R is such that f(R) = R) is called
attracting if |f'(R)| < 1, parabolic if f'(R) =1 and repelling if

f'(R)| > 1.

@ Montel's theorem implies that the Julia set is contained in the unit

circle, 0D.

@ Two options for the Julia set J:
e Jis the entire circle (so no attracting fixed points on the circle).
e J is not the entire circle, in which case the Fatou set is a single
component and contains a unique attracting or parabolic fixed point on

dD.
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1Py d(1-p?) _d-1
f(R)_f(R)(R+ﬂ)(ﬁR+1) let o= 4

o if € (0,Bc), |f'(1)] > 1 (Julia set is D)
o if =P |F(1)] =1
o if B (B, 1), |f'(1)] < 1.
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d(1-p?) _d-1
R+PBR+D P arT

(R) = £(R) i

o if € (0,Bc), |f'(1)] > 1 (Julia set is D)
o if =P |F(1)] =1
o if B (B, 1), |f'(1)] < 1.

Lemma

If B € (0, Bc), then the collection of parameters A for which —1 is
contained in the orbit of the initial value Ry = 1 is dense in dID.
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d(1-p?) _d-1
R+PBR+D P arT

F(R) = F(R) —

o if € (0,Bc), |f'(1)] > 1 (Julia set is D)
o if =P |F(1)] =1
o if B (B, 1), |f'(1)] < 1.

Lemma

If B € (0, Bc), then the collection of parameters A for which —1 is
contained in the orbit of the initial value Ry = 1 is dense in dID.

Corollary
If B € (0,Bc), then the zeros of Z7, ,(A, B) are dense in dID.

v
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Fix B € (Be, 1).

Lemma

There exists a unique 6 € (0, 71) such that for the two parameters
A = e f has a unique parabolic fixed point R. It satisfies the equation:

dF? =D+ A+ 1 _y

R? +
p J

Guus Regts (University of Amsterdam) 17 / 23



Fix B € (Bc. 1).
Lemma

There exists a unique 6 € (0, 71) such that for the two parameters
A = e f has a unique parabolic fixed point R. It satisfies the equation:

d(f?—1)+(1+p%
p

R? + R+1=0.

Lemma

The map f has a parabolic or attracting fixed point on dID if and only if
A = e with [8] < 6.
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Fix B € (Bc. 1).
Lemma

There exists a unique 6 € (0, 71) such that for the two parameters
A = e f has a unique parabolic fixed point R. It satisfies the equation:

d(f?—1)+(1+p%

R+1=0.
B

R? +

Lemma
The map f has a parabolic or attracting fixed point on dID if and only if
A = e with [8] < 6.

This can be used to prove our theorem for Cayley trees.
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High level idea of proof part (i)

@ Step 1: Analyse the ratio on Cayley trees using complex dynamics.
@ Step 2: Extend results to all trees with boundary conditions.
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@ Step 1: Analyse the ratio on Cayley trees using complex dynamics.
@ Step 2: Extend results to all trees with boundary conditions.
e The recurrence for general trees is given as

o Let / be the circular interval [1, R] (R is the attracting fixed point.)
Then for any R € I, f(R) € 1.

o Let C be the cone through /. Then for any Ry, ..., Ry € C,
F(R]_,...,Rd) e C.
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@ Step 1: Analyse the ratio on Cayley trees using complex dynamics.
@ Step 2: Extend results to all trees with boundary conditions.
e The recurrence for general trees is given as

o Let / be the circular interval [1, R] (R is the attracting fixed point.)
Then for any R € I, f(R) € 1.
o Let C be the cone through /. Then for any Ry, ..., Ry € C,
F(R]_,...,Rd) e C.
@ Step 3: Use Weitz' self avoiding walk tree to go from trees to all
graphs.
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Questions/Open Problems |
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Theorem (Liu, Sinclair, Srivastava, 2018+)

for each d > 2 there exists a region B C C containing the interval

(g—ﬁ @) such that for all B € B, and all graphs G € G441,

Zs(L.p) #

Question

What is the maximal domain B containing (§71, 977) such that the
above statement still holds?
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Definition
The partition function of the Potts model is defined for € C, k € N and
a graph G by

'DG(,By k) = Z ﬁ# monochromatic edges
¢:V— k]
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Definition
The partition function of the Potts model is defined for € C, k € N and
a graph G by

PG(,B, k) = Z ﬁ# monochromatic edges
¢:V— K]

Note Z¢ (1, B) = BlEIPc(1/B,2).

Question

Let kK € IN. Is it true that there exists a region B containing the interval

(€435, 1) such that for all B € B and graphs G € Gg.1, Pg(B, k) # 07
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Definition
The partition function of the Potts model is defined for € C, k € N and
a graph G by

PG(,B, k) = Z [B# monochromatic edges
¢:V— K]

Note Z¢ (1, B) = BlEIPc(1/B,2).

Question
Let kK € IN. Is it true that there exists a region B containing the interval

(€435, 1) such that for all B € B and graphs G € Gg.1, Pg(B, k) # 07

With Bencs, Davies and Patel: can find a region that contains the interval

d+1—(k—1)/e 1)
d+1 )
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More antiferromagnetic (B > 1) zeros:

Theorem (Bencs, Buys, Guerini, Peters, 19+)

Let d € N> and let B € (1, 92). Then there exists 6 = g > ag such
that the set {A | Zg(A, B) = 0} for some G € G411 is dense in the
circular interval (—0,0).
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More antiferromagnetic (B > 1) zeros:

Theorem (Bencs, Buys, Guerini, Peters, 19+)

Let d € N> and let B € (1, 92). Then there exists 6 = g > ag such

that the set {A | Zg(A, B) = 0} for some G € G411 is dense in the
circular interval (—0,0).

Question
What happens in between 6 and «?

v

Preliminary work of Bencs, Buys, Guerini and Peters suggests that there is
an interval | C (&, 6) on which the roots accumulate.
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Let d € N>, let B € (973, 1) and let 6 = 6.

Corollary

For any A = e'® ,|0| < 6 there is an FPTAS for computing Zg (A, B) for
all graphs G € Ggy1.

Question
How hard is it to approximate Zg (A, B) when A = e ,|8] > 67

Guus Regts (University of Amsterdam) 22 /23



Thank you for your attention!
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