Privately Learning High-Dimensional Distributions

Gautam Kamath

Simons Institute \rightarrow University of Waterloo

Data Privacy: From Foundations to Applications

March 8, 2019

With:

Jerry Li (Microsoft Research Redmond) Vikrant Singhal (Northeastern University) Jonathan Ullman (Northeastern University)

Algorithms vs. Statistics

Algorithms

Privacy in Statistics

Desiderata:

- 1. Algorithm is accurate (with high probability over $X \sim p$)
 - May require assumptions about p to hold
 - Today: "Estimate" p
- 2. Algorithm is private (always)
 - Today: $\frac{\varepsilon^2}{2}$ -concentrated differential privacy

What is the additional cost of privacy?

An Example

- Given female heights X_1, \ldots, X_n , compute the average height
 - $X_i \sim_{i.i.d.} D$, compute E[D]
- Laplace Mechanism
 - $Z = \sum X_i + Laplace\left(\frac{\Delta}{\varepsilon}\right)$

An Example

- Given female heights X_1, \ldots, X_n , compute the average height
 - $X_i \sim_{i.i.d.} D$, compute E[D]
- Laplace Mechanism
 - $Z = \sum X_i + Laplace\left(\frac{\Delta}{\varepsilon}\right)$
- $\Delta = \text{realmax!}$

An Example

- Given female heights X₁, ..., X_n, compute the average height
 X_i ∼_{i.i.d.} D, compute E[D]
- Laplace Mechanism
 - $Z = \sum X_i + Laplace\left(\frac{\Delta}{\varepsilon}\right)$
- A priori: most females between 120 cm and 200 cm
 - Clip/"Winsorize" data, $\Delta = 80$
 - $80/\varepsilon$ is still large...
- Things get worse in high dimensions
- Goal: Minimize cost due to uncertainty

Background: Univariate Private Statistics

• Theorem: There exists a $\frac{\varepsilon^2}{2}$ -zCDP algorithm which estimates the mean of a Bernoulli distribution up to $\pm \alpha$, with $n = O\left(\frac{1}{\alpha^2} + \frac{1}{\alpha\varepsilon}\right)$ samples.

• "Rate":
$$|p - \hat{p}| \le O\left(\frac{1}{\sqrt{n}} + \frac{1}{\varepsilon n}\right)$$

- Non-private cost: $O\left(\frac{1}{\alpha^2}\right)$ samples
- Low-dimensional problems are now (reasonably) well-understood
 - Univariate Gaussians [Karwa-Vadhan '18]
 - Univariate discrete distributions
 - Kolmogorov distance [Bun-Nissim-Stemmer-Vadhan '15]
 - Total variation distance [folklore, Diakonikolas-Hardt-Schmidt '15]
- High dimensions?

• Theorem: There exists a $\frac{\varepsilon^2}{2}$ -zCDP algorithm

• Theorem: There exists a $\frac{\varepsilon^2}{2}$ -zCDP algorithm which learns a Gaussian $N(\mu, \Sigma)$ in \mathbf{R}^d

• Theorem: There exists a $\frac{\varepsilon^2}{2}$ -zCDP algorithm which learns a Gaussian $N(\mu, \Sigma)$ in \mathbb{R}^d with $\|\mu\|_2 \leq R$ and $I \leq \Sigma \leq \kappa I$

• Theorem: There exists a $\frac{\varepsilon^2}{2}$ -zCDP algorithm which learns a Gaussian $N(\mu, \Sigma)$ in \mathbb{R}^d with $\|\mu\|_2 \stackrel{2}{\leq} R$ and $I \leq \Sigma \leq \kappa I$ to α total variation distance with

$$n = \tilde{O}\left(\frac{d^2}{\alpha^2} + \frac{d^2}{\alpha\varepsilon} + \frac{d^{3/2}\log^{1/2}\kappa}{\varepsilon} + \frac{d^{1/2}\log^{1/2}R}{\varepsilon}\right) \text{ samples.}$$

- Non-private: $O(d^2/\alpha^2)$ samples exponent in d unchanged
- Mild dependence on "uncertainty" parameters R, κ
- Some lower bounds
- Similar results for product distributions: $n = \widetilde{\Theta}\left(\frac{d}{\alpha^2} + \frac{d}{\alpha\varepsilon}\right)$ samples

Today's talk: Gaussian Covariance Estimation

• Theorem: There exists a $\frac{\varepsilon^2}{2}$ -zCDP algorithm which learns a Gaussian $N(0, \Sigma)$ in \mathbb{R}^d with $I \leq \Sigma \leq \kappa I$ to α total variation distance with

$$n = \tilde{O}\left(\frac{d^2}{\alpha^2} + \frac{d^2}{\alpha\varepsilon} + \frac{d^{3/2}\log^{1/2}\kappa}{\varepsilon}\right) \text{ samples.}$$

- If Σ were well-conditioned ($\kappa = O(1)$), problem is easy
- A private recursive method to reduce the condition number

Learning a Multivariate Gaussian

Given samples from $N(0, \Sigma), I \leq \Sigma \leq \kappa I,$ output $\hat{\Sigma}$, such that $\|\Sigma - \hat{\Sigma}\|_{\Sigma} \leq \alpha$ \leftrightarrow $\|\Sigma^{-1/2}\hat{\Sigma}\Sigma^{-1/2} - I\|_{F} \leq \alpha.$

Implies

$$\operatorname{TV}\left(N(0,\Sigma),N(0,\widehat{\Sigma})\right) = O(\alpha).$$

Non-Private Covariance Estimation

- Given: $X_1, \ldots, X_n \sim N(0, \Sigma)$
- Output: $\widehat{\Sigma} = \frac{1}{n} \sum_{i} X_{i} X_{i}^{T}$

• Accuracy:
$$\|\widehat{\Sigma} - \Sigma\|_{\Sigma} = O\left(\sqrt{\frac{d^2}{n}}\right)$$

• Learn in TV distance with $n = O(d^2/\alpha^2)$

• How to privatize?

Recap: Gaussian Mechanism

- $f: D^n \to \mathbf{R}$
- Sensitivity: $\Delta = \max_{X,X':d_h(X,X')=1} |f(X) f(X')|$
 - Biggest difference on two neighboring datasets

•
$$\hat{f}(X) = f(X) + N\left(0, \left(\frac{\Delta}{\varepsilon}\right)^2\right)$$

- Privacy: \hat{f} is $\frac{\varepsilon^2}{2}$ -zCDP
- Accuracy: $\left| \hat{f}(X) f(X) \right| = O\left(\frac{\Delta}{\varepsilon}\right)$

Recap: Gaussian Mechanism

- $f: D^n \to \mathbf{R}^{d \times d}$
- Sensitivity: $\Delta = \max_{X,X':d_h(X,X')=1} \|f(X) f(X')\|_F$
 - Biggest difference on two neighboring datasets

•
$$\hat{f}(X) = f(X) + N\left(0, \left(\frac{\Delta}{\varepsilon}\right)^2\right)^{d \times d}$$

• Privacy: \hat{f} is $\frac{\varepsilon^2}{2}$ -zCDP

• Accuracy:
$$\|\hat{f}(X) - f(X)\|_{F} = O\left(\frac{\Delta d}{\varepsilon}\right)$$

Private Covariance Estimation: Take 1

- Given: $X_1, \ldots, X_n \sim N(0, \Sigma)$
- Output: $\widehat{\Sigma} = \frac{1}{n} \sum_{i} X_{i} X_{i}^{T} + N \left(0, \left(\frac{\Delta}{\varepsilon} \right)^{2} \right)^{d \times d}$
- Accuracy: $\|\widehat{\Sigma} \Sigma\|_{\Sigma} = O\left(\sqrt{\frac{d^2}{n}} + \frac{\Delta d}{\varepsilon}\right)$
- Problem: What is the sensitivity?

Limiting Sensitivity via Truncation

Private Covariance Estimation: Take 2

- "Truncate-then-empirical" method
- Given: $X_1, \dots, X_n \sim N(0, \Sigma), I \leq \Sigma \leq \kappa I$
- Remove points which don't satisfy $||X_i||_2^2 \leq \tilde{O}(\kappa d)$ • $\Delta = \tilde{O}(\kappa d)$

• Output:
$$\hat{\Sigma} = \frac{1}{n} \sum_{i} X_{i} X_{i}^{T} + N \left(0, \left(\frac{\tilde{O}(\kappa d)}{\epsilon n} \right)^{2} \right)^{d \times d}$$

• Accuracy: $\left\| \hat{\Sigma} - \Sigma \right\|_{\Sigma} = \tilde{O} \left(\sqrt{\frac{d^{2}}{n}} + \frac{\kappa d^{2}}{\epsilon n} \right)$
• $n = \tilde{O} \left(\frac{d^{2}}{\alpha^{2}} + \frac{\kappa d^{2}}{\alpha \epsilon} \right)$ samples

Private Covariance Estimation, So Far...

• Theorem: There exists a $\frac{\varepsilon^2}{2}$ -zCDP algorithm which learns a Gaussian $N(0, \Sigma)$ in \mathbb{R}^d with $I \leq \Sigma \leq \kappa I$ to α TV distance with

$$n = \tilde{O}\left(\frac{d^2}{\alpha^2} + \frac{\kappa d^2}{\alpha\varepsilon}\right)$$
 samples.

- Optimal for $\kappa = O(1)$
- But κ can be very large...

What Went Wrong?

What Went Wrong?

Private Recursive Preconditioning

- In directions where Σ is small, our noise outweighed our signal!
- Solution: Approximately learn $\boldsymbol{\Sigma}$ in all directions
- Theorem: There exists a $\frac{\varepsilon^2}{2}$ -zCDP algorithm which finds a matrix \hat{A} such that $I \leq \widehat{A}\Sigma\widehat{A} \leq 100I$ with

$$n = \tilde{O}\left(\frac{d^{3/2}\log^{1/2}\kappa}{\varepsilon}\right) \text{ samples.}$$

Private Covariance Estimation: Take 3

- Given: $X_1, \dots, X_n \sim N(0, \Sigma), I \leq \Sigma \leq \kappa I$
- 1. Learn \hat{A} such that $I \leq \widehat{A}\Sigma\widehat{A} \leq 100I$
- 2. Let $\tilde{\Sigma}$ be output of truncate-then-empirical method on $\hat{A}X_1, \dots, \hat{A}X_n$
- 3. Output $\hat{\Sigma} = \hat{A}^{-1} \tilde{\Sigma} \hat{A}^{-1}$

• Step 1:
$$n = \tilde{O}\left(\frac{d^{3/2}\log^{1/2}\kappa}{\varepsilon}\right)$$
 samples ????
• Step 2: $n = \tilde{O}\left(\frac{d^2}{\alpha^2} + \frac{\kappa d^2}{\alpha\varepsilon}\right) = \tilde{O}\left(\frac{d^2}{\alpha^2} + \frac{d^2}{\alpha\varepsilon}\right)$ samples \checkmark

• Reduce condition number by a factor of $O(\kappa)$

- Reduce condition number by a factor of O(1), $O(\log \kappa)$ times!
- Theorem: There exists a $\frac{\varepsilon^2}{2}$ -zCDP algorithm which finds a matrix \hat{A} such that $I \leq \widehat{A}\Sigma\widehat{A} \leq \frac{3\kappa}{4}I$ with $n = \widetilde{O}\left(\frac{d^{3/2}}{\varepsilon}\right)$ samples. • Composition of DP: use $O\left(\frac{\varepsilon^2}{\log \kappa}\right)$ -zCDP for each round

• Recall:
$$Z = N\left(0, \left(\frac{\tilde{O}(\kappa d)}{\varepsilon n}\right)^2\right)^{d \times d}$$

• If
$$n = \tilde{O}(d^{3/2}/\varepsilon), ||Z||_2 \le \frac{\kappa}{100}$$

• In a given direction:

- κ is a good estimate for variance in this direction
- If noised variance is not large $\left(\ll \frac{\kappa}{2}\right)$, true variance is not large
 - κ is too large an estimate for variance in this direction reduce our estimate!

- Given: $X_1, \dots, X_n \sim N(0, \Sigma), I \leq \Sigma \leq \kappa I$
- 1. Remove points which don't satisfy $||X_i||_2^2 \leq \tilde{O}(\kappa d)$

2. Compute
$$\hat{\Sigma} = \frac{1}{n} \sum_{i} X_{i} X_{i}^{T} + N \left(0, \left(\frac{\tilde{O}(\kappa d)}{\epsilon n} \right)^{2} \right)^{d \times d}$$

3. Let (λ_i, v_i) be eigenvalues/vectors of $\hat{\Sigma}$, $\hat{V} \leftarrow \text{span}\left\{v_i: \lambda_i \geq \frac{\kappa}{2}\right\}$

- 4. Output $\hat{A} \leftarrow \frac{1}{4} \Pi_{\hat{V}} + \Pi_{V}$
- If $n = \tilde{O}(d^{3/2}/\varepsilon)$, then $I \leq \widehat{A}\Sigma\widehat{A} \leq \frac{3\kappa}{4}I$
- $O(\log \kappa)$ reps: If $n = \tilde{O}(n^{3/2} \log^{1/2} \kappa / \varepsilon)$, then $I \leq \widehat{A} \Sigma \widehat{A} \leq O(1)I$

• Theorem: There exists a $\frac{\varepsilon^2}{2}$ -zCDP algorithm which learns a Gaussian $N(\mu, \Sigma)$ in \mathbb{R}^d with $\|\mu\|_2 \leq R$ and $I \leq \Sigma \leq \kappa I$ to α TV distance with

$$n = \tilde{O}\left(\frac{d^2}{\alpha^2} + \frac{d^2}{\alpha\varepsilon} + \frac{d^{3/2}\log^{1/2}\kappa}{\varepsilon} + \frac{d^{1/2}\log^{1/2}R}{\varepsilon}\right) \text{ samples.}$$

Conclusions

- Algorithm for privately learning Gaussians and product distributions in high dimensions
- First high-dimensional algorithm with mild dependence on "uncertainty parameters"
- Privacy comes at small cost